Search results for: Green%20Purchase%20Intention
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2053

Search results for: Green%20Purchase%20Intention

1333 Screening and Optimization of Pretreatments for Rice Straw and Their Utilization for Bioethanol Production Using Developed Yeast Strain

Authors: Ganesh Dattatraya Saratale, Min Kyu Oh

Abstract:

Rice straw is one of the most abundant lignocellulosic waste materials and its annual production is about 731 Mt in the world. This study treats the subject of effective utilization of this waste biomass for biofuels production. We have showed a comparative assessment of numerous pretreatment strategies for rice straw, comprising of major physical, chemical and physicochemical methods. Among the different methods employed for pretreatment alkaline pretreatment in combination with sodium chlorite/acetic acid delignification found efficient pretreatment with significant improvement in the enzymatic digestibility of rice straw. A cellulase dose of 20 filter paper units (FPU) released a maximum 63.21 g/L of reducing sugar with 94.45% hydrolysis yield and 64.64% glucose yield from rice straw, respectively. The effects of different pretreatment methods on biomass structure and complexity were investigated by FTIR, XRD and SEM analytical techniques. Finally the enzymatic hydrolysate of rice straw was used for ethanol production using developed Saccharomyces cerevisiae SR8. The developed yeast strain enabled efficient fermentation of xylose and glucose and produced higher ethanol production. Thus development of bioethanol production from lignocellulosic waste biomass is generic, applicable methodology and have great implication for using ‘green raw materials’ and producing ‘green products’ much needed today.

Keywords: rice straw, pretreatment, enzymatic hydrolysis, FPU, Saccharomyces cerevisiae SR8, ethanol fermentation

Procedia PDF Downloads 515
1332 Separation, Identification, and Measuring Gossypol in the Cottonseed Oil and Investigating the Performance of Drugs Prepared from the Combination of Plant Extract and Oil in the Treatment of Cutaneous Leishmaniasis Resistant to Drugs

Authors: Sara Taghdisi, M. Mirmohammadi, M. Mokhtarian

Abstract:

In 2013, the World Health Organization announced the cases of Cutaneous leishmaniasis infection in Iran between 69,000 to 113,000. The most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them .The most prominent compound existing in different parts of the cotton plant is a yellow polyphenol called Gossypol. Gossypol is an extremely valuable compound and has anti-cancer properties. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 0.12+- 1.28. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. The extract of the green-leaf cotton boll of Jargoyeh varieties was tested as an ointment on the target group of patients suffering from Cutaneous leishmaniasis resistant to drugs esistant to drugs by our colleagues in the research team. The results showed the Pearson's correlation coefficient of 0.72 between the two variables of wound diameter and the extract use over time which indicated the positive effect of this extract on the treatment of Cutaneous leishmaniasis was resistant to drugs.

Keywords: cottonseed oil, crystallization, gossypol, green-leaf

Procedia PDF Downloads 79
1331 Synthesis and Characterization of Un-Doped and Velvet Tamarind Doped ZnS Crystals, Using Sol Gel Method

Authors: Uchechukwu Vincent Okpala

Abstract:

Under the Sun, energy is a key factor for the sustenance of life and its environment. The need to protect the environment as energy is generated and consumed has called for renewable and green energy sources. To be part of this green revolution, we synthesized and characterized undoped and velvet tamarind doped zinc sulfide (ZnS) crystals using sol-gel methods. Velvet tamarind was whittled down using the top-down approach of nanotechnology. Sodium silicate, tartaric acid, zinc nitrate, and thiourea were used as precursors. The grown samples were annealed at 105°C. Structural, optical, and compositional analyses of the grown samples revealed crystalline structures with varied crystallite sizes influenced by doping. Energy-dispersive X-ray spectroscopy confirmed elemental compositions of Zn, S, C and O in the films. Atomic percentages of the elements varied with VT doping. FT-IR analysis indicated the presence of functional groups like O-H stretching (alcohol), C=C=C stretching (alkene group), C=C bending, C-H stretching (alkane), N-H stretching (aliphatic primary amine) and N=C=S stretching (isothiocyanate) constituent in the film. The transmittance of the samples increased from the visible region to the infrared region making the samples good for poultry and solar energy applications. The bandgap energy of the films decreased as the number of VT drops increased, from 2.4 to 2.2. They were wide band gap materials and were good for optoelectronic, photo-thermal, high temperature, high power and solar cell applications.

Keywords: doping, sol-gel, velvet tamarind, ZnS.

Procedia PDF Downloads 30
1330 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis of α-Aminophosphonates from Amino Acids Esters

Authors: Sarra Boughaba

Abstract:

α-aminophosphonates have found a wide range of applications in organic and medicinal chemistry; they are considered as pharmacological agents, anti-inflammatory antitumor agents, and antibiotics. A number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution, utilization of organic solvents, and expensive catalysts. In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this context, an efficient and eco-friendly protocol has been described for the synthesis of α-aminophosphonates via one pot, three component reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of amino acids esters, various aromatic aldehydes and triethylphosphite under solvent-free conditions, the corresponding α-aminophosphonates were formed in good yields as racemic or diastereomericmixture. All the new products were systematically characterized by IR, MS, and ¹H, ¹³C-³¹P-NMR analyses. This method offers advantages such as simplicity workup with the green aspects by avoiding expensive catalysts and toxic solvents, good yields, short reaction times.

Keywords: amino acids esters, α-aminophosphonates, H₆P₂W₁₈O₆₂.14H₂O catalyst, green chemistry

Procedia PDF Downloads 103
1329 Antibacterial Activity and Cytotoxicity of Silver Nanoparticles Synthesized by Moringa oleifera Extract as Reducing Agent

Authors: Temsiri Suwan, Penpicha Wanachantararak, Sakornrat Khongkhunthian, Siriporn Okonogi

Abstract:

In the present study, silver nanoparticles (AgNPs) were synthesized by green synthesis approach using Moringa oleifera aqueous extract (ME) as a reducing agent and silver nitrate as a precursor. The obtained AgNPs were characterized using UV-Vis spectroscopy (UV-Vis), dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffractometry (XRD). The results from UV-Vis revealed that the maximum absorption of AgNPs was at 430 nm and the EDX spectrum confirmed Ag element. The results from DLS indicated that the amount of ME played an important role in particle size, size distribution, and zeta potential of the obtained AgNPs. The smallest size (62.4 ± 1.8 nm) with narrow distribution (0.18 ± 0.02) of AgNPs was obtained after using 1% w/v of ME. This system gave high negative zeta potential of -36.5 ± 2.8 mV. SEM results indicated that the obtained AgNPs were spherical in shape. Antibacterial activity using dilution method revealed that the minimum inhibitory and minimum bactericidal concentrations of the obtained AgNPs against Streptococcus mutans were 0.025 and 0.1 mg/mL, respectively. Cytotoxicity test of AgNPs on adenocarcinomic human alveolar basal epithelial cells (A549) indicated that the particles impacted against A549 cells. The percentage of cell growth inhibition was 87.5 ± 3.6 % when only 0.1 mg/mL AgNPs was used. These results suggest that ME is the potential reducing agent for green synthesis of AgNPs.

Keywords: antibacterial activity, Moringa oleifera extract, reducing agent, silver nanoparticles

Procedia PDF Downloads 94
1328 A Non-Destructive Estimation Method for Internal Time in Perilla Leaf Using Hyperspectral Data

Authors: Shogo Nagano, Yusuke Tanigaki, Hirokazu Fukuda

Abstract:

Vegetables harvested early in the morning or late in the afternoon are valued in plant production, and so the time of harvest is important. The biological functions known as circadian clocks have a significant effect on this harvest timing. The purpose of this study was to non-destructively estimate the circadian clock and so construct a method for determining a suitable harvest time. We took eight samples of green busil (Perilla frutescens var. crispa) every 4 hours, six times for 1 day and analyzed all samples at the same time. A hyperspectral camera was used to collect spectrum intensities at 141 different wavelengths (350–1050 nm). Calculation of correlations between spectrum intensity of each wavelength and harvest time suggested the suitability of the hyperspectral camera for non-destructive estimation. However, even the highest correlated wavelength had a weak correlation, so we used machine learning to raise the accuracy of estimation and constructed a machine learning model to estimate the internal time of the circadian clock. Artificial neural networks (ANN) were used for machine learning because this is an effective analysis method for large amounts of data. Using the estimation model resulted in an error between estimated and real times of 3 min. The estimations were made in less than 2 hours. Thus, we successfully demonstrated this method of non-destructively estimating internal time.

Keywords: artificial neural network (ANN), circadian clock, green busil, hyperspectral camera, non-destructive evaluation

Procedia PDF Downloads 276
1327 Reviving Sustainable Architecture in Non-Wester Culture

Authors: Khaled Asfour

Abstract:

Going for LEED certification is the latest concern in Egyptian practice that only materialized during the last 4 years. Egyptian Consultant Group (ECG) together with Credit Agricole had the vision to design a headquarters (Cairo) that delivers a serious sustainable design. The bank is a strong advocator of “green banking” and supports renewable energy and energy saving projects. Their HQ in Cairo has passed all the hurdles to become the first platinum LEED certificate holder in Egypt. With this design Egyptian practice has finally re-engaged in a serious way with its long-standing traditions in sustainable architecture. Perhaps the closest to our memory is the medieval houses of Cairo. Few centuries later these qualities disappeared with the advent of Modern Movement that focused more on standard modernist image making than real localized quality of living environments. The first person to note this disappearance was Hassan Fathy half a century ago. Despite international applaud for his efforts he had no effect on prevailing local practice that continued senselessly adopting recycled modernist templates. The Egyptian society was not ready to accept any reference to historic architecture. Disciples of Hassan Fathy, few decades later sought, of tackling the lack of interest in green architecture in a different way. Mohamed Awad introduced in his design sustainable ideals inspired from traditional architecture rather than recycling directly historic forms and images. Despite success, this approach did not go far enough to influence the prevailing practice. Since year 2000 Egyptian economy was ebbing and flowing dramatically. This staggering fluctuation coupled by energy crisis has disillusioned architects and clients on the issue of modern image making. No more shining architecture under the sun with high running cost of fossil fuel. They sought of adopting contemporary green measures that offer pleasant living while saving on energy. A revival is on its way but is very slow and timid. The paper will present this problem of reviving sustainable architecture. How this process can be accelerated in order to give stronger impact on current practice will be addressed through the works of Mario Cucinella and Norman Foster.

Keywords: LEED certification, Hasan Fathy, Medieval architecture, Mario Cucinella, Norman Foster

Procedia PDF Downloads 468
1326 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace Ethylene-Propylene-Diene Monomer Rubber

Authors: S. Dikmen Kucuk, A. Tozluoglu, Y. Guner

Abstract:

In recent years, petroleum-based polymers began to be limited due to effects on human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal and aging analyses. The aged surfaces were visually scrutinized and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose can be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, colour change or staining.

Keywords: EPDM, cellulose, green materials, nanofibrillated cellulose, TCNF, tempo-oxidized nanofiber

Procedia PDF Downloads 87
1325 Sustainable Ionized Gas Thermoelectric Generator: Comparative Theoretical Evaluation and Efficiency Estimation

Authors: Mohammad Bqoor, Mohammad Hamdan, Isam Janajreh, Sufian Abedrabbo

Abstract:

This extensive theoretical study on a novel Ionized Gas Thermoelectric Generator (IG-TEG) system has shown the ability of continuous energy extracting from the thermal energy of ambient air around standard room temperature and even below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use the Seebeck effect, and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces an electrical current from the random Brownian Motion of charged particles that are driven by thermal energy. The key parameter of the system is particle transportation, and it was studied under the condition of flashing ratchet potentials utilizing several methods and examined experimentally, ensuring its functionality. In this study, a different approach is pursued to estimate particle transportation by evaluating the charged particle distribution and applying the other conditions of the SRP, and showing continued energy harvesting potency from the particles’ transportation. Ultimately, power levels of 10 Watt proved to be achievable from a 1 m long system tube of 10 cm radius.

Keywords: thermoelectric generator, ratchet potential, Brownian ratchet, energy harvesting, sustainable energy, green technology

Procedia PDF Downloads 53
1324 Clarification of Taxonomic Confusions among Adulterated Drugs Coffee Seena and Seena Weed through Systematic and Pharmaceutical Markers

Authors: Shabnum Shaheen, Nida Haroon, Farah Khan, Sumera Javad, Mehreen Jalal, Samina Sarwar

Abstract:

Coffee Senna is pharmaceutically very important and used for multiple health disorders such as gastric pains, indigestion, snakebites, asthma and fever, tuberculosis and menstrual problems. However, its immense medicinal value and great demand lead to adulteration issue which could be injurious for users. Some times its adulterant Seena weed (Senna occidentalis L.) is used as its substitute which definitely not as effective as Coffee Senna. Hence, the present study was undertaken to provide some tools for systematic and pharmaceutical authentication of a shrubby plant Coffee Senna (Cassia occidentalis Linn.). These parameters included macro and micro morphological characters, anatomical and palynomorph characterization, solubility, fluorescence and phytochemical analysis. By the application of these parameters acquired results revealed that, these two plants are distinct from each other. The Coffee Seena was found to be an annual shrub with trilobed pollen, diacytic, paracytic and anisocytic stomata whereas the Seena weed stands out as an annual or perennial herb with spheroidal and circular pollen and paracytic type of stomata. The powdered drug of Coffee seena is dark grayish green whereas the powdered drug of Seena weed is light green in color. These findings are constructive in authentic identification of these plants.

Keywords: coffee senna, Senna weed, taxonomic evaluation, pharmaceutical markers

Procedia PDF Downloads 487
1323 Apollo Clinical Excellence Scorecard (ACE@25): An Initiative to Drive Quality Improvement in Hospitals

Authors: Anupam Sibal

Abstract:

Whatever is measured tends to improve. With a view to objectively measuring and improving clinical quality across the Apollo Group Hospitals, the initiative of ACE @ 25 (Apollo Clinical Excellence@25) was launched on Jan 09. ACE @ 25 is a clinically balanced scorecard incorporating 25 clinical quality parameters involving complication rates, mortality rates, one-year survival rates and average length of stay after major procedures like liver and renal transplant, CABG, TKR, THR, TURP, PTCA, endoscopy, large bowel resection and MRM covering all major specialties. Also included are hospital acquired infection rates, pain satisfaction and medication errors. Benchmarks have been chosen from the world’s best hospitals. There are weighted scores for outcomes color coded green, orange and red. The cumulative score is 100. Data is reported monthly by 43 Group Hospitals online on the Lighthouse platform. Action taken reports for parameters falling in red are submitted quarterly and reviewed by the board. An audit team audits the data at all locations every six months. Scores are linked to appraisal of the medical head and there is an “ACE @ 25” Champion Award for the highest scorer. Scores for different parameters were variable from green to red at the start of the initiative. Most hospitals showed an improvement in scores over the last four years for parameters where they had showed scores in red or orange at the start of the initiative. The overall scores for the group have shown an increase from 72 in 2010 to 81 in 2015.

Keywords: benchmarks, clinical quality, lighthouse, platform, scores

Procedia PDF Downloads 273
1322 Green-Synthesized β-Cyclodextrin Membranes for Humidity Sensors

Authors: Zeineb Baatout, Safa Teka, Nejmeddine Jaballah, Nawfel Sakly, Xiaonan Sun, Mustapha Majdoub

Abstract:

Currently, the economic interests linked to the development of bio-based materials make biomass one of the most interesting areas for science development. We are interested in the β-cyclodextrin (β-CD), one of the popular bio-sourced macromolecule, produced from the starch via enzymatic conversion. It is a cyclic oligosaccharide formed by the association of seven glucose units. It presents a rigid conical and amphiphilic structure with hydrophilic exterior, allowing it to be water-soluble. It has also a hydrophobic interior enabling the formation of inclusion complexes, which support its application for the elaboration of electrochemical and optical sensors. Nevertheless, the solubility of β-CD in water makes its use as sensitive layer limit and difficult due to their instability in aqueous media. To overcome this limitation, we chose to precede by modification of the hydroxyl groups to obtain hydrophobic derivatives which lead to water-stable sensing layers. Hence, a series of benzylated β-CDs were synthesized in basic aqueous media in one pot. This work reports the synthesis of a new family of substituted amphiphilic β-CDs using a green methodology. The obtained β-CDs showed different degree of substitution (DS) between 0.85 and 2.03. These organic macromolecular materials were soluble in common organic volatile solvents, and their structures were investigated by NMR, FT-IR and MALDI-TOF spectroscopies. Thermal analysis showed a correlation between the thermal properties of these derivatives and the benzylation degree. The surface properties of the thin films based on the benzylated β-CDs were characterized by contact angle measurements and atomic force microscopy (AFM). These organic materials were investigated as sensitive layers, deposited on quartz crystal microbalance (QCM) gravimetric transducer, for humidity sensor at room temperature. The results showed that the performances of the prepared sensors are greatly influenced by the benzylation degree of β-CD. The partially modified β-CD (DS=1) shows linear response with best sensitivity, good reproducibility, low hysteresis, fast response time (15s) and recovery time (17s) at higher relative humidity levels (RH) between 11% and 98% in room temperature.

Keywords: β-cyclodextrin, green synthesis, humidity sensor, quartz crystal microbalance

Procedia PDF Downloads 252
1321 Achieving Sustainable Development through Transformative Pedagogies in Universities

Authors: Eugene Allevato

Abstract:

Developing a responsible personal worldview is central to sustainable development, but achieving quality education to promote transformative learning for sustainability is thus far, poorly understood. Most programs involving education for sustainable development rely on changing behavior, rather than attitudes. The emphasis is on the scientific and utilitarian aspect of sustainability with negligible importance on the intrinsic value of nature. Campus sustainability projects include building sustainable gardens and implementing energy-efficient upgrades, instead of focusing on educating for sustainable development through exploration of students’ values and beliefs. Even though green technology adoption maybe the right thing to do, most schools are not targeting the root cause of the environmental crisis; they are just providing palliative measures. This study explores the under-examined factors that lead to pro-environmental behavior by investigating the environmental perceptions of both college business students and personnel of green organizations. A mixed research approach of qualitative, based on structured interviews, and quantitative instruments was developed including 30 college-level students’ interviews and 40 green organization staff members involved in sustainable activities. The interviews were tape-recorded and transcribed for analysis. Categorization of the responses to the open‐ended questions was conducted with the purpose of identifying the main types of factors influencing attitudes and correlating with behaviors. Overall the findings of this study indicated a lack of appreciation for nature, and inability to understand interconnectedness and apply critical thinking. The results of the survey conducted on undergraduate students indicated that the responses of business and liberal arts students by independent t-test were significantly different, with a p‐value of 0.03. While liberal arts students showed an understanding of human interdependence with nature and its delicate balance, business students seemed to believe that humans were meant to rule over the rest of nature. This result was quite intriguing from the perspective that business students will be defining markets, influencing society, controlling and managing businesses that supposedly, in the face of climate change, shall implement sustainable activities. These alarming results led to the focus on green businesses in order to better understand their motivation to engage in sustainable activities. Additionally, a probit model revealed that childhood exposure to nature has a significantly positive impact in pro-environmental attitudes to most of the New Ecological Paradigm scales. Based on these findings, this paper discusses educators including Socrates, John Dewey and Paulo Freire in the implementation of eco-pedagogy and transformative learning following a curriculum with emphasis on critical and systems thinking, which are deemed to be key ingredients in quality education for sustainable development.

Keywords: eco-pedagogy, environmental behavior, quality education for sustainable development, transformative learning

Procedia PDF Downloads 295
1320 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadiractha Indica) Leaf Extract and Investigate Its Antibacterial Activities

Authors: Elmineh Tsegahun Gedif

Abstract:

Zinc oxide nanoparticles (ZnO NPs) have attracted huge attention due to catalytic, optical, photonic, and antibacterial activity. Zinc oxide nanoparticles were successfully synthesized via a fast, non-toxic, cost-effective, and eco-friendly method by biologically reducing Zn(NO3)2.6H2O solution with Neem (Azadirachta indica) leaf extract under optimum conditions (pH = 9). The presence of active flavonoids, phenolic groups, alkaloids, terpenoids, and tannins, which were in the biomass of the Neem leaf extract before and after reduction, was identified using qualitative screening methods (observing the color changes) and FT-IR Spectroscopy. The formation of ZnO NPs was visually indicated by the color changes from colorless to light yellow color. Biosynthesized nanoparticles were also characterized by UV-visible, FT-IR, and XRD spectroscopies. The reduction process was simple and convenient to handle and was monitored by UV-visible spectroscopy that showed surface plasmon resonance (SPR) of the ZnO NPs at 321 nm. This result clearly revealed the formation of ZnO NPs. X-ray diffraction was used to investigate the crystal structure. The average particle size of ZnO powder and around 20 nm using the line width of the plane, and the refraction peak using Scherrer’s equation. The synthesized zinc oxide nanoparticles were evaluated for antimicrobial activities against Gram-positive and Gram-negative bacteria. Zinc nanoparticles exhibited the maximum zone of inhibition against Escherichia coli (15 mm), while the least activity was seen against Staphylococcus aureus.

Keywords: antimicrobial activity, azadirachta indica, green synthesis, ZnO NPs

Procedia PDF Downloads 76
1319 Bringing the Confidence Intervals into Choropleth Mortality Map: An Example of Tainan, Taiwan

Authors: Tzu-Jung Tseng, Pei-Hsuen Han, Tsung-Hsueh Lu

Abstract:

Background: Choropleth mortality map is commonly used to identify areas with higher mortality risk. However, the use of choropleth map alone might result in the misinterpretation of differences in mortality rates between areas. Two areas with different color shades might not actually have a significant difference in mortality rates. The mortality rates estimated for an area with a small population would be less stable. We suggest of bringing the 95% confidence intervals (CI) into the choropleth mortality map to help users interpret the areal mortality rate difference more properly. Method: In the first choropleth mortality map, we used only three color to indicate standardized mortality ratio (SMR) for each district in Tainan, Taiwan. The red color denotes that the SMR of that district was significantly higher than the Tainan average; on the contrary, the green color suggests that the SMR of that district was significantly lower than the Tainan average. The yellow color indicates that the SMR of that district was not statistically significantly different from the Tainan average. In the second choropleth mortality map, we used traditional sequential color scheme (color ramp) for different SMR in 37 districts in Tainan City with bar chart of each SMR with 95% CI in which the users could examine if the line of 95% CI of SMR of two districts overlapped (nonsignificant difference). Results: The all-causes SMR of each district in Tainan for 2008 to 2013 ranged from 0.77 (95% CI 0.75 to 0.80) in East District to 1.39 Beimen (95% CI 1.25 to 1.52). In the first choropleth mortality map, only 16 of 37 districts had red color and 8 districts had green color. For different causes of death, the number of districts with red color differed. In the first choropleth mortality map we added a bar chart with line of 95% CI of SMR in each district, in which the users could visualize the SMR differences between districts. Conclusion: Through the use of 95% CI the users could interpret the aral mortality differences more properly.

Keywords: choropleth map, small area variation, standardized mortality ratio (SMR), Taiwan

Procedia PDF Downloads 297
1318 Monodisperse Hallow Sandwich MOF for the Catalytic Oxidation of Benzene at Room Temperature

Authors: Srinivasapriyan Vijayan

Abstract:

Phenol is one of the most vital chemical in industry. Nowadays, phenol production is based upon the three-step cumene process, which involves a hazardous cumene hydroperoxide intermediate and produces nearly equimolar amounts of acetone as a coproduct. An attractive route in phenol production is the direct one-step selective hydroxylation of benzene using eco-friendly oxidants such as O2, N2O, and H2O2. In particular, the direct hydroxylation of benzene to form phenol with O2 has recently attracted extensive research attention because this process is green clean and eco-friendly. However, most of the catalytic systems involving O2 have a low rate of hydroxylation because the direct introduction of hydroxyl functionality into benzene is challenging. Almost all the developed catalytic systems require an elevated temperature and suffer from low conversion because of the notoriously low reactivity of aromatic C–H bonds. Moreover, increased reactivity of phenol relative to benzene makes the selective oxidation of benzene to phenol very difficult, especially under heating conditions. Hollow spheres, a very fascinating class of materials with good permeation and low density, highly monodisperse MOF hollow sandwich spheres have been rationally synthesized using monodisperse polystyrene (PS) nanoparticles as templates through a versatile step-by-step self-assembly strategy. So, our findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis. Because it is easy post-reaction separation, its cheap, green and recyclable.

Keywords: benzene hydroxylation, Fe-based metal organic frameworks, molecular oxygen, phenol

Procedia PDF Downloads 196
1317 Management of Urine Recovery at the Building Level

Authors: Joao Almeida, Ana Azevedo, Myriam Kanoun-Boule, Maria Ines Santos, Antonio Tadeu

Abstract:

The effects of the increasing expansion of cities and climate changes have encouraged European countries and regions to adopt nature-based solutions with ability to mitigate environmental issues and improve life in cities. Among these strategies, green roofs and urban gardens have been considered ingenious solutions, since they have the desirable potential to improve air quality, prevent floods, reduce the heat island effect and restore biodiversity in cities. However, an additional consumption of fresh water and mineral nutrients is necessary to sustain larger green urban areas. This communication discusses the main technical features of a new system to manage urine recovery at the building level and its application in green roofs. The depletion of critical nutrients like phosphorus constitutes an emergency. In turn, their elimination through urine is one of the principal causes for their loss. Thus, urine recovery in buildings may offer numerous advantages, constituting a valuable fertilizer abundantly available in cities and reducing the load on wastewater treatment plants. Although several urine-diverting toilets have been developed for this purpose and some experiments using urine directly in agriculture have already been carried out in Europe, several challenges have emerged with this practice concerning collection, sanitization, storage and application of urine in buildings. To our best knowledge, current buildings are not designed to receive these systems and integrated solutions with ability to self-manage the whole process of urine recovery, including separation, maturation and storage phases, are not known. Additionally, if from a hygiene point of view human urine may be considered a relatively safe fertilizer, the risk of disease transmission needs to be carefully analysed. A reduction in microorganisms can be achieved by storing the urine in closed tanks. However, several factors may affect this process, which may result in a higher survival rate for some pathogens. In this work, urine effluent was collected under real conditions, stored in closed containers and kept in climatic chambers under variable conditions simulating cold, temperate and tropical climates. These samples were subjected to a first physicochemical and microbiological control, which was repeated over time. The results obtained so far suggest that maturation conditions were reached for all the three temperatures and that a storage period of less than three months is required to achieve a strong depletion of microorganisms. The authors are grateful for the Project WashOne (POCI-01-0247-FEDER-017461) funded by the Operational Program for Competitiveness and Internationalization (POCI) of Portugal 2020, with the support of the European Regional Development Fund (FEDER).

Keywords: sustainable green roofs and urban gardens, urban nutrient cycle, urine-based fertilizers, urine recovery in buildings

Procedia PDF Downloads 148
1316 Synthesis and Characterisation of Bio-Based Acetals Derived from Eucalyptus Oil

Authors: Kirstin Burger, Paul Watts, Nicole Vorster

Abstract:

Green chemistry focuses on synthesis which has a low negative impact on the environment. This research focuses on synthesizing novel compounds from an all-natural Eucalyptus citriodora oil. Eight novel plasticizer compounds are synthesized and optimized using flow chemistry technology. A precursor to one novel compound can be synthesized from the lauric acid present in coconut oil. Key parameters, such as catalyst screening and loading, reaction time, temperature, residence time using flow chemistry techniques is investigated. The compounds are characterised using GC-MS, FT-IR, 1H and 13C-NMR techniques, X-ray crystallography. The efficiency of the compounds is compared to two commercial plasticizers, i.e. Dibutyl phthalate and Eastman 168. Several PVC-plasticized film formulations are produced using the bio-based novel compounds. Tensile strength, stress at fracture and percentage elongation are tested. The property of having increasing plasticizer percentage in the film formulations is investigated, ranging from 3, 6, 9 and 12%. The diastereoisomers of each compound are separated and formulated into PVC films, and differences in tensile strength are measured. Leaching tests, flexibility, and change in glass transition temperatures for PVC-plasticized films is recorded. Research objective includes using these novel compounds as a green bio-plasticizer alternative in plastic products for infants. The inhibitory effect of the compounds on six pathogens effecting infants are studied, namely; Escherichia coli, Staphylococcus aureus, Shigella sonnei, Pseudomonas putida, Salmonella choleraesuis and Klebsiella oxytoca.

Keywords: bio-based compounds, plasticizer, tensile strength, microbiological inhibition , synthesis

Procedia PDF Downloads 163
1315 System Transformation: Transitioning towards Low Carbon, Resource Efficient, and Circular Economy for Global Sustainability

Authors: Anthony Halog

Abstract:

In the coming decades the world that we know today will be drastically transformed. Population and economic growth, particularly in developing countries, are radically changing the demand for food and natural resources. Due to the transformations caused by these megatrends, especially economic growth which is rapidly expanding the middle class and changing consumption patterns worldwide, it is expected that this will result to an increase of approximately 40 percent in the demand for food, water, energy and other resources in the next decades. To fulfill this demand in a sustainable and efficient manner while avoiding food and water scarcity as well as environmental catastrophes in the near future, some industries, particularly the ones involved in food and energy production, have to drastically change its current production systems towards circular and green economy. In Australia, the agri-food industry has played a very important role in the scenario described above. It is one of the major food exporters in the world, supplying fast growing international markets in Asia and the Middle East. Though the Australian food supply chains are economically and technologically developed, it has been facing enduring challenges about its international competitiveness and environmental burdens caused by its production processes. An integrated framework for sustainability assessment is needed to precisely identify inefficiencies and environmental impacts created during food production processes. This research proposes a combination of industrial ecology and systems science based methods and tools intending to develop a novel and useful methodological framework for life cycle sustainability analysis of the agri-food industry. The presentation highlights circular economy paradigm aiming to implement sustainable industrial processes to transform the current industrial model of agri-food supply chains. The results are expected to support government policy makers, business decision makers and other stakeholders involved in agri-food-energy production system in pursuit of green and circular economy. The framework will assist future life cycle and integrated sustainability analysis and eco-redesign of food and other industrial systems.

Keywords: circular economy, eco-efficiency, agri-food systems, green economy, life cycle sustainability assessment

Procedia PDF Downloads 265
1314 Morpho-Anatomical Responses of Leaf Lettuce (Lactuca sativa L.) Grown with Different Colored Plastic Mulch

Authors: Edmar N. Franquera, Renato C. Mabesa, Rene Rafael C. Espino, Edralina P. Serrano, Eduardo P. Paningbatan Jr.

Abstract:

The potential of growing lettuce with different colored plastic mulch silver (control), red, orange, yellow and green was evaluated using two lettuce varieties, Looseleaf and Romaine. The experiment was laid out on split plot design following the Randomized Complete Block Design. The Looseleaf variety had better performance in terms of plant fresh weight, leaf fresh weight, leaf dry weight, root length, plant height and yield. However, better response was observed in Romaine in terms of leaf diameter, leaf length, root dry weight and root fresh weight. The color of the mulch reflected different qualities of light and hence the quality of absorbed light by the lettuce plants. A higher Far red and red ratio (FR:R) was obtained from green plastic mulch which was followed by the red plastic mulch. The different colored plastic mulch affected the growth and developmental responses of leaf lettuce morphological and leaf anatomical characteristics. Data in all growth morphological and yield parameters showed that those grown with red plastic mulch had better response and had longer stomates than those lettuce grown with the other colored plastic mulch. The soil temperature 10 cm below the plastic mulch was significantly influenced by the color of the mulch. The red plastic mulch had the highest soil temperature recorded while the lowest soil temperature recorded was within the yellow plastic mulch.

Keywords: anatomical, lettuce, morpholological, plastic mulch

Procedia PDF Downloads 521
1313 Electricity Market Reforms Towards Clean Energy Transition andnd Their Impact in India

Authors: Tarun Kumar Dalakoti, Debajyoti Majumder, Aditya Prasad Das, Samir Chandra Saxena

Abstract:

India’s ambitious target to achieve a 50 percent share of energy from non-fossil fuels and the 500-gigawatt (GW) renewable energy capacity before the deadline of 2030, coupled with the global pursuit of sustainable development, will compel the nation to embark on a rapid clean energy transition. As a result, electricity market reforms will emerge as critical policy instruments to facilitate this transition and achieve ambitious environmental targets. This paper will present a comprehensive analysis of the various electricity market reforms to be introduced in the Indian Electricity sector to facilitate the integration of clean energy sources and will assess their impact on the overall energy landscape. The first section of this paper will delve into the policy mechanisms to be introduced by the Government of India and the Central Electricity Regulatory Commission to promote clean energy deployment. These mechanisms include extensive provisions for the integration of renewables in the Indian Electricity Grid Code, 2023. The section will also cover the projection of RE Generation as highlighted in the National Electricity Plan, 2023. It will discuss the introduction of Green Energy Market segments, the waiver of Inter-State Transmission System (ISTS) charges for inter-state sale of solar and wind power, the notification of Promoting Renewable Energy through Green Energy Open Access Rules, and the bundling of conventional generating stations with renewable energy sources. The second section will evaluate the tangible impact of these electricity market reforms. By drawing on empirical studies and real-world case examples, the paper will assess the penetration rate of renewable energy sources in India’s electricity markets, the decline of conventional fuel-based generation, and the consequent reduction in carbon emissions. Furthermore, it will explore the influence of these reforms on electricity prices, the impact on various market segments due to the introduction of green contracts, and grid stability. The paper will also discuss the operational challenges to be faced due to the surge of RE Generation sources as a result of the implementation of the above-mentioned electricity market reforms, including grid integration issues, intermittency concerns with renewable energy sources, and the need for increasing grid resilience for future high RE in generation mix scenarios. In conclusion, this paper will emphasize that electricity market reforms will be pivotal in accelerating the global transition towards clean energy systems. It will underscore the importance of a holistic approach that combines effective policy design, robust regulatory frameworks, and active participation from market actors. Through a comprehensive examination of the impact of these reforms, the paper will shed light on the significance of India’s sustained commitment to a cleaner, more sustainable energy future.

Keywords: renewables, Indian electricity grid code, national electricity plan, green energy market

Procedia PDF Downloads 23
1312 Lifelong Distance Learning and Skills Development: A Case Study Analysis in Greece

Authors: Eleni Giouli

Abstract:

Distance learning provides a flexible approach to education, enabling busy learners to complete their coursework at their own pace, on their own schedule, and from a convenient location. This flexibility combined with a series of other issues; make the benefits of lifelong distance learning numerous. The purpose of the paper is to investigate whether distance education can contribute to the improvement of adult skills in Greece, highlighting in this way the necessity of the lifelong distance learning. To investigate this goal, a questionnaire is constructed and analyzed based on responses from 3,016 attendees of lifelong distance learning programs in the e-learning of the National and Kapodistrian University of Athens in Greece. In order to do so, a series of relationships is examined including the effects of a) the gender, b) the previous educational level, c) the current employment status, and d) the method used in the distance learning program, on the development of new general, technical, administrative, social, cultural, entrepreneurial and green skills. The basic conclusions that emerge after using a binary logistic framework are that the following factors are critical in order to develop new skills: the gender, the education level and the educational method used in the lifelong distance learning program. The skills more significantly affected by those factors are the acquiring new skills in general, as well as acquiring general, language and cultural, entrepreneurial and green skills, while for technical and social skills only gender and educational method play a crucial role. Moreover, routine skills and social skills are not affected by the four factors included in the analysis.

Keywords: adult skills, distance learning, education, lifelong learning

Procedia PDF Downloads 120
1311 Heat: A Healthy Eating Programme

Authors: Osagbai Joshua Eriki, Ngozi Agunwamba, Alice Hill, Lorna Almond, Maniya Duffy, Devashini Naidoo, David Ho, Raman Deo

Abstract:

Aims: To evaluate the baseline eating pattern in a psychiatric hospital through quantifying purchases of food and drink items at the hospital shop and to implement a traffic light healthy eating labeling system. Method: A electronic till with reporting capabilities was purchased. A two-week period of baseline data collection was conducted. Thereafter, a system for labeling items based on the nutritional value of the food items at the hospital shop was implemented. Green labeling represented the items with the lowest calories and red the most. Further data was collated on the number and types of items purchased by patients according to the category, and the initial effectiveness of the system was evaluated. Result: Despite the implementation of the traffic light system, the red category had the highest number of items purchased by patients, highlighting the importance of promoting healthy eating choices. However, the study also showed that the system was effective in promoting healthy options, as the number of items purchased from the green category increased during the study period. Conclusion: The implementation of a traffic light labeling system for items sold at the hospital shop offers a promising approach to promoting healthy eating habits and choices. This is likely to contribute to a toolkit of measures when considering the multifactorial challenges that obesity and weight issues pose for long-stay psychiatric inpatients

Keywords: mental health, nutrition, food, healthy

Procedia PDF Downloads 74
1310 Initiative Strategies on How to Increase Value Add of the Recycling Business

Authors: Yananda Siraphatthada

Abstract:

The current study was the succession of a previous study on value added of recycling business management. Its aims are to 1) explore conditions on how to increasing value add of Thai recycling business, and 2) exam the implementation of the 3-staged plan (short, medium, and long term), suggested by the former study, to increase value added of the recycling business as immediate mechanisms to accelerate government operation. Quantitative and qualitative methods were utilized in this research. A qualitative research consisted of in-depth interviews and focus group discussions. Responses were obtained from owners of the waste separation plants, and recycle shops, as well as officers in relevant governmental agencies. They were randomly selected via Quota Sampling. Data was analyzed via content analysis. The sample used for quantitative method consisted of 1,274 licensed recycling operators in eight provinces. The operators were randomly stratified via sampling method. Data were analyzed via descriptive statistics frequency, percentage, average (mean), and standard deviation. The study recommended three-staged plan: short, medium, and long terms. The plan included the development of logistics, the provision of quality market/plants, the amendment of recycling rules/regulation, the restructuring recycling business, the establishment of green-purchasing recycling center, support for the campaigns run by the International Green Purchasing Network (IGPN), conferences/workshops as a public forum to share insights among experts/concern people.

Keywords: strategies, value added, recycle, business

Procedia PDF Downloads 215
1309 Education for Sustainable Development and the Eco School Initiative in Two Primary Schools in The North East of England

Authors: Athanasia Chatzifotiou, Karen Tait

Abstract:

Eco-school is an international initiative that offers schools the opportunity to develop practices on education for sustainable development (EfSD). Such practices need to focus on nine areas, namely: energy, water, biodiversity, school grounds, healthy living, transport, litter, waste and global citizenship. Acquiring the green flag status is the ultimate stage (silver and bronze are the other two) that is awarded by a committee external to the school and it lasts for two years. Our project focused on two such primary schools that had acquired the green flag status. The aim of our project is to describe the schools’ approach of becoming an eco-school, the practitioners’ role in promoting the values and principles of such endeavors, thus identifying the impact of EfSD. We chose the eco-schools initiative as it gives a clear and straightforward way to identify a school with an interest in EfSD. The project is important because even though EfSD attracts high attention in rhetoric, there is evidence indicating that EfSD may be neglected in practice. This paper presents part of a bigger project that aims to compare how primary schools and early years settings have approached EfSD via the eco-school initiative in the North East of England. This is a qualitative project that used a case study design to focus on the practices of two particular primary schools to gain a green flag status. A semi-structured interview was used with the lead teachers/practitioners of the schools; an audit was also conducted as part of a tour of the schools’ premises highlighting the initiatives, curriculum work, projects undertaken as well as resources available to school. A content analysis of the interview transcripts was conducted with the creation of response categories and response narratives by the two researchers first working individually and then collaboratively; the findings of the project reflected issues that concerned: a) pupils’ cognitive, physical and socio-emotional development, b) the wider community and c) the lead practitioners’ role and status in school. In relation to EfSD, our findings indicated that its impact upon these two eco-schools was rather minimal; a mismatch was identified between the eco-school practices and a holistic understanding of issues that EfSD aims to achieve. This mismatch between eco-school practices and EfSD is discussed with regard to: a) pupils’ understanding of the sustainability dimension in the topics they addressed; and b) teachers’ knowledge of sustainability and willingness to keep on such work in schools.

Keywords: eco-schools, environment, primary schools, sustainability education

Procedia PDF Downloads 223
1308 Balancing Act: Political Dynamics of Economic and Climatological Security in the Politics of the Middle East

Authors: Zahra Bakhtiari

Abstract:

Middle East countries confront a multitude of main environmental challenges which are inevitable. The unstable economic and political structure which dominates numerous middle East countries makes it difficult to react effectively to unfavorable climate change impacts. This study applies a qualitative methodology and relies on secondary literature aimed to investigate how countries in the Middle East are balancing economic security and climatic security in terms of budgeting, infrastructure investment, political engagement (domestically through discourses or internationally in terms of participation in international organizations or bargaining, etc.) There has been provided an outline of innovative measures in both economic and environmental fields that are in progress in the Middle East countries and what capacity they have for economic development and environmental adaptation, as well as what has already been performed. The primary outcome is that countries that rely more on infrastructure investment such as negative emissions technologies (NET) through green social capital enterprises and political engagement, especially nationally determined contributions (NDCs) commitments and United Nations Framework Convention on Climate Change (UNFCCC), experience more economic and climatological security balance in the Middle East. Since implementing these measures is not the same in all countries in the region, we see different levels of balance between climate security and economic security. The overall suggestion is that the collaboration of both the bottom-up and top-down approaches helps create strategic environmental strategies which are in line with the economic circumstances of each country and creates the desired balance.

Keywords: climate change, economic growth, sustainability, the Middle East, green economy, renewable energy

Procedia PDF Downloads 61
1307 Characterization and Quantification of Relatives Amounts of Phosphorylated Glucosyl Residues in C6 and C3 Position in Banana Starch Granules by 31P-NMR

Authors: Renata Shitakubo, Hanyu Yangcheng, Jay-lin Jane, Fernanda Peroni Okita, Beatriz Cordenunsi

Abstract:

In the degradation transitory starch model, the enzymatic activity of glucan/water dikinase (GWD) and phosphoglucan/water dikinase (PWD) are essential for the granule degradation. GWD and PWD phosphorylate glucose molecules in the positions C6 and C3, respectively, in the amylopectin chains. This action is essential to allow that β-amylase degrade starch granules without previous action of α-amylase. During banana starch degradation, as part of banana ripening, both α- and β-amylases activities and proteins were already detected and, it is also known that there is a GWD and PWD protein bounded to the starch granule. Therefore, the aim of this study was to quantify both Gluc-6P and Gluc-3P in order to estimate the importance of the GWD-PWD-β-amylase pathway in banana starch degradation. Starch granules were isolated as described by Peroni-Okita et al (Carbohydrate Polymers, 81:291-299, 2010), from banana fruit at different stages of ripening, green (20.7%), intermediate (18.2%) and ripe (6.2%). Total phosphorus content was determinate following the Smith and Caruso method (1964). Gluc-6P and Gluc-3P quantifications were performed as described by Lim et al (Cereal Chemistry, 71(5):488-493, 1994). Total phosphorous content in green banana starch is found as 0.009%, intermediary banana starch 0.006% and ripe banana starch 0.004%, both by the colorimetric method and 31P-NMR. The NMR analysis showed the phosphorus content in C6 and C3. The results by NMR indicate that the amylopectin is phosphorylate by GWD and PWD before the bananas become ripen. Since both the total content of phosphorus and phosphorylated glucose molecules at positions C3 and C6 decrease with the starch degradation, it can be concluded that this phosphorylation occurs only in the surface of the starch granule and before the fruit be harvested.

Keywords: starch, GWD, PWD, 31P-NMR

Procedia PDF Downloads 439
1306 The Relationship between Procurement Strategies and Sustainability Outcomes: A Systematic Literature Review

Authors: Cathy T. Mpanga Kowet, Aghaegbuna Obinna U. Ozumba

Abstract:

This study examined and identified the inconsistencies, relationships, gaps and recurring themes in literature regarding the relationship between procurement strategies employed in the construction projects for sustainable buildings and realization of sustainability goals. A systematic literature review of studies on the relationship between various procurement strategies and attainment of sustainability outcomes was conducted. Using specific terms, papers published between 2002 and 2018 were identified and screened according to an inclusion and exclusion criteria. Current findings reveal that, although the attainment of sustainability goals is achievable with both traditional and contemporary procurement strategies, only projects delivered using modern procurement strategies are capable of meeting and exceeding targeted sustainability objectives. However, traditional procurement strategy remains the preferred method for most green building construction projects. The results suggest implications for decision makers in considering the impact of selected procurement strategies on targeted sustainability goals, in the early stages of sustainable building construction projects. The study shows that there is a gap between the reported appropriate procurement strategies and what is being practiced currently. Theoretically, the study expands on the literature on adoption and diffusion of contemporary procurement strategies, by consolidating existing studies to highlight the current gaps. While the study is at the literature review stage, deductions will serve as basis for field work involving empirical data.

Keywords: green buildings construction, procurement method, procurement strategy, sustainability objectives, sustainability outcomes

Procedia PDF Downloads 151
1305 Low-Temperature Fabrication of Reaction Bonded Composites, Based on Sic and (Sic+B4C) Mixture, Infiltrated with Si-Al Alloy

Authors: Helen Dilman, Eyal Oz, Shmuel Hayun, Nahum Frage

Abstract:

The conventional approach for manufacturing silicon carbide and boron carbide reaction bonded composites is based on infiltrating a ceramic porous preform with molten silicon. The relatively high melting temperature of the silicon infiltrating medium is a drawback of the process. The present contribution is concerned with an approach that allows obtaining reaction bonded composites by pressure-less infiltration at a significantly lower (850-1000oC) temperature range. This approach was applied for the fabrication of fully dense SiC/(Si-Al) and (SiC+B4C)/(Si-Al) composites. The key feature of the approach is based on using Si alloys with low melting temperature and the Mg-vapor atmosphere, under which an adequate wetting between ceramics and liquid alloys for the infiltration process is achieved. In the first set of the experiments ceramic performs compacted from multimodal SiC powders (with the green density of about 27 vol. %) without free carbon addition were infiltrated by Si-20%Al alloy at 950oC. In the second set, 19 vol. % of a fine boron carbide powder was added to SiC powders as a source of carbon. The green density of the SiC-B4C preforms was about 23-25 vol. %. In both cases, successful infiltration was achieved and the composites were fully dense. The density of the composites was about 3g/cm3. For the SiC based composites the hardness value was 750±150HV, Young modulus-280GPa and bending strength-240±30MPa. These values for (SiC-B4C)/(Si-Al) composites (1460±200HV, 317GPa and 360±20MPa) were significantly higher due to the formation of novel ceramics phases. Microstructural characteristics of the composites and their phase composition will be discussed.

Keywords: boron carbide, composites, infiltration, low temperatures, silicon carbide

Procedia PDF Downloads 533
1304 Sustainable Nanoengineering of Copper Oxide: Harnessing Its Antimicrobial and Anticancer Capabilities

Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel

Abstract:

Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.

Keywords: copper oxide nanoparticles, green synthesis, nanotechnology, microbial infection

Procedia PDF Downloads 38