Search results for: cold form steel sections
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9140

Search results for: cold form steel sections

8420 EIS Study of the Corrosion Behavior of an Organic Coating Applied on Algerian Oil Tanker in Sea Water

Authors: Nadia Hammouda, Kamel Belmokre

Abstract:

Organic coatings are widely employed in the corrosion protection of most metal surfaces, particularly steel. They provide a barrier against corrosive species present in the environment, due to their high resistance to oxygen, water and ions transport. This study focuses on the evaluation of corrosion protection performance of epoxy paint on the carbon steel surface in sea water by Electrochemical Impedance Spectroscopy (EIS). The electrochemical behavior of painted surface was estimated by EIS parameters that contained paint film resistance, paint film capacitance and double layer capacitance. On the basis of calculation using EIS spectrums it was observed that pore resistance (Rpore) decreased with the appearance of doubled layer capacitance (Cdl) due to the electrolyte penetration through the film. This was further confirmed by the decrease of diffusion resistance (Rd) which was also the indicator of the deterioration of paint film protectiveness.

Keywords: epoxy paints, carbon steel, electrochemical impedance spectroscopy, corrosion mechanisms, sea water

Procedia PDF Downloads 374
8419 Rare Earth Doped Alkali Halide Crystals for Thermoluminescence Dosimetry Application

Authors: Pooja Seth, Shruti Aggarwal

Abstract:

The Europium (Eu) doped (0.02-0.1 wt %) lithium fluoride (LiF) crystal in the form of multicrystalline sheet was gown by the edge defined film fed growth (EFG) technique. Crystals were grown in argon gas atmosphere using graphite crucible and stainless steel die. The systematic incorporation of Eu inside the host LiF lattice was confirmed by X-ray diffractometry. Thermoluminescence (TL) glow curve was recorded on annealed (AN) crystals after irradiation with a gamma dose of 15 Gy. The effect of different concentration of Eu in enhancing the thermoluminescence (TL) intensity of LiF was studied. The normalized peak height of the Eu-doped LiF crystal was nearly 12 times that of the LiF crystals. The optimized concentration of Eu in LiF was found to be 0.05wt% at which maximum TL intensity was observed with main TL peak positioned at 185 °C. At higher concentration TL intensity decreases due to the formation of precipitates in the form of clusters or aggregates. The nature of the energy traps in Eu doped LiF was analysed through glow curve deconvolution. The trap depth was found to be in the range of 0.2 – 0.5 eV. These results showed that doping with Eu enhances the TL intensity by creating more defect sites for capturing of electron and holes during irradiation which might be useful for dosimetry application.

Keywords: thermoluminescence, defects, gamma radiation, crystals

Procedia PDF Downloads 330
8418 Damages Inflicted on Steel Structures and Metal Buildings due to Insufficient Supervision and Monitoring and Non-Observance of the Rules of the Regulations

Authors: Ehsan Sadie

Abstract:

Despite the experience of heavy losses and damages of recent earthquakes such as 8 km E of Pāhala, Hawaii, 11 km W of Salvaleón de Higüey, Dominican Republic and 49 km SSE of Punta Cana, Dominican Republic earthquakes, the possibility of large earthquakes in most populated areas of any country and the serious need for quality control in the design and implementation of buildings, not enough attention has been paid to the proper construction. Steel structures constitute a significant part of construction in any metropolitan area. This article gives a brief overview of the implementation status of these buildings in urban areas and considers the weaknesses of performance that typically occur due to negligence or insufficient mastery of the building supervisor in the principles of operation of earthquake-resistant buildings, and provides appropriate and possible solutions to improve the construction.

Keywords: bracing member, concentrated load, diaphragm system, earthquake engineering, load-bearing system, shear force, seismic retrofitting, steel building, strip foundation, supervising engineer, vulnerability of building

Procedia PDF Downloads 131
8417 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard

Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni

Abstract:

The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.

Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model

Procedia PDF Downloads 143
8416 Minimum Ratio of Flexural Reinforcement for High Strength Concrete Beams

Authors: Azad A. Mohammed, Dunyazad K. Assi, Alan S. Abdulrahman

Abstract:

Current ACI 318 Code provides two limits for minimum steel ratio for concrete beams. When concrete compressive strength be larger than 31 MPa the limit of √(fc')/4fy usually governs. In this paper shortcomings related to using this limit was fairly discussed and showed that the limit is based on 90% safety factor and was derived based on modulus of rupture equation suitable for concretes of compressive strength lower than 31 MPa. Accordingly, the limit is nor suitable and critical for concretes of higher compressive strength. An alternative equation was proposed for minimum steel ratio of rectangular beams and was found that the proposed limit is accurate for beams of wide range of concrete compressive strength. Shortcomings of the current ACI 318 Code equation and accuracy of the proposed equation were supported by test data obtained from testing six reinforced concrete beams.

Keywords: concrete beam, compressive strength, minimum steel ratio, modulus of rupture

Procedia PDF Downloads 551
8415 Hot Spot Stress Analysis and Parametric Study on Rib-To-Deck Welded Connections in Orthotropic Steel Bridge Decks

Authors: Dibu Dave Mbako, Bin Cheng

Abstract:

This paper study the stress variation of the welded joints in the rib-to-deck connection structure, the influence stress of the deck plate and u-rib thickness at different positions. A Finite-element model of orthotropic steel deck structure using solid element and shell element was established in ABAQUS. Under a single wheel load, the static response was analyzed to understand the structural behaviors and examine stress distribution. A parametric study showed that the geometric parameters have a significant effect on the hot spot stress at the weld toe, but has little impact on the stress concentration factor. The increase of the thickness of the deck plate will lead to the decrease of the hot spot stress at the weld toe and the maximum deflection of the deck plate. The surface stresses of the deck plate are significantly larger than those of the rib near the joint in the 80% weld penetration into the u-rib.

Keywords: orthotropic steel bridge deck, rib-to-deck connection, hot spot stress, finite element method, stress distribution

Procedia PDF Downloads 221
8414 Confinement of Concrete Filled Steel Tubular Beams Using U-Links

Authors: Madiha Z. Ammari, Abdul Qader AlNajmi

Abstract:

A new system of U-links was used in this study to confine the concrete core in concrete-filled steel beams. This system aims to employ the separation expected between the steel tube and the concrete core in the compression side of the section in the plastic hinge zone. A total of six rectangular CFT beam specimens were tested under flexure using different D/t ratios and different diameters for the U-links to examine their effect on the flexural behavior of these beams. The ultimate flexural strength of the CFT beam specimens with U-links showed an increase of strength about 47% of the specimen with D/t ratio equals 37.5 above standard CFT beam specimen without U-links inside. State of concrete inside the tubes has shown no crushing of concrete when those beams were cut open at the location of the plastic hinge. Strain measurements revealed that the compressive strain of concrete was 5-6 times the concrete crushing strain.

Keywords: concrete-filled tubes, U-links, plated studies, beams, flexural strength, concrete, confinement

Procedia PDF Downloads 341
8413 Effect of TERGITOL NP-9 and PEG-10 Oleyl Phosphate as Surfactant and Corrosion Inhibitor on Tribo-Corrosion Performance of Carbon Steel in Emulsion-Based Drilling Fluids

Authors: Mohammadjavad Palimi, D. Y. Li, E. Kuru

Abstract:

Emulsion-based drilling fluids containing mineral oil are commonly used for drilling operations, which generate a lubricating film to prevent direct contact between moving metal parts, thus reducing friction, wear, and corrosion. For long-lasting lubrication, the thin lubricating film formed on the metal surface should possess good anti-wear and anti-corrosion capabilities. This study aims to investigate the effects of two additives, TERGITOL NP-9 and PEG-10 oleyl phosphate, acting as surfactant and corrosion inhibitor, respectively, on the tribo-corrosion behavior of 1018 carbon steel immersed in 5% KCl solution at room temperature. A pin-on-disc tribometer attached to an electrochemical system was used to investigate the corrosive wear of the steel immersed in emulsion-based fluids containing the surfactant and corrosion inhibitor. The wear track, surface chemistry and composition of the protective film formed on the steel surface were analyzed with an optical profilometer, SEM, and SEM-EDX. Results of the study demonstrate that the performance of the emulsion-based drilling fluids was significantly improved by the corrosion inhibitor by a remarkable reduction in corrosion, coefficient of friction (COF) and wear.

Keywords: corrosion inhibitor, emulsion-based drilling fluid, tribo-corrosion, friction, wear

Procedia PDF Downloads 69
8412 Impact of Fin Cross Section Shape on Potential Distribution of Nanoscale Trapezoidal FinFETs

Authors: Ahmed Nassim Moulai Khatir

Abstract:

Fin field effect transistors (FinFETs) deliver superior levels of scalability than the classical structure of MOSFETs by offering the elimination of short channel effects. Modern FinFETs are 3D structures that rise above the planar substrate, but some of these structures have inclined surfaces, which results in trapezoidal cross sections instead of rectangular sections usually used. Fin cross section shape of FinFETs results in some device issues, like potential distribution performance. This work analyzes that impact with three-dimensional numeric simulation of several triple-gate FinFETs with various top and bottom widths of fin. Results of the simulation show that the potential distribution and the electrical field in the fin depend on the sidewall inclination angle.

Keywords: FinFET, cross section shape, SILVACO, trapezoidal FinFETs

Procedia PDF Downloads 47
8411 Computation of Stress Intensity Factor Using Extended Finite Element Method

Authors: Mahmoudi Noureddine, Bouregba Rachid

Abstract:

In this paper the stress intensity factors of a slant-cracked plate of AISI 304 stainless steel, have been calculated using extended finite element method and finite element method (FEM) in ABAQUS software, the results were compared with theoretical values.

Keywords: stress intensity factors, extended finite element method, stainless steel, abaqus

Procedia PDF Downloads 618
8410 Effect of Jet Diameter on Surface Quenching at Different Spatial Locations

Authors: C. Agrawal, R. Kumar, A. Gupta, B. Chatterjee

Abstract:

An experimental investigation has been carried out to study the cooling of a hot horizontal Stainless Steel surface of 3 mm thickness, which has 800±10 °C initial temperature. A round water jet of 22 ± 1 °C temperature was injected over the hot surface through straight tube type nozzles of 2.5-4.8 mm diameter and 250 mm length. The experiments were performed for the jet exit to target surface spacing of 4 times of jet diameter and jet Reynolds number of 5000-24000. The effect of change in jet Reynolds number on the surface quenching has been investigated form the stagnation point to 16 mm spatial location.

Keywords: hot-surface, jet impingement, quenching, stagnation point

Procedia PDF Downloads 610
8409 Decay Analysis of 118Xe* Nucleus Formed in 28Si Induced Reaction

Authors: Manoj K. Sharma, Neha Grover

Abstract:

Dynamical cluster decay model (DCM) is applied to study the decay mechanism of 118Xe* nucleus in reference to recent data on 28Si + 90Zr → 118Xe* reaction, as an extension of our previous work on the dynamics of 112Xe* nucleus. It is relevant to mention here that DCM is based on collective clusterization approach, where emission probability of different decay paths such as evaporation residue (ER), intermediate mass fragments (IMF) and fission etc. is worked out on parallel scale. Calculations have been done over a wide range of center of mass energies with Ec.m. = 65 - 92 MeV. The evaporation residue (ER) cross-sections of 118Xe* compound nucleus are fitted in reference to available data, using spherical and quadrupole (β2) deformed choice of decaying fragments within the optimum orientations approach. It may be noted that our calculated cross-sections find decent agreement with experimental data and hence provide an opportunity to analyze the exclusive role of deformations in view of fragmentation behavior of 118Xe* nucleus. The possible contribution of IMF fragments is worked out and an extensive effort is being made to analyze the role of excitation energy, angular momentum, diffuseness parameter and level density parameter to have better understanding of the decay patterns governed in the dynamics of 28Si + 90Zr → 118Xe* reaction.

Keywords: cross-sections, deformations, fragmentation, angular momentum

Procedia PDF Downloads 321
8408 Corrosion Interaction Between Steel and Acid Mine Drainage: Use of AI Based on Fuzzy Logic

Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento

Abstract:

Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured, and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics.

Keywords: acid mine drainage, artificial intelligence, carbon steel, corrosion, fuzzy logic

Procedia PDF Downloads 7
8407 Unusual Weld Failures of Rotary Compressor during Hydraulic Tests: Analysis revealed Boron Induced Cracking in Fusion Zone

Authors: Kaushal Kishore, Vaibhav Jain, Hrishikesh Jugade, Saurabh Hadas, Manashi Adhikary, Goutam Mukhopadhyay, Sandip Bhattacharyya

Abstract:

Rotary air compressors in air conditioners are used to suck excessive volume of air from the atmosphere in a small space to provide drive to the components attached to them. Hydraulic test is one of the most important methods to decide the suitability of these components for usage. In the present application, projection welding is used to join the hot rolled steel sheets after forming for manufacturing of air compressors. These sheets belong to two different high strength low alloy (HSLA) steel grades. It was observed that one batch of compressors made of a particular grade was cracking from the weld, whereas those made of another grade were passing the hydraulic tests. Cracking was repeatedly observed from the weld location. A detailed comparative study of the compressors which failed and successfully passed pressure tests has been presented. Location of crack initiation was identified to be the interface of fusion zone/heat affected zone. Shear dimples were observed on the fracture surface confirming the ductile mode of failure. Hardness profile across the weld revealed a sharp rise in hardness in the fusion zone. This was attributed to the presence of untempered martensitic lath in the fusion zone. A sharp metallurgical notch existed at the heat affected zone/fusion zone interface due to transition in microstructure from acicular ferrite and bainite in HAZ to untempered martensite in the fusion zone. In contrast, welds which did not fail during the pressure tests showed a smooth hardness profile with no abnormal rise in hardness in the fusion zone. The bainitic microstructure was observed in the fusion zone of successful welds. This difference in microstructural constituents in the fusion zone was attributed to the presence of a small amount of boron (0.002 wt. %) in the sheets which were cracking. Trace amount of boron is known to substantially increase the hardenability of HSLA steel, and cooling rate during resolidification in the fusion zone is sufficient to form martensite. Post-weld heat treatment was recommended to transform untempered martensite to tempered martensite with lower hardness.

Keywords: compressor, cracking, martensite, weld, boron, hardenability, high strength low alloy steel

Procedia PDF Downloads 167
8406 The Effect of Supplementary Cementitious Materials on the Quality of Passive Oxide Film Developed on Steel Reinforcement Bars in Simulated Concrete Pore Solution

Authors: M. S. Ashraf, Raja Rizwan Hussain, A. M. Alhozaimy, A. I. Al-Negheimish

Abstract:

The effect of supplementary cementitious materials (SCMs) with concrete pore solution on the protective properties of the oxide films that form on reinforcing steel bars has been experimentally investigated using electrochemical impedance spectroscopy (EIS) and Tafel Scan. The tests were conducted on oxide films grown in saturated calcium hydroxide solutions that included different representative amounts of NaOH and KOH which are the compounds commonly observed in ordinary portland cement concrete pore solution. In addition to that, commonly used mineral admixtures (silica fume, natural pozzolan and fly ash) were also added to the simulated concrete pore solution. The results of electrochemical tests show that supplementary cementitious materials do have an effect on the protective properties of the passive oxide film. In particular, silica fume has been shown to have a negative influence on the film quality though it has positive effect on the concrete properties. Fly ash and natural pozzolan increase the protective qualities of the passive film. The research data in this area is very limited in the past and needed further investigation.

Keywords: supplementary cementitious materials (SCMs), passive film, EIS, Tafel scan, rebar, concrete, simulated concrete pore solution (SPS)

Procedia PDF Downloads 394
8405 Engagement Resources Use by Expert and Novice EFL Academic Writers

Authors: Moharram Sharifi

Abstract:

The purpose of this study was to show how expert and novice writers take positions and stances in Research Articles and Master of Art theses Introductions, so Engagement resources were investigated in 30 Research Articles and 30 Master of Art theses written by Iranian non-native speakers. Through paired samples t-test analysis, we found out that the mean occurrences of heteroglossic items in both RA and Master thesis Introductions were larger than those of monoglossic items, indicating the awareness of both groups of writers to ‘engage’ alternative positions in Introduction sections. The results also revealed that expansive choices were preferred over contractive options in both corpora, implying both groups of writers respect alternative voices cautiously by welcoming rather than closing down the possibility of different perspectives and stances. Furthermore, unlike novice academic writers who used more Attribute features than Entertainment ones in their MATs introduction sections, expert academic writers employed a balanced number of Entertainment and Attribute in their RA introduction sections. The balanced deployment of entertaining and Attribute features in RA Introductions by expert writers might be characteristics of the writers’ demonstration of politeness, which is commonly accepted as an essential feature in academic writing discourse. Finally, through qualitative analysis, it was demonstrated that MAT writers, as novice academic writers, suffered from lacking appropriate evaluative stances and authorial voices toward propositions.

Keywords: novice, expert, engagement, RA Introductions, MA Thesis

Procedia PDF Downloads 43
8404 Water Immersion Recovery for Swimmers in Hot Environments

Authors: Thanura Randula Abeywardena

Abstract:

This study recognized the effectiveness of cold-water immersion recovery post exhaustive short-term exercise. The purpose of this study was to understand if 16- 20°C of cold-water immersion would be beneficial in a tropical environment to achieve optimal recovery in sprint swim performance in comparison to 10-15°C of water immersion. Two 100m-sprint swim performance times were measured along with blood lactate (BLa), heart rate (HR) and rate of perceived exertion (RPE) in a 25m swimming pool with full body head out horizontal water immersions of 10-15°C, 16-20°C and 29-32°C (pool temperature) for 10 minutes followed by 5 minutes of seated passive rest outside; in between the two swim performances. Twelve well-trained adult swimmers (5 male and 5 female) within the top twenty in the Sri Lankan national swimming championships in 100m Butterfly and Freestyle in the years 2020 & 2021 volunteered for this study. One-way ANOVA analysis (p<0.05) suggested performance time, Bla and HR had no significant differences between the 3 conditions after the second sprint; however, RPE was significantly different with p=0.034 between 10-15°C and 16-20°C immersion conditions. The study suggested that the recovery post the two cold-water immersion conditions were similar in terms of performance and physiological factors; however, the 16-20°C temperature had a better “feel good” factor post sprint 2. Further study is recommended as there was participant bias with the swimmers not reaching optimal levels in sprint 1. Therefore, they might have possibly fully recovered before sprint 2, invalidating the physiological effect of recovery.

Keywords: hydrotherapy, blood lactate, fatigue, recovery, sprint-performance, sprint-swimming

Procedia PDF Downloads 102
8403 Corrosivity of Smoke Generated by Polyvinyl Chloride and Polypropylene with Different Mixing Ratios towards Carbon Steel

Authors: Xufei Liu, Shouxiang Lu, Kim Meow Liew

Abstract:

Because a relatively small fire could potentially cause damage by smoke corrosion far exceed thermal fire damage, it has been realized that the corrosion of metal exposed to smoke atmospheres is a significant fire hazard, except for toxicity or evacuation considerations. For the burning materials in an actual fire may often be the mixture of combustible matters, a quantitative study on the corrosivity of smoke produced by the combustion of mixture is more conducive to the application of the basic theory to the actual engineering. In this paper, carbon steel samples were exposed to smoke generated by polyvinyl chloride and polypropylene, two common combustibles in industrial plants, with different mixing ratios in high humidity for 120 hours. The separate and combined corrosive effects of smoke were examined subsequently by weight loss measurement, scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. It was found that, although the corrosivity of smoke from polypropylene was much smaller than that of smoke from polyvinyl chloride, smoke from polypropylene enhanced the major corrosive effect of smoke from polyvinyl chloride to carbon steel. Furthermore, the corrosion kinetics of carbon steel under smoke were found to obey the power function. Possible corrosion mechanisms were also proposed. All the analysis helps to provide basic information for the determination of smoke damage and timely rescue after fire.

Keywords: corrosion kinetics, corrosion mechanism, mixed combustible, SEM/EDS, smoke corrosivity, XRD

Procedia PDF Downloads 214
8402 Elevated Temperature Shot Peening for M50 Steel

Authors: Xinxin Ma, Guangze Tang, Shuxin Yang, Jinguang He, Fan Zhang, Peiling Sun, Ming Liu, Minyu Sun, Liqin Wang

Abstract:

As a traditional surface hardening technique, shot peening is widely used in industry. By using shot peening, a residual compressive stress is formed in the surface which is beneficial for improving the fatigue life of metal materials. At the same time, very fine grains and high density defects are generated in the surface layer which enhances the surface hardness, either. However, most of the processes are carried out at room temperature. For high strength steel, such as M50, the thickness of the strengthen layer is limited. In order to obtain a thick strengthen surface layer, elevated temperature shot peening was carried out in this work by using Φ1mm cast ion balls with a speed of 80m/s. Considering the tempering temperature of M50 steel is about 550 oC, the processing temperature was in the range from 300 to 500 oC. The effect of processing temperature and processing time of shot peening on distribution of residual stress and surface hardness was investigated. As we known, the working temperature of M50 steel can be as high as 315 oC. Because the defects formed by shot peening are unstable when the working temperature goes higher, it is worthy to understand what happens during the shot peening process, and what happens when the strengthen samples were kept at a certain temperature. In our work, the shot peening time was selected from 2 to 10 min. And after the strengthening process, the samples were annealed at various temperatures from 200 to 500 oC up to 60 h. The results show that the maximum residual compressive stress is near 900 MPa. Compared with room temperature shot peening, the strengthening depth of 500 oC shot peening sample is about 2 times deep. The surface hardness increased with the processing temperature, and the saturation peening time decreases. After annealing, the residual compressive stress decreases, however, for 500 oC peening sample, even annealing at 500 oC for 20 h, the residual compressive stress is still over 600 MPa. However, it is clean to see from SEM that the grain size of surface layers is still very small.

Keywords: shot peening, M50 steel, residual compressive stress, elevated temperature

Procedia PDF Downloads 456
8401 Towards an Understanding of Breaking and Coalescence Process in Bitumen Emulsions

Authors: Abdullah Khan, Per Redelius, Nicole Kringos

Abstract:

The breaking and coalescence process in bitumen emulsion strongly influence the performance of the cold mix asphalt (CMA) and this phase separation process is affected by the physio-chemical changes happening at the bitumen/water interface. In this paper, coalescence experiments of two bitumen droplets in an emulsion environment have been carried out by a newly developed test procedure. In this study, different types of emulsifiers were selected to understand the coalescence process with respect to changes in the water phase surface tension due to addition of different surfactants and other additives such as salts. The research showed that the relaxation kinetics of bitumen droplets varied with the type of emulsifier, its concentration as well as with and without presence of salt in the water phase. Moreover, kinetics of the coalescence process was also investigated with the temperature variation.

Keywords: bitumen emulsions, breaking and coalescence, cold mix asphalt, emulsifiers, relaxation, salts

Procedia PDF Downloads 338
8400 Proposing a New Design Method for Added Viscoelastic Damper’s Application in Steel Moment-Frame

Authors: Saeed Javaherzadeh, Babak Dindar Safa

Abstract:

Structure, given its ductility, can depreciate significant amount of seismic energy in the form of hysteresis behavior; the amount of energy depreciation depends on the structure ductility rate. So in seismic guidelines such as ASCE7-10 code, to reduce the number of design forces and using the seismic energy dissipation capacity of structure, when entering non-linear behavior range of the materials, the response modification factor is used. Various parameters such as ductility modification factor, overstrength factor and reliability factor, are effective in determining the value of this factor. Also, gradually, energy dissipation systems, especially added dampers, have become an inseparable part of the seismic design. In this paper, in addition to reviewing of previous studies, using the response modification factor caused by using more added viscoelastic dampers, a new design method has introduced for steel moment-frame with added dampers installed. To do this, in addition to using bilinear behavior models and quick ways such as using the equivalent lateral force method and capacity spectrum method for the proposed design methodology, the results has been controlled with non-linear time history analysis for a number of structural. The analysis is done by Opensees Software.

Keywords: added viscoelastic damper, design base shear, response modification factor, non-linear time history

Procedia PDF Downloads 441
8399 Forgeability Study of Medium Carbon Micro-Alloyed Forging Steel

Authors: M. I. Equbal, R. K. Ohdar, B. Singh, P. Talukdar

Abstract:

Micro-alloyed steel components are used in automotive industry for the necessity to make the manufacturing process cycles shorter when compared to conventional steel by eliminating heat treatment cycles, so an important saving of costs and energy can be reached by reducing the number of operations. Micro-alloying elements like vanadium, niobium or titanium have been added to medium carbon steels to achieve grain refinement with or without precipitation strengthening along with uniform microstructure throughout the matrix. Present study reports the applicability of medium carbon vanadium micro-alloyed steel in hot forging. Forgeability has been determined with respect to different cooling rates, after forging in a hydraulic press at 50% diameter reduction in temperature range of 900-11000C. Final microstructures, hardness, tensile strength, and impact strength have been evaluated. The friction coefficients of different lubricating conditions, viz., graphite in hydraulic oil, graphite in furnace oil, DF 150 (Graphite, Water-Based) die lubricant and dry or without any lubrication were obtained from the ring compression test for the above micro-alloyed steel. Results of ring compression tests indicate that graphite in hydraulic oil lubricant is preferred for free forging and dry lubricant is preferred for die forging operation. Exceptionally good forgeability and high resistance to fracture, especially for faster cooling rate has been observed for fine equiaxed ferrite-pearlite grains, some amount of bainite and fine precipitates of vanadium carbides and carbonitrides. The results indicated that the cooling rate has a remarkable effect on the microstructure and mechanical properties at room temperature.

Keywords: cooling rate, hot forging, micro-alloyed, ring compression

Procedia PDF Downloads 361
8398 The Impact of Steel Connections on the Fire Resistance of Composite Buildings

Authors: Shuyuan Lin, Zhaohui Huang, Mizi Fan

Abstract:

In the majority of previous research into modelling large scale composite floor subjected to fire, the beam-to-column and beam-to-beam connections were assumed to behave either as pinned or rigid for simplicity, and the vertical shear and axial tension failures of the connection were not taken into account. We have recently developed robust two-noded connection models for modeling endplate and partial endplate steel connections under fire conditions. The main objective of this research is to systematically investigate the impact of the connections of protected beams, on the tensile membrane actions of supported floor slabs in which the failures of the connections, such as, axial tension, vertical shear and bending are accounted for. The models developed have very good numerical stability under a static solver condition, and can be used for large scale modelling of composite buildings in fire.

Keywords: fire, steel structure, component-based model, beam-to-column connections

Procedia PDF Downloads 450
8397 Applying Concept Mapping to Explore Temperature Abuse Factors in the Processes of Cold Chain Logistics Centers

Authors: Marco F. Benaglia, Mei H. Chen, Kune M. Tsai, Chia H. Hung

Abstract:

As societal and family structures, consumer dietary habits, and awareness about food safety and quality continue to evolve in most developed countries, the demand for refrigerated and frozen foods has been growing, and the issues related to their preservation have gained increasing attention. A well-established cold chain logistics system is essential to avoid any temperature abuse; therefore, assessing potential disruptions in the operational processes of cold chain logistics centers becomes pivotal. This study preliminarily employs HACCP to find disruption factors in cold chain logistics centers that may cause temperature abuse. Then, concept mapping is applied: selected experts engage in brainstorming sessions to identify any further factors. The panel consists of ten experts, including four from logistics and home delivery, two from retail distribution, one from the food industry, two from low-temperature logistics centers, and one from the freight industry. Disruptions include equipment-related aspects, human factors, management aspects, and process-related considerations. The areas of observation encompass freezer rooms, refrigerated storage areas, loading docks, sorting areas, and vehicle parking zones. The experts also categorize the disruption factors based on perceived similarities and build a similarity matrix. Each factor is evaluated for its impact, frequency, and investment importance. Next, multiple scale analysis, cluster analysis, and other methods are used to analyze these factors. Simultaneously, key disruption factors are identified based on their impact and frequency, and, subsequently, the factors that companies prioritize and are willing to invest in are determined by assessing investors’ risk aversion behavior. Finally, Cumulative Prospect Theory (CPT) is applied to verify the risk patterns. 66 disruption factors are found and categorized into six clusters: (1) "Inappropriate Use and Maintenance of Hardware and Software Facilities", (2) "Inadequate Management and Operational Negligence", (3) "Product Characteristics Affecting Quality and Inappropriate Packaging", (4) "Poor Control of Operation Timing and Missing Distribution Processing", (5) "Inadequate Planning for Peak Periods and Poor Process Planning", and (6) "Insufficient Cold Chain Awareness and Inadequate Training of Personnel". This study also identifies five critical factors in the operational processes of cold chain logistics centers: "Lack of Personnel’s Awareness Regarding Cold Chain Quality", "Personnel Not Following Standard Operating Procedures", "Personnel’s Operational Negligence", "Management’s Inadequacy", and "Lack of Personnel’s Knowledge About Cold Chain". The findings show that cold chain operators prioritize prevention and improvement efforts in the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster, particularly focusing on the factors of "Temperature Setting Errors" and "Management’s Inadequacy". However, through the application of CPT theory, this study reveals that companies are not usually willing to invest in the improvement of factors related to the "Inappropriate Use and Maintenance of Hardware and Software Facilities" cluster due to its low occurrence likelihood, but they acknowledge the severity of the consequences if it does occur. Hence, the main implication is that the key disruption factors in cold chain logistics centers’ processes are associated with personnel issues; therefore, comprehensive training, periodic audits, and the establishment of reasonable incentives and penalties for both new employees and managers may significantly reduce disruption issues.

Keywords: concept mapping, cold chain, HACCP, cumulative prospect theory

Procedia PDF Downloads 68
8396 Improving Concrete Properties with Fibers Addition

Authors: E. Mello, C. Ribellato, E. Mohamedelhassan

Abstract:

This study investigated the improvement in concrete properties with addition of cellulose, steel, carbon and PET fibers. Each fiber was added at four percentages to the fresh concrete, which was moist-cured for 28-days and then tested for compressive, flexural and tensile strengths. Changes in strength and increases in cost were analyzed. Results showed that addition of cellulose caused a decrease between 9.8% and 16.4% in compressive strength. This range may be acceptable as cellulose fibers can significantly increase the concrete resistance to fire, and freezing and thawing cycles. Addition of steel fibers to concrete increased the compressive strength by up to 20%. Increases 121.5% and 80.7% were reported in tensile and flexural strengths respectively. Carbon fibers increased flexural and tensile strengths by up to 11% and 45%, respectively. Concrete strength properties decreased after the addition of PET fibers. Results showed that improvement in strength after addition of steel and carbon fibers may justify the extra cost of fibers.

Keywords: concrete, compressive strength, fibers, flexural strength, tensile strength

Procedia PDF Downloads 442
8395 Novel Development on Orthopedic Prosthesis by Nanocrystalline Hydroxyapatite Nanocomposite Coated on 316 L Stainless Steel

Authors: Neriman Ozada, Ebrahim Karamian, Amirsalar Khandan, Sina Ghafoorpoor Yazdi

Abstract:

Natural hydroxyapatite, NHA, coatings on the surface of 316 L stainless steel implants has been widely employed in order to achieve better osteoconductivity. For coating, the plasma spraying method is generally used because they ensure adhesion between the coating and the 316 L stainless steel (SS) surface. Some compounds such as zircon (ZrSiO4) is employed as an additive in an attempt to improve HA’s mechanical properties such as wear resistance and hardness. In this study wear resistance has been carried out in different chemical compositions of coating. Therefore, nanocomposites based on NHA containing of 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon were used as a coating on the SS implants. The samples consisted of NHA, derived from calf heated at 850 °C for 3 h. The composite mixture was coated on SS by plasma spray method. The results were estimated using the scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques were utilized to characterize the shape and size of NHA powder. Disc wear test and Vickers hardness were utilized to characterize the coated nanocomposite samples. The prepared NHA powder had nano-scale morphological structure with the mean crystallite size of 30-50 nm in diameter. The wear resistance are almost 320, 380, 415, and 395 m/g and hardness are approximately 376, 391, 420, 410 VHN in ceramic composite materials containing ZrSiO4. The results have been shown that the best wear resistance and hardness occurred in the sample coated by NHA/ZrSiO4 containing of 10 wt.% of zircon.

Keywords: zircon, 316 L stainless steel, wear resistance, orthopedic applications, plasma spray

Procedia PDF Downloads 434
8394 The Use of Themes and Variations in Early and Contemporary Juju Music

Authors: Olupemi E. Oludare

Abstract:

This paper discusses the thematic structure of Yoruba popular music of Southwest Nigeria. It examines the use of themes and variations in early and contemporary Juju music. The work is an outcome of a research developed by the author in his doctoral studies at the University of Lagos, Nigeria, with the aim of analyzing the thematic and motivic developments in Yoruba popular genres. Observations, interviews, live recordings and CDs were used as methods for eliciting information. Field recordings and CDs of selected musical samples were also transcribed and notated. The research established the prevalent use of string of themes by Juju musicians as a compositional technique in moving from one musical section to another, as they communicate the verbal messages in their song. These themes consisting of the popular ‘call and response’ form found in most African music, analogous to the western ‘subject and answer’ style of the fugue or sonata form, although without the tonic–dominant relations. Due to the short and repetitive form of African melodies and rhythms, a theme is restated as a variation, where its rhythmic and melodic motifs are stylistically developed and repeated, but still retaining its recognizable core musical structure. The findings of this study showed that Juju musicians generally often employ a thematic plan where new themes are used to arrange the songs into sections, and each theme is developed into variations in order to further expand the music, eliminate monotony, and create musical aesthetics, serving as hallmark of its musical identity. The study established the musical and extra-musical attributes of the genre, while recommending further research towards analyzing the various compositional techniques employed in African popular genres.

Keywords: compositional techniques, popular music, theme and variation, thematic development

Procedia PDF Downloads 412
8393 Plastic Behavior of Steel Frames Using Different Concentric Bracing Configurations

Authors: Madan Chandra Maurya, A. R. Dar

Abstract:

Among the entire natural calamities earthquake is the one which is most devastating. If the losses due to all other calamities are added still it will be very less than the losses due to earthquakes. So it means we must be ready to face such a situation, which is only possible if we make our structures earthquake resistant. A review of structural damages to the braced frame systems after several major earthquakes—including recent earthquakes—has identified some anticipated and unanticipated damage. This damage has prompted many engineers and researchers around the world to consider new approaches to improve the behavior of braced frame systems. Extensive experimental studies over the last fourty years of conventional buckling brace components and several braced frame specimens have been briefly reviewed, highlighting that the number of studies on the full-scale concentric braced frames is still limited. So for this reason the study surrounds the words plastic behavior, steel structure, brace frame system. In this study, there are two different analytical approaches which have been used to predict the behavior and strength of an un-braced frame. The first is referred as incremental elasto-plastic analysis a plastic approach. This method gives a complete load-deflection history of the structure until collapse. It is based on the plastic hinge concept for fully plastic cross sections in a structure under increasing proportional loading. In this, the incremental elasto-plastic analysis- hinge by hinge method is used in this study because of its simplicity to know the complete load- deformation history of two storey un-braced scaled model. After that the experiments were conducted on two storey scaled building model with and without bracing system to know the true or experimental load deformation curve of scaled model. Only way, is to understand and analyze these techniques and adopt these techniques in our structures. The study named as Plastic Behavior of Steel Frames using Different Concentric Bracing Configurations deals with all this. This study aimed at improving the already practiced traditional systems and to check the behavior and its usefulness with respect to X-braced system as reference model i.e. is how plastically it is different from X-braced. Laboratory tests involved determination of plastic behavior of these models (with and without brace) in terms of load-deformation curve. Thus, the aim of this study is to improve the lateral displacement resistance capacity by using new configuration of brace member in concentric manner which is different from conventional concentric brace. Once the experimental and manual results (using plastic approach) compared, simultaneously the results from both approach were also compared with nonlinear static analysis (pushover analysis) approach using ETABS i.e how both the previous results closely depicts the behavior in pushover curve and upto what limit. Tests results shows that all the three approaches behaves somewhat in similar manner upto yield point and also the applicability of elasto-plastic analysis (hinge by hinge method) to know the plastic behavior. Finally the outcome from three approaches shows that the newer one configuration which is chosen for study behaves in-between the plane frame (without brace or reference frame) and the conventional X-brace frame.

Keywords: elasto-plastic analysis, concentric steel braced frame, pushover analysis, ETABS

Procedia PDF Downloads 229
8392 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 221
8391 Behavior Study of Concrete-Filled Thin-Walled Square Hollow Steel Stub Columns

Authors: Mostefa Mimoune

Abstract:

Test results on concrete-filled steel tubular stub columns under axial compression are presented. The study was mainly focused on square hollow section SHS columns; 27 columns were tested. The main experimental parameters considered were the thickness of the tube, columns length and cross section sizes. Existing design codes and theoretical model were used to predict load-carrying capacities of composite section to compare the accuracy of the predictions by using the recommendations of DTR-BC (Algerian code), CSA (Canadian standard), AIJ, EC4, DBJ, AISC, BS and EC4. Experimental results indicate that the studied parameters have significant influence on both the compressive load capacity and the column failure mode. All codes used in the comparison, provide higher resistance compared to those of tests. Equation method has been suggested to evaluate the axial capacity of the composite section seem to be in agreement with tests.

Keywords: axial loading, composite section, concrete-filled steel tubes, square hollow section

Procedia PDF Downloads 378