Search results for: bi-directional long and short-term memory networks
8820 Preparation of 1D Nano-Polyaniline/Dendritic Silver Composites
Authors: Wen-Bin Liau, Wan-Ting Wang, Chiang-Jen Hsiao, Sheng-Mao Tseng
Abstract:
In this paper, an interesting and easy method to prepare one-dimensional nanostructured polyaniline/dendritic silver composites is reported. It is well known that the morphology of metal particle is a very important factor to influence the properties of polymer-metal composites. Usually, the dendritic silver is prepared by kinetic control in reduction reaction. It is not a thermodynamically stable structure. It is the goal to reduce silver ion to dendritic silver by polyaniline polymer via kinetic control and form one-dimensional nanostructured polyaniline/dendritic silver composites. The preparation is a two steps sequential reaction. First step, the polyaniline networks composed of nano fibrillar polyaniline are synthesized from aniline monomers aqueous with ammonium persulfate as the initiator at room temperature. In second step, the silver nitrate is added into polyaniline networks dispersed in deionized water. The dendritic silver is formed via reduction by polyaniline networks under the kinetic control. The formation of polyaniline is discussed via transmission electron microscopy (TEM). Nanosheets, nanotubes, nanospheres, nanosticks, and networks are observed via TEM. Then, the mechanism of formation of one-dimensional nanostructured polyaniline/dendritic silver composites is discussed. The formation of dendritic silver is observed by TEM and X-ray diffraction.Keywords: 1D nanostructured polyaniline, dendritic silver, synthesis
Procedia PDF Downloads 5008819 Re-Creating Women of the Past in Historical Series on Mexican Television: The Work of Patricia Arriaga Jordan
Authors: Maria De Los Angeles Rodriguez Cadena
Abstract:
This paper discusses how the fictional versions of women of the past contribute to advance today’s ideas of social justice, personal freedom and emancipation as well as to highlight the creative challenge of constructing people and events on fictional narratives on television that incorporate multiple and simultaneous layers of meaning and complexity. This project builds on existing scholarship on audiovisual texts by exploring an influential but under-studied director. In two Mexican television series, Patricia Arriaga Jordan, an award-winning television producer, scriptwriter and director, constructs the life of two outstanding women that have played an influential role in national history and captured Mexican’s popular imagination for generations: Sor Juana Inés de la Cruz, and Malinche. Malinche (2018) tells the story of an extraordinary indigenous woman, Malintzin, during the Spanish Conquest (1511-1550) that is considered to have played a key role in the fall of the Aztec empire by acting as translator, negotiator and cultural mediator for the Spanish conquerors. Juana Ines (2016) portrays Sor Juana, a poet, essayist, playwright, theologian, philosopher, nun, of XVII century colonial Mexico, one of the brightest minds of her time, and now recognized as the first feminist of the Americas who wrote on the rights of women to an education, religious authority and feminist advocacy. Both series, as fictional narratives that recreate defining historical periods, specific events and relevant characters in the History of Mexico can be read as an example of what is called texts of cultural memory. A cultural memory text is a narrative that bonds the concepts of history, identity and belonging, and that is realized and disseminated through symbolic systems such as written documents, visual images, and dramatic representation. Cultural memory, through its narratives of historical fiction, emphasizes memory processes (historiography) and its implications and artifacts (cultural memory) mainly through the medial frameworks of remembering, which are the medial process by which memories (narratives, documents) participate in public knowledge and become collective memory. Historical fiction on television not only creates a portrayal of the past related to the real lives of protagonists, but it also significantly contributes to understand the past as an ever-evolving entity that highlights both, the necessary connection with the present as part of a developing sense of collective identity and belonging, as well as the relevance of the medium in which the past is represented and that ultimately supports the process of historical awareness. Through the emblematic recreation of national heroines and historical events in the unique context of historical drama on television, those texts constitute a venue where concepts of the past and the traditionally established ideas about history and heroines are highlighted, questioned and transformed.Keywords: cultural memory, historical fiction, Mexico, television, women directors
Procedia PDF Downloads 1328818 On the Market Prospects of Long-Term Electricity Storages
Authors: Reinhard Haas, Amela Ajanovic
Abstract:
In recent years especially electricity generation from intermittent sources like wind and solar has increased remarkably. To balance electricity supply over time calls for storages has been launched. Because intermittency also exists over longer periods – months, years, especially the need for long-term electricity storages is discussed. The major conclusions of our analysis are: (i) Despite many calls for a prophylactic construction of new storage capacities with respect to all centralized long-term storage technologies the future perspectives will be much less promising than currently indicated in several papers and discussions; (ii) new long term hydro storages will not become economically attractive in general in the next decades; however, daily storages will remain the cheapest option and the most likely to be competitive; (iii) For PtG-technologies it will also become very hard to compete in the electricity markets despite a high technological learning potential. Yet, for hydrogen and methane there are prospects for use in the transport sector.Keywords: storages, electricity markets, power-to-gas, hydro pump storages, economics
Procedia PDF Downloads 4848817 Working Memory in Children: The Relationship with Father-Child Rough-and-Tumble Play
Authors: Robinson, E. L., Freeman, E. E.
Abstract:
Over the last few decades, the social movement of involved fatherhood has stimulated a research focus on fathers, leading to an increase in the body of evidence into the paternal contributions to child development. Past research has suggested that rough-and-tumble play, which involves wrestling, chasing and tumbling, is the preferred play type of western fathers. This type of play remains underutilized and underrepresented in child developmental research as it’s perceived to be dangerous or too aggressive. The limited research available has shown a relationship between high quality rough-and-tumble play interactions, lower childhood aggression and improved child emotional regulation. The aim of this study was to examine father-child rough-and-tumble play and assess the impact on cognitive development in children aged 4-7 years. Father-child dyads completed a 10-minute rough-and-tumble play interaction, which consisted of 2 games, at the University of Newcastle. Children then completed the Wechsler Preschool & Primary Scale of Intelligence - Fourth Edition Australian and New Zealand Standardized Edition (WPPSI-IV A&NZ). Fathers reported on their involvement in various caregiving activities and on their child’s development. Analyses revealed that fathers-child play quality was positively related to working memory outcomes in children. Furthermore, the amount of rough-and-tumble play father and child did together on a regular basis was also related to working memory outcomes. While father-child play interactions remain an understudied area of research, this study outlines the importance of examining the paternal play role in children’s cognitive development.Keywords: children, development, father, executive function
Procedia PDF Downloads 2048816 Strengthening Farmer-to-farmer Knowledge Sharing Network: A Pathway to Improved Extension Service Delivery
Authors: Farouk Shehu Abdulwahab
Abstract:
The concept of farmer-farmer knowledge sharing was introduced to bridge the extension worker-farmer ratio gap in developing countries. However, the idea was poorly accepted, especially in typical agrarian communities. Therefore, the study explores the concept of a farmer-to-farmer knowledge-sharing network to enhance extension service delivery. The study collected data from 80 farmers randomly selected through a series of multiple stages. The Data was analysed using a 5-point Likert scale and descriptive statistics. The Likert scale results revealed that 62.5% of the farmers are satisfied with farmer-to-farmer knowledge-sharing networks. Moreover, descriptive statistics show that lack of capacity building and low level of education are the most significant problems affecting farmer-farmer sharing networks. The major implication of these findings is that the concept of farmer-farmer knowledge-sharing networks can work better for farmers in developing countries as it was perceived by them as a reliable alternative for information sharing. Therefore, the study recommends introducing incentives into the concept of farmer-farmer knowledge-sharing networks and enhancing the capabilities of farmers who are opinion leaders in the farmer-farmer concept of knowledge-sharing to make it more sustainable.Keywords: agricultural productivity, extension, farmer-to-farmer, livelihood, technology transfer
Procedia PDF Downloads 648815 Local Food Movements and Community Building in Turkey
Authors: Derya Nizam
Abstract:
An alternative understanding of "localization" has gained significance as the ecological and social issues associated with the growing pressure of agricultural homogeneity and standardization become more apparent. Through an analysis of a case study on an alternative food networks in Turkey, this research seeks to critically examine the localization movement. The results indicate that the idea of localization helps to create new niche markets by creating place-based labels, but it also strengthens local identities through social networks that connect rural and urban areas. In that context, localization manifests as a commodification movement that appropriates local and cultural values to generate capitalist profit, as well as a grassroots movement that strengthens the resilience of local communities. This research addresses the potential of community development approaches in the democratization of global agro-food networks.Keywords: community building, local food, alternative food movements, localization
Procedia PDF Downloads 798814 Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems
Authors: Mohamed Omar
Abstract:
Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing.Keywords: finite element analysis, seismic response, shapes memory alloy, steel frame, mega bracing
Procedia PDF Downloads 3258813 The Test of Memory Malingering and Offence Severity
Authors: Kenji Gwee
Abstract:
In Singapore, the death penalty remains in active use for murder and drug trafficking of controlled drugs such as heroin. As such, the psychological assessment of defendants can often be of high stakes. The Test of Memory Malingering (TOMM) is employed by government psychologists to determine the degree of effort invested by defendants, which in turn inform on the veracity of overall psychological findings that can invariably determine the life and death of defendants. The purpose of this study was to find out if defendants facing the death penalty were more likely to invest less effort during psychological assessment (to fake bad in hopes of escaping the death sentence) compared to defendants facing lesser penalties. An archival search of all forensic cases assessed in 2012-2013 by Singapore’s designated forensic psychiatric facility yielded 186 defendants’ TOMM scores. Offence severity, coded into 6 rank-ordered categories, was analyzed in a one-way ANOVA with TOMM score as the dependent variable. There was a statistically significant difference (F(5,87) = 2.473, p = 0.038). A Tukey post-hoc test with Bonferroni correction revealed that defendants facing lower charges (Theft, shoplifting, criminal breach of trust) invested less test-taking effort (TOMM = 37.4±12.3, p = 0.033) compared to those facing the death penalty (TOMM = 46.2±8.1). The surprising finding that those facing death penalties actually invested more test taking effort than those facing relatively minor charges could be due to higher levels of cooperation when faced with death. Alternatively, other legal avenues to escape the death sentence may have been preferred over the mitigatory chance of a psychiatric defence.Keywords: capital sentencing, offence severity, Singapore, Test of Memory Malingering
Procedia PDF Downloads 4348812 Optimal Number and Placement of Vertical Links in 3D Network-On-Chip
Authors: Nesrine Toubaline, Djamel Bennouar, Ali Mahdoum
Abstract:
3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect.Keywords: interconnect optimization, monolithic inter-tier vias, network on chip, system on chip, through silicon vias, three dimensional integration circuits
Procedia PDF Downloads 3038811 Probabilistic Approach to Contrast Theoretical Predictions from a Public Corruption Game Using Bayesian Networks
Authors: Jaime E. Fernandez, Pablo J. Valverde
Abstract:
This paper presents a methodological approach that aims to contrast/validate theoretical results from a corruption network game through probabilistic analysis of simulated microdata using Bayesian Networks (BNs). The research develops a public corruption model in a game theory framework. Theoretical results suggest a series of 'optimal settings' of model's exogenous parameters that boost the emergence of corruption. The paper contrasts these outcomes with probabilistic inference results based on BNs adjusted over simulated microdata. Principal findings indicate that probabilistic reasoning based on BNs significantly improves parameter specification and causal analysis in a public corruption game.Keywords: Bayesian networks, probabilistic reasoning, public corruption, theoretical games
Procedia PDF Downloads 2108810 Simulation Approach for a Comparison of Linked Cluster Algorithm and Clusterhead Size Algorithm in Ad Hoc Networks
Authors: Ameen Jameel Alawneh
Abstract:
A Mobile ad-hoc network (MANET) is a collection of wireless mobile hosts that dynamically form a temporary network without the aid of a system administrator. It has neither fixed infrastructure nor wireless ad hoc sessions. It inherently reaches several nodes with a single transmission, and each node functions as both a host and a router. The network maybe represented as a set of clusters each managed by clusterhead. The cluster size is not fixed and it depends on the movement of nodes. We proposed a clusterhead size algorithm (CHSize). This clustering algorithm can be used by several routing algorithms for ad hoc networks. An elected clusterhead is assigned for communication with all other clusters. Analysis and simulation of the algorithm has been implemented using GloMoSim networks simulator, MATLAB and MAPL11 proved that the proposed algorithm achieves the goals.Keywords: simulation, MANET, Ad-hoc, cluster head size, linked cluster algorithm, loss and dropped packets
Procedia PDF Downloads 3918809 Factors Influencing Resolution of Anaphora with Collective Nominals in Russian
Authors: Anna Moskaleva
Abstract:
A prolific body of research in theoretical and experimental linguistics claims that a preference for conceptual or grammatical information in the process of agreement greatly depends on the type of agreement dependency. According to the agreement hierarchy, an anaphoric agreement is more sensitive to semantic or conceptual rather than grammatical information of an antecedent. Furthermore, a higher linear distance between a pronoun and its antecedent is assumed to trigger semantic agreement, yet the hierarchical distance is hardly examined in the research field, and the contribution of each distance factor is unclear. Apart from that, working memory volume is deemed to play a role in maintaining grammatical information during language comprehension. The aim of this study is to observe distance and working memory effects in resolution of anaphora with collective nominals (e.g., team) and to have a closer look at the interaction of the factors. Collective nominals in many languages can have a holistic or distributive meaning and can be addressed by a singular or a plural pronoun, respectively. We investigated linguistic factors of linear and rhetorical (hierarchical) distance and a more general factor of working memory volume in their ability to facilitate the interpretation of the number feature of a collective noun in Russian. An eye-tracking reading experiment on comprehension has been conducted where university students were presented with composed texts, including collective nouns and personal pronouns alluding to them. Different eye-tracking measures were calculated using statistical methods. The results have shown that a significant increase in reading time in the case of a singular pronoun was demonstrated when both distances were high, and no such effect was observed when just one of the distances was high. A decrease in reading time has been obtained with distance in the case of a plural pronoun. The working memory effect was not revealed in the experiment. The resonance of distance factors indicates that not only the linear distance but also the hierarchical distance is of great importance in interpreting pronouns. The experimental findings also suggest that, apart from the agreement hierarchy, the preference for conceptual or grammatical information correlates with the distance between a pronoun and its antecedent.Keywords: collective nouns, agreement hierarchy, anaphora resolution, eye-tracking, language comprehension
Procedia PDF Downloads 388808 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems
Authors: Semih Demir, Anil Celebi
Abstract:
Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.Keywords: clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization
Procedia PDF Downloads 2788807 Transboundary Pollution after Natural Disasters: Scenario Analyses for Uranium at Kyrgyzstan-Uzbekistan Border
Authors: Fengqing Li, Petra Schneider
Abstract:
Failure of tailings management facilities (TMF) of radioactive residues is an enormous challenge worldwide and can result in major catastrophes. Particularly in transboundary regions, such failure is most likely to lead to international conflict. This risk occurs in Kyrgyzstan and Uzbekistan, where the current major challenge is the quantification of impacts due to pollution from uranium legacy sites and especially the impact on river basins after natural hazards (i.e., landslides). By means of GoldSim, a probabilistic simulation model, the amount of tailing material that flows into the river networks of Mailuu Suu in Kyrgyzstan after pond failure was simulated for three scenarios, namely 10%, 20%, and 30% of material inputs. Based on Muskingum-Cunge flood routing procedure, the peak value of uranium flood wave along the river network was simulated. Among the 23 TMF, 19 ponds are close to the river networks. The spatiotemporal distributions of uranium along the river networks were then simulated for all the 19 ponds under three scenarios. Taking the TP7 which is 30 km far from the Kyrgyzstan-Uzbekistan border as one example, the uranium concentration decreased continuously along the longitudinal gradient of the river network, the concentration of uranium was observed at the border after 45 min of the pond failure and the highest value was detected after 69 min. The highest concentration of uranium at the border were 16.5, 33, and 47.5 mg/L under scenarios of 10%, 20%, and 30% of material inputs, respectively. In comparison to the guideline value of uranium in drinking water (i.e., 30 µg/L) provided by the World Health Organization, the observed concentrations of uranium at the border were 550‒1583 times higher. In order to mitigate the transboundary impact of a radioactive pollutant release, an integrated framework consisting of three major strategies were proposed. Among, the short-term strategy can be used in case of emergency event, the medium-term strategy allows both countries handling the TMF efficiently based on the benefit-sharing concept, and the long-term strategy intends to rehabilitate the site through the relocation of all TMF.Keywords: Central Asia, contaminant transport modelling, radioactive residue, transboundary conflict
Procedia PDF Downloads 1188806 Artificial Neural Networks with Decision Trees for Diagnosis Issues
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.Keywords: neural networks, decision trees, diagnosis, behaviors
Procedia PDF Downloads 5058805 Sustainable Design of Coastal Bridge Networks in the Presence of Multiple Flood and Earthquake Risks
Authors: Riyadh Alsultani, Ali Majdi
Abstract:
It is necessary to develop a design methodology that includes the possibility of seismic events occurring in a region, the vulnerability of the civil hydraulic structure, and the effects of the occurrence hazard on society, environment, and economy in order to evaluate the flood and earthquake risks of coastal bridge networks. This paper presents a design approach for the assessment of the risk and sustainability of coastal bridge networks under time-variant flood-earthquake conditions. The social, environmental, and economic indicators of the network are used to measure its sustainability. These consist of anticipated loss, downtime, energy waste, and carbon dioxide emissions. The design process takes into account the possibility of happening in a set of flood and earthquake scenarios that represent the local seismic activity. Based on the performance of each bridge as determined by fragility assessments, network linkages are measured. The network's connections and bridges' damage statuses after an earthquake scenario determine the network's sustainability and danger. The sustainability measures' temporal volatility and the danger of structural degradation are both highlighted. The method is shown using a transportation network in Baghdad, Iraq.Keywords: sustainability, Coastal bridge networks, flood-earthquake risk, structural design
Procedia PDF Downloads 938804 Interference Management in Long Term Evolution-Advanced System
Authors: Selma Sbit, Mohamed Bechir Dadi, Belgacem Chibani Rhaimi
Abstract:
Incorporating Home eNodeB (HeNB) in cellular networks, e.g. Long Term Evolution Advanced (LTE-A), is beneficial for extending coverage and enhancing capacity at low price especially within the non-line-of sight (NLOS) environments such as homes. HeNB or femtocell is a small low powered base station which provides radio coverage to the mobile users in an indoor environment. This deployment results in a heterogeneous network where the available spectrum becomes shared between two layers. Therefore, a problem of Inter Cell Interference (ICI) appears. This issue is the main challenge in LTE-A. To deal with this challenge, various techniques based on frequency, time and power control are proposed. This paper deals with the impact of carrier aggregation and higher order MIMO (Multiple Input Multiple Output) schemes on the LTE-Advanced performance. Simulation results show the advantages of these schemes on the system capacity (4.109 b/s/Hz when bandwidth B=100 MHz and when applying MIMO 8x8 for SINR=30 dB), maximum theoretical peak data rate (more than 4 Gbps for B=100 MHz and when MIMO 8x8 is used) and spectral efficiency (15 b/s/Hz and 30b/s/Hz when MIMO 4x4 and MIMO 8x8 are applying respectively for SINR=30 dB).Keywords: capacity, carrier aggregation, LTE-Advanced, MIMO (Multiple Input Multiple Output), peak data rate, spectral efficiency
Procedia PDF Downloads 2568803 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks
Authors: Juan Sebastián Hernández
Abstract:
The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR
Procedia PDF Downloads 1028802 A Deep Learning Based Integrated Model For Spatial Flood Prediction
Authors: Vinayaka Gude Divya Sampath
Abstract:
The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.Keywords: deep learning, disaster management, flood prediction, urban flooding
Procedia PDF Downloads 1468801 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method
Authors: Shiyin He, Zheng Huang
Abstract:
In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet
Procedia PDF Downloads 1898800 Effect of Perceived Importance of a Task in the Prospective Memory Task
Authors: Kazushige Wada, Mayuko Ueda
Abstract:
In the present study, we reanalyzed lapse errors in the last phase of a job, by re-counting near lapse errors and increasing the number of participants. We also examined the results of this study from the perspective of prospective memory (PM), which concerns future actions. This study was designed to investigate whether perceiving the importance of PM tasks caused lapse errors in the last phase of a job and to determine if such errors could be explained from the perspective of PM processing. Participants (N = 34) conducted a computerized clicking task, in which they clicked on 10 figures that they had learned in advance in 8 blocks of 10 trials. Participants were requested to click the check box in the start display of a block and to click the checking off box in the finishing display. This task was a PM task. As a measure of PM performance, we counted the number of omission errors caused by forgetting to check off in the finishing display, which was defined as a lapse error. The perceived importance was manipulated by different instructions. Half the participants in the highly important task condition were instructed that checking off was very important, because equipment would be overloaded if it were not done. The other half in the not important task condition was instructed only about the location and procedure for checking off. Furthermore, we controlled workload and the emotion of surprise to confirm the effect of demand capacity and attention. To manipulate emotions during the clicking task, we suddenly presented a photo of a traffic accident and the sound of a skidding car followed by an explosion. Workload was manipulated by requesting participants to press the 0 key in response to a beep. Results indicated too few forgetting induced lapse errors to be analyzed. However, there was a weak main effect of the perceived importance of the check task, in which the mouse moved to the “END” button before moving to the check box in the finishing display. Especially, the highly important task group showed more such near lapse errors, than the not important task group. Neither surprise, nor workload affected the occurrence of near lapse errors. These results imply that high perceived importance of PM tasks impair task performance. On the basis of the multiprocess framework of PM theory, we have suggested that PM task performance in this experiment relied not on monitoring PM tasks, but on spontaneous retrieving.Keywords: prospective memory, perceived importance, lapse errors, multi process framework of prospective memory.
Procedia PDF Downloads 4468799 Blockchain for IoT Security and Privacy in Healthcare Sector
Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab
Abstract:
The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas, and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It's is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain. Then we try to describe various application areas, challenges, and future directions in the healthcare sector where blockchain platforms merge with IoT networks.Keywords: IoT, blockchain, cryptocurrency, healthcare, consensus, data
Procedia PDF Downloads 1808798 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models
Authors: Sam Khozama, Ali M. Mayya
Abstract:
Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion
Procedia PDF Downloads 1638797 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0
Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao
Abstract:
To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network
Procedia PDF Downloads 1498796 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks
Authors: Radhika Ranjan Roy
Abstract:
Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve
Procedia PDF Downloads 788795 Turkish Airlines' 85th Anniversary Commercial: An Analysis of the Institutional Identity of a Brand in Terms of Glocalization
Authors: Samil Ozcan
Abstract:
Airlines companies target different customer segments in consideration of pricing, service quality, flight network, etc. and their brand positioning accords with the marketization strategies developed in the same direction. The object of this study, Turkish Airlines, has many peculiarities regarding its brand positioning as compared to its rivals in the sector. In the first place, it appeals to a global customer group because of its Star Alliance membership and its broad flight network with 315 destination points. The second group in its customer segmentation includes domestic customers. For this group, the company follows a marketing strategy that plays to local culture and accentuates the image of Turkishness as an emotional allurement. The advertisements and publicity projects designed in this regard put little emphasis on the service quality the company offers to its clients; it addresses the emotions of the consumers rather than individual benefits and relies on the historical memory of the nation and shared cultural values. This study examines the publicity work which aims at the second segment customer group focusing on Turkish Airlines’ 85th Anniversary Commercial through a symbolic meaning analysis approach. The commercial presents six stories with undertones of nationalism in its theme. Nationalism is not just the product of collective interests based on reason but a result of patriotism in the sense of loyalty to state and nation and love of ethnic belonging. While nationalism refers to concrete notions such as blood tie, common ancestor, shared history, it is not the actuality of these notions that it draws its real strength but the emotions invested in them. The myths of origin, the idea of common homeland, boundary definitions, and symbolic acculturation have instrumental importance in the development of these commonalities. The commercial offers concrete examples for an analysis of Connor’s definition of nationalism based on emotions. Turning points in the history of the Turkish Republic and the historical mission Turkish Airlines undertook in these moments are narrated in six stories in the commercial with a highly emotional theme. These emotions, in general, depend on collective memory generated by national consciousness. Collective memory is not simply remembering the past. It is constructed through the reconstruction and reinterpretation of the past in the present moment. This study inquires the motivations behind the nationalist emotions generated within the collective memory by engaging with the commercial released for the 85th anniversary of Turkish Airlines as the object of analysis. Symbols and myths can be read as key concepts that reveal the relation between 'identity and memory'. Because myths and symbols do not merely reflect on collective memory, they reconstruct it as well. In this sense, the theme of the commercial defines the image of Turkishness with virtues such as self-sacrifice, helpfulness, humanity, and courage through a process of meaning creation based on symbolic mythologizations like flag and homeland. These virtues go beyond describing the image of Turkishness and become an instrument that defines and gives meaning to Turkish identity.Keywords: collective memory, emotions, identity, nationalism
Procedia PDF Downloads 1538794 Maintaining the Tension between the Classic Seduction Theory and the Role of Unconscious Fantasies
Authors: Galit Harel
Abstract:
This article describes the long-term psychoanalytic psychotherapy of a young woman who had experienced trauma during her childhood. The details of the trauma were unknown, as all memory of the trauma had been repressed. Past trauma is analyzable through a prism of transference, dreaming and dreams, mental states, and thinking processes that offer an opportunity to explore and analyze the influence of both reality and fantasy on the patient. The presented case describes a therapeutic process that strives to discover hidden meanings through the unconscious system and illustrates the movement from unconscious to conscious during exploration of the patient’s personal trauma in treatment. The author discusses the importance of classical and contemporary psychoanalytic models of childhood sexual trauma through the discovery of manifest and latent content, unconscious fantasies, and actual events of trauma. It is suggested that the complexity of trauma is clarified by the tension between these models and by the inclusion of aspects of both of them for a complete understanding.Keywords: dreams, psychoanalytic psychotherapy, thinking processes, transference, trauma
Procedia PDF Downloads 918793 Application of Mathematical Models for Conducting Long-Term Metal Fume Exposure Assessments for Workers in a Shipbuilding Factory
Authors: Shu-Yu Chung, Ying-Fang Wang, Shih-Min Wang
Abstract:
To conduct long-term exposure assessments are important for workers exposed to chemicals with chronic effects. However, it usually encounters with several constrains, including cost, workers' willingness, and interference to work practice, etc., leading to inadequate long-term exposure data in the real world. In this study, an integrated approach was developed for conducting long-term exposure assessment for welding workers in a shipbuilding factory. A laboratory study was conducted to yield the fume generation rates under various operating conditions. The results and the measured environmental conditions were applied to the near field/far field (NF/FF) model for predicting long term fume exposures via the Monte Carlo simulation. Then, the predicted long-term concentrations were used to determine the prior distribution in Bayesian decision analysis (BDA). Finally, the resultant posterior distributions were used to assess the long-term exposure and serve as basis for initiating control strategies for shipbuilding workers. Results show that the NF/FF model was a suitable for predicting the exposures of metal contents containing in welding fume. The resultant posterior distributions could effectively assess the long-term exposures of shipbuilding welders. Welders' long-term Fe, Mn and Pb exposures were found with high possibilities to exceed the action level indicating preventive measures should be taken for reducing welders' exposures immediately. Though the resultant posterior distribution can only be regarded as the best solution based on the currently available predicting and monitoring data, the proposed integrated approach can be regarded as a possible solution for conducting long term exposure assessment in the field.Keywords: Bayesian decision analysis, exposure assessment, near field and far field model, shipbuilding industry, welding fume
Procedia PDF Downloads 1408792 Hypergraph Models of Metabolism
Authors: Nicole Pearcy, Jonathan J. Crofts, Nadia Chuzhanova
Abstract:
In this paper, we employ a directed hypergraph model to investigate the extent to which environmental variability influences the set of available biochemical reactions within a living cell. Such an approach avoids the limitations of the usual complex network formalism by allowing for the multilateral relationships (i.e. connections involving more than two nodes) that naturally occur within many biological processes. More specifically, we extend the concept of network reciprocity to complex hyper-networks, thus enabling us to characterize a network in terms of the existence of mutual hyper-connections, which may be considered a proxy for metabolic network complexity. To demonstrate these ideas, we study 115 metabolic hyper-networks of bacteria, each of which can be classified into one of 6 increasingly varied habitats. In particular, we found that reciprocity increases significantly with increased environmental variability, supporting the view that organism adaptability leads to increased complexities in the resultant biochemical networks.Keywords: complexity, hypergraphs, reciprocity, metabolism
Procedia PDF Downloads 2978791 A 3-Dimensional Memory-Based Model for Planning Working Postures Reaching Specific Area with Postural Constraints
Authors: Minho Lee, Donghyun Back, Jaemoon Jung, Woojin Park
Abstract:
The current 3-dimensional (3D) posture prediction models commonly provide only a few optimal postures to achieve a specific objective. The problem with such models is that they are incapable of rapidly providing several optimal posture candidates according to various situations. In order to solve this problem, this paper presents a 3D memory-based posture planning (3D MBPP) model, which is a new digital human model that can analyze the feasible postures in 3D space for reaching tasks that have postural constraints and specific reaching space. The 3D MBPP model can be applied to the types of works that are done with constrained working postures and have specific reaching space. The examples of such works include driving an excavator, driving automobiles, painting buildings, working at an office, pitching/batting, and boxing. For these types of works, a limited amount of space is required to store all of the feasible postures, as the hand reaches boundary can be determined prior to perform the task. This prevents computation time from increasing exponentially, which has been one of the major drawbacks of memory-based posture planning model in 3D space. This paper validates the utility of 3D MBPP model using a practical example of analyzing baseball batting posture. In baseball, batters swing with both feet fixed to the ground. This motion is appropriate for use with the 3D MBPP model since the player must try to hit the ball when the ball is located inside the strike zone (a limited area) in a constrained posture. The results from the analysis showed that the stored and the optimal postures vary depending on the ball’s flying path, the hitting location, the batter’s body size, and the batting objective. These results can be used to establish the optimal postural strategies for achieving the batting objective and performing effective hitting. The 3D MBPP model can also be applied to various domains to determine the optimal postural strategies and improve worker comfort.Keywords: baseball, memory-based, posture prediction, reaching area, 3D digital human models
Procedia PDF Downloads 216