Search results for: health data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30691

Search results for: health data

23251 Introducing a Proper Total Quality Management Model for Libraries

Authors: Alireza Shahraki, Kaveh Keshmiry Zadeh

Abstract:

Total quality management in libraries is of particular importance because high-quality libraries can facilitate the sustained development process in countries. This study has been conducted to examine the feasibility of implementation of total quality management in libraries of Sistan and Baluchestan and to provide an appropriate model for this concern. All of the officials and employees of Sistan and Baluchestan libraries (23 individuals) constitute the population of the study. Data gathering tool is a questionnaire that is designated based on ISO9000. The data extracted from questionnaires were analyzed using SPSS software. Results indicate that the highest degree of conformance to the 8 principles of ISO9000 is attributed to the principle of 'users' (69.9%) and the lowest degree is associated with 'decision making based on facts' (39.1%). Moreover, a significant relationship was observed among the items (1 and 3), (2 and 5), (2 and 7), (3 and 5), (4 and 5), (4 and 7), (4 and 8), (5 and 7), and (7 and 8). According to the research findings, it can generally be said that it is not eligible now to utilize TQM in libraries of Sistan and Baluchestan.

Keywords: quality management, total quality, university libraries, libraries management

Procedia PDF Downloads 345
23250 A Methodology of Using Fuzzy Logics and Data Analytics to Estimate the Life Cycle Indicators of Solar Photovoltaics

Authors: Thor Alexis Sazon, Alexander Guzman-Urbina, Yasuhiro Fukushima

Abstract:

This study outlines the method of how to develop a surrogate life cycle model based on fuzzy logic using three fuzzy inference methods: (1) the conventional Fuzzy Inference System (FIS), (2) the hybrid system of Data Analytics and Fuzzy Inference (DAFIS), which uses data clustering for defining the membership functions, and (3) the Adaptive-Neuro Fuzzy Inference System (ANFIS), a combination of fuzzy inference and artificial neural network. These methods were demonstrated with a case study where the Global Warming Potential (GWP) and the Levelized Cost of Energy (LCOE) of solar photovoltaic (PV) were estimated using Solar Irradiation, Module Efficiency, and Performance Ratio as inputs. The effects of using different fuzzy inference types, either Sugeno- or Mamdani-type, and of changing the number of input membership functions to the error between the calibration data and the model-generated outputs were also illustrated. The solution spaces of the three methods were consequently examined with a sensitivity analysis. ANFIS exhibited the lowest error while DAFIS gave slightly lower errors compared to FIS. Increasing the number of input membership functions helped with error reduction in some cases but, at times, resulted in the opposite. Sugeno-type models gave errors that are slightly lower than those of the Mamdani-type. While ANFIS is superior in terms of error minimization, it could generate solutions that are questionable, i.e. the negative GWP values of the Solar PV system when the inputs were all at the upper end of their range. This shows that the applicability of the ANFIS models highly depends on the range of cases at which it was calibrated. FIS and DAFIS generated more intuitive trends in the sensitivity runs. DAFIS demonstrated an optimal design point wherein increasing the input values does not improve the GWP and LCOE anymore. In the absence of data that could be used for calibration, conventional FIS presents a knowledge-based model that could be used for prediction. In the PV case study, conventional FIS generated errors that are just slightly higher than those of DAFIS. The inherent complexity of a Life Cycle study often hinders its widespread use in the industry and policy-making sectors. While the methodology does not guarantee a more accurate result compared to those generated by the Life Cycle Methodology, it does provide a relatively simpler way of generating knowledge- and data-based estimates that could be used during the initial design of a system.

Keywords: solar photovoltaic, fuzzy logic, inference system, artificial neural networks

Procedia PDF Downloads 172
23249 Comparative Analysis of Motor Insurance Claims using Machine Learning

Authors: Francis Kwame Bukari, Maclean Acheampong Yeboah

Abstract:

From collective hunting to contemporary financial markets, the concept of risk sharing in insurance has evolved significantly. In today's insurance landscape, statistical analysis plays a pivotal role in determining premiums and assessing the likelihood of insurance claims. Accurately estimating motor insurance claims remains a challenge, allowing insurance companies to pull much of their money to cover claims, which in the long run will affect their reserves and impact their profitability. Advanced machine learning algorithms can enhance accuracy and profitability. The primary objectives of this study encompassed the prediction of motor insurance claims through the utilization of Artificial Neural Networks (ANN) and Random Forest (RF). Additionally, a comparative analysis was conducted to assess the performance of these two models in the domain of claim prediction. The study drew upon secondary data derived from motor insurance claims, employing a range of techniques, including data preprocessing, model training, and model evaluation. To mitigate potential biases, a random over-sampler was used to balance the target variable within the preprocessed dataset. The Random Forest model outperformed the ANN model, achieving an accuracy rate of 90.33% compared to the ANN model's accuracy of 86.33%. This study highlights the importance of modern data-driven approaches in enhancing accuracy and profitability in the insurance industry.

Keywords: risk, insurance claims, artificial neural network, random forest, over-sampler, profitability

Procedia PDF Downloads 9
23248 Disciplined Care for Disciplined Patients: Results from Daily Experiences of Hospitalized Patients with Blindness

Authors: Mahmood Shamshiri

Abstract:

While visual sensation is the key gate for human-being to understand the world, visual impairment is one of the common cause of disability around the world. There is no doubt about the importance of eye sight in daily life among people, even it is understood the best gift of God to human-beings in many societies. Blind people are admitted to hospital for different health issues. Nurses and other health professionals who provide care for this group of patients need to understand their patients. Understanding the lived experience of blind people helps nurses to expand their knowledge regarding blind patients in order to provide a holistic care and improve the quality of care for blind patients. This phenomenological inquiry aimed to describe the meaning of discipline in daily life of blind people admitted in hospital. An interpretive phenomenology underpinned the philosophical approach of the study. While the interpretive phenomenology played as an umbrella role in the overall point of the study, the six methodical activities which introduced by van Manen helped the researchers to conduct the study. ‘Disciplined care for disciplined patients’ was the main theme emerged from dialogues of blind patients about their daily life in the hospital. Almost all of participants called themselves as disciplined people. The theme ‘disciplined care for disciplined patients’ appeared from four sub-themes including discipline through careful touching and listening, discipline as the ideal way of existence, discipline the preferred way of being independent, desire to take disciplined and detailed care, reactions to the undisciplined caring culture. This phenomenological inquiry to the experiences of patients with blindness in hospital revealed that they commonly are disciplined people and want to be cared in well-organized caring environment. Furthermore, they need to be familiar with the new caring environment. Well-organized and familiar environment help blind patients to increase the level of independency. In addition, blind patients prefer a detail informed and disciplined caring culture. Health professionals have to consider the concept of disciplined care in order to provide a holistic and comprehensive competent care.

Keywords: disciplined people, disciplined care, lived experience, patient with blindness

Procedia PDF Downloads 153
23247 The Effectiveness of a Six-Week Yoga Intervention on Body Awareness, Warnings of Relapse, and Emotion Regulation among Incarcerated Females

Authors: James D. Beauchemin

Abstract:

Introduction: The incarceration of people with mental illness and substance use disorders is a major public health issue with social, clinical, and economic implications. Yoga participation has been associated with numerous psychological benefits; however, there is a paucity of research examining impacts of yoga with incarcerated populations. The purpose of this study was to evaluate effectiveness of a six-week yoga intervention on several mental health-related variables, including emotion regulation, body awareness, and warnings of substance relapse among incarcerated females. Methods: This study utilized a pre-post, three-arm design, with participants assigned to intervention, therapeutic community, or general population groups. A between-group analysis of covariance (ANCOVA) was conducted across groups to assess intervention effectiveness using the Difficulties in Emotion Regulation Scale (DERS), Scale of Body Connection (SBC), and Warnings of Relapse (AWARE) Questionnaire. Results: ANCOVA results for warnings of relapse (AWARE) revealed significant between-group differences F(2, 80) = 7.15, p = .001; np2 = .152), with significant pairwise comparisons between the intervention group and both the therapeutic community (p = .001) and the general population (p = .005) groups. Similarly, significant differences were found for emotional regulation (DERS) F(2, 83) = 10.521, p = .000; np2 = .278). Pairwise comparisons indicated a significant difference between the intervention and general population (p = .01). Finally, significant differences between the intervention and control groups were found for body awareness (SBC) F(2, 84) = 3.69, p = .029; np2 = .081). Between-group differences were clarified via pairwise comparisons, indicating significant differences between the intervention group and both the therapeutic community (p = .028) and general population groups (p = .020). Implications: Study results suggest that yoga may be an effective addition to integrative mental health and substance use treatment for incarcerated women and contributes to increasing evidence that holistic interventions may be an important component for treatment with this population. Specifically, given the prevalence of mental health and substance use disorders, findings revealed that changes in body awareness and emotion regulation might be particularly beneficial for incarcerated populations with substance use challenges as a result of yoga participation. From a systemic perspective, this proactive approach may have long-term implications for both physical and psychological well-being for the incarcerated population as a whole, thereby decreasing the need for traditional treatment. By integrating a more holistic, salutogenic model that emphasizes prevention, interventions like yoga may work to improve the wellness of this population while providing an alternative or complementary treatment option for those with current symptoms.

Keywords: wellness, solution-focused coaching, college students, prevention

Procedia PDF Downloads 127
23246 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework

Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin

Abstract:

During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.

Keywords: artificial intelligence, COVID-19, depression detection, psychiatric disorder

Procedia PDF Downloads 133
23245 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 295
23244 Psycho-Social Associates of Deliberate Self-Harm in Rural Sri Lanka

Authors: P. H. G. J. Pushpakumara, A. M. P. Adikari, S. U. B. Tennakoon, Ranil Abeysinghe, Andrew Dawson

Abstract:

Introduction: Deliberate Self-harm (DSH) is a global public health problem. Since 1950, suicide rates in Sri Lanka are among the highest national rates in the world. It has become an increasingly common response to emotional distress in young adults. However, it remains unclear the reason for this occurrence. Objectives: The descriptive component of this study was conducted to identify of epidemiological pattern of DSH and suicide in Kurunegala District (KD). Assessment of association between DSH socio-cultural, economical and psychological factors were the objectives of the case control component. Methods: Prospective data collection of DSH and suicide was conducted at all (46) hospitals and all (28) police stations in the KD for thirty six months, from 1st January 2011, as the descriptive component. Case control component was conducted at T.H. Kurunegala (THK) for eighteen months duration, from 1st July 2011. Cases (n=439) were randomly selected from a block of 7 consecutively admitted consenting DSP patients using a computer program. Age, sex and residential divisional secretariat division one to one matched, individuals were randomly selected as controls from patients presented to Out Patient Department. Structured Clinical Interview for DSM-IV-TR Axis I and II Disorders was used to diagnose psychiatric disorders. Validated tools were used to measure other constructs. Results: Suicide incidences in KD were, 21.6, 20.7 and 24.3 per 100,000 population in 2011- 2013 (Male:female ratio 5.7, 4.4 and 6.4). 60% of suicides were due to poisoning. DSP incidences were 205.4, 248.3 and 202.5 per 100,000 population in 2011- 2013. Highest age standardized male DSP incidence reported in 20-24 years (769.6/100,000) and female in 15-19 years (1304.0/100,000). Bing married (age >25 years), monthly family income less than Rs.30,000, not achieving G.C.E (O/L) qualifications, a school drop-out, not in a permanent position in occupation, being a manual and an own account worker, were significantly associated with DSP. Perceiving the quality of relationship as bad or very bad with parents, spouse/ girlfriend/ boyfriend and sibling as associated with 8, 40 and 10.5 times higher risk respectively. Feeling and experiences of neglect, other emotional abuses, feeling of insecurity with the family, in child hood, and having a contact history carried an excess risk for DSP. Cases were less likely to seek help. Further, they had significantly lower scores for life skills and life skills application ability. 25.6% DSH patients had DSM TR axis-I and/or TR axis-II disorder. The presence of psychiatric disorder carried 7.7 (95% CI 4.3 – 13.8) times higher risk for DSP. Conclusion: In general, pattern of DSH and suicide is, unique, different from developed, upper and middle income and lower and middle income countries. It is a learned way of expressing emotions in difficult situations of vulnerable people.

Keywords: deliberate self-harm, help-seeking, life-skills, mental- health, psychological, social, suicide

Procedia PDF Downloads 230
23243 Modelling High-Frequency Crude Oil Dynamics Using Affine and Non-Affine Jump-Diffusion Models

Authors: Katja Ignatieva, Patrick Wong

Abstract:

We investigated the dynamics of high frequency energy prices, including crude oil and electricity prices. The returns of underlying quantities are modelled using various parametric models such as stochastic framework with jumps and stochastic volatility (SVCJ) as well as non-parametric alternatives, which are purely data driven and do not require specification of the drift or the diffusion coefficient function. Using different statistical criteria, we investigate the performance of considered parametric and nonparametric models in their ability to forecast price series and volatilities. Our models incorporate possible seasonalities in the underlying dynamics and utilise advanced estimation techniques for the dynamics of energy prices.

Keywords: stochastic volatility, affine jump-diffusion models, high frequency data, model specification, markov chain monte carlo

Procedia PDF Downloads 109
23242 Educational Framework for Coaches on Injury Prevention in Adolescent Team Sports

Authors: Chantell Gouws, Lourens Millard, Anne Naude, Jan-Wessel Meyer, Brandon Stuwart Shaw, Ina Shaw

Abstract:

Background: Millions of South African youths participate in team sports, with netball and rugby being two of the largest worldwide. This increased participation and professionalism have resulted in an increase in the number of musculoskeletal injuries. Objective: This study examined the extent to which sport coaching knowledge translates to the injuries and prevention of injuries in adolescents participating in netball and rugby. Methods: Thirty-four South African sports coaches participated in the study. Eighteen netball coaches and 16 rugby coaches with varying levels of coaching experience were selected to participate. An adapted version of Nash and Sproule’s questionnaire was used to investigate the coaches’ knowledge with regards to sport-specific common injuries, injury prevention, fitness/conditioning, individual technique development, training programs, mental training, and preparation of players. The analysis of data was carried out using a number of different techniques outlined by Nash and Sproule (2012). These techniques were determined by the type of data. Descriptive data was used to provide statistical analysis. Quantitative data was used to determine the educational framework and knowledge of sports coaches on injury prevention. Numerical data was obtained through questions on sports injuries, as well as coaches’ sports knowledge levels. Participants’ knowledge was measured using a standardized scoring system. Results: For the 0-4 years of netball coaching experience, 76.4% of the coaches had knowledge and experience and 33.3% appropriate first aid knowledge, while for the 9-12 years and 13-16 years, 100% of the coaches had knowledge and experience and first aid knowledge. For the 0-4 years in rugby coaching experience, 59.1% had knowledge and experience and 71% the appropriate first aid knowledge; for the 17-20 years, 100% had knowledge and experience and first aid, while for higher or equal to 25 years, 45.5% had knowledge and experience. In netball, 90% of injuries consisted of ankle injuries, followed by 70% for knee, 50% for shoulder, 20% for lower leg, and 15% for finger injuries. In rugby, 81% of the injuries occurred at the knee, followed by 50% for the shoulder, 40% for the ankle, 31% for the head and neck, and 25% for hamstring injuries. Six hours of training resulted in a 13% chance of injuries in netball and a 32% chance in rugby. For 10 hours of training, the injury prevalence was 10% in netball and 17% in rugby, while 15 hours resulted in an injury incidence of 58% in netball players and a 25% chance in rugby players. Conclusion: This study highlights the need for coaches to improve their knowledge in relation to injuries and injury prevention, along with factors that act as a preventative measure and promotes players’ well-being.

Keywords: musculoskeletal injury, sport coaching, sport trauma

Procedia PDF Downloads 164
23241 Intensive Care Experience of Providing Palliative Care for a Terminal Lung Cancer Patient

Authors: Ting-I Lin

Abstract:

Objective: This article explores the nursing care experience of a 51-year-old terminal lung cancer patient admitted to the intensive care unit (ICU) following an upper right lobectomy. The patient initially sought emergency treatment due to worsening cough and dyspnea, which led to the placement of an endotracheal tube following sudden deterioration. Subsequent CT scans and chest X-rays revealed a tumor in the upper right lung with metastases to the lungs, liver, bones, and adrenal glands. The patient underwent a right upper lobectomy and a wedge resection of the right middle lobe. Pathology staging: T4N3M1c and the patient was diagnosed with advanced cancer postoperatively. Method: During the care period, nursing staff continuously monitored the patient’s physiological data through observations, direct care, interviews, physical assessments, and review of the patient’s medical records. The nursing team collaborated with the critical care team and the palliative care team, using Gordon's Eleven Functional Health Patterns to conduct a comprehensive assessment. The key health problems identified included pain related to postoperative cancer resection and invasive devices, fear of death due to rapid disease progression, and altered tissue perfusion associated with hemodynamic instability. Results: Postoperatively, the patient experienced pain from the surgical wound and dyspnea due to extensive metastasis, often leading to confusion. Through the adjustment of pain medication, the patient’s discomfort was alleviated, using Morphine 8 mg in 0.9% normal saline 60 ml IV drip q6h prn, and Ultracet 37.5 mg/325 mg 1# PO q6h. Additionally, lavender essential oil inhalation and limb massage were provided for 15 minutes four times a day. The patient’s FLACC pain score decreased from 7 to below 3. After respiratory training, the endotracheal tube was successfully removed, and the patient was weaned off the ventilator. Triflow exercises were used to promote alveolar expansion, with the goal of achieving 2 balls for 10 seconds, 5 repetitions per session, 6-8 times a day. The patient’s breathing stabilized at 16-18 breaths per minute, body temperature remained between 35.8°C and 36.1°C, and the mean arterial pressure was maintained between 60-80 mmHg. Conclusion: The critical care team and the palliative care team held a family meeting to discuss not only the patient’s care but also the emotional well-being of the family. Visiting hours were increased to two times per day, one hour each time, allowing the patient and family to express love and gratitude, which strengthened their emotional connection and reduced the patient’s anxiety from severe to mild. The family expressed that they had no regrets. After the patient was transferred to the general ward, the nursing team continued to provide end-of-life care with genuine empathy, compassion, and religious support, helping both the patient and family through the final stage of life.

Keywords: multiple metastases, lung cancer, palliative care, nursing experience

Procedia PDF Downloads 33
23240 Leptin Levels in Cord Blood and Their Associations with the Birth of Small, Large and Appropriate for Gestational Age Infants in Southern Sri Lanka

Authors: R. P. Hewawasam, M. H. A. D. de Silva, M. A. G. Iresha

Abstract:

In recent years childhood obesity has increased to pan-epidemic proportions along with a concomitant increase in obesity-associated morbidity. Birth weight is an important determinant of later adult health, with neonates at both ends of the birth weight spectrum at risk of future health complications. Consequently, infants who are born large for gestational age (LGA) are more likely to be obese in childhood and adolescence and are at risk of cardiovascular and metabolic complications later in life. Adipose tissue plays a role in linking events in fetal growth to the subsequent development of adult diseases. In addition to its role as a storage depot for fat, adipose tissue produces and secrets a number of hormones of importance in modulating metabolism and energy homeostasis. Cord blood leptin level has been positively correlated with fetal adiposity at birth. It is established that Asians have lower skeletal muscle mass, low bone mineral content and excess body fat for a given body mass index indicating a genetic predisposition in the occurrence of obesity. To our knowledge, studies have never been conducted in Sri Lanka to determine the relationship between adipocytokine profile in cord blood and anthropometric parameters in newborns. Thus, the objective of this study is to establish the above relationship for the Sri Lankan population to implement awareness programs to minimize childhood obesity in the future. Umbilical cord blood was collected from 90 newborns (Male 40, Female 50; gestational age 35-42 weeks) after double clamping the umbilical cord before separation of the placenta and the concentration of leptin was measured by ELISA technique. Anthropometric parameters of the newborn such as birth weight, length, ponderal index, occipital frontal, chest, hip and calf circumferences were measured. Pearson’s correlation was used to assess the relationship between leptin and anthropometric parameters while the Mann-Whitney U test was used to assess the differences in cord blood leptin levels between small for gestational age (SGA), appropriate for gestational age (AGA) and LGA infants. There was a significant difference (P < 0.05) between the cord blood leptin concentrations of LGA infants (12.67 ng/mL ± 2.34) and AGA infants (7.10 ng/mL ± 0.90). However, a significant difference was not observed between leptin levels of SGA infants (8.86 ng/mL ± 0.70) and AGA infants. In both male and female neonates, umbilical leptin levels showed significant positive correlations (P < 0.05) with birth weight of the newborn, pre-pregnancy maternal weight and pre pregnancy BMI between the infants of large and appropriate for gestational ages. Increased concentrations of leptin levels in the cord blood of large for gestational age infants suggest that they may be involved in regulating fetal growth. Leptin concentration of Sri Lankan population was not significantly deviated from published data of Asian populations. Fetal leptin may be an important predictor of neonatal adiposity; however, interventional studies are required to assess its impact on the possible risk of childhood obesity.

Keywords: appropriate for gestational age, childhood obesity, leptin, anthropometry

Procedia PDF Downloads 192
23239 Exploring the Illness Experience of Fibromyalgia Patients Using Identity Boxes

Authors: Nicole Brown

Abstract:

This study considers the illness experience of fibromyalgia patients by using identity boxes. The results improve health care professionals' understanding of patient experiences. Additionally, the concept of the identity boxes may offer a practical solution for helping patients accept the diagnosis of fibromyalgia. Fibromyalgia research traditionally refers to pain experiences and relies on questionnaires, surveys, interviews and some narrative analysis. However, due to the variability in symptoms, symptom levels, and locations, these methods may not be best suited to provide an insight into the patient experience. On the other hand, lengthy interview processes are not easily accessible for sufferers of fibromyalgia. In addition to timelines and diary extracts, this study uses identity boxes as its main data collection method. Participants are asked to find items in response to specific questions and to arrange them in their box. The objects represent the patients' experiences holistically. Participants provide photographs of their identity box at each stage of the process and explain their chosen items. The photographs of the identity boxes and the patients' explanations of their objects and their boxes are subjected to interpretative phenomenological analysis. Despite the unique forms of the completed boxes, common experiences are described: the need for comfort, the role of spirituality and the impact of fibromyalgia on everyday life, that it plays a significant role but those patients are determined not to let it rule their lives. The work with the identity boxes has shown beneficial impact due to the reflective nature involved in the tasks. Further investigations will be needed to identify the long-term impact of identity work using such boxes.

Keywords: biographical disruption, fibromyalgia, illness experience, illness narrative

Procedia PDF Downloads 237
23238 Tourists' Percepion of Osun Osogbo Festival in Osogbo, Osun State Nigeria

Authors: Yina Donald Orga

Abstract:

Osun Osogbo festival is one of the biggest art festivals in Nigeria with over 235, 518 tourist visits in 2014. The purpose of this study is to generate data on the tourists’ perception of Osun Osogbo Festival in Osogbo, Osun State Nigeria. Based on the population of 199, 860 tourist visits at Osun Osogbo festival in 2013, Krejcie and Morgan sample size table was used to select 768 tourists/respondents. Likert questionnaire were used to elicit data from the respondents. Descriptive statistic was used to describe the characteristics of respondents and analyse the tourists’ perception of the festival. The findings from data analysed suggest that the trend of domestic and international tourist visits in the past ten years for the festival had shown a consistent increase since 2004 except in 2007 and 2008 and continue to increase up to 2013. This is an indication that the tourists are satisfied with traditional, historical and authenticity features of the festival. Also, findings from the study revealed that the tourists are not satisfied with the number of toilets at Osun Sacred Grove, crowd control of visitors during the festival, medical personnel to cater for visitors during the festival, etc. In view of the findings of the study, the following recommendations are suggested; provision of more toilets at Osun Sacred grove, Osogbo Heritage Council to recruit festival guides to help control the huge crowd at the festival, the Government of State of Osun in conjunction with Red Cross Society should engage adequate medical personnel to cater for medical needs of visitors at the festival, etc.

Keywords: festival, perception, positive, tourists

Procedia PDF Downloads 210
23237 Antibacterial Activity of Silver Nanoparticles of Extract of Leaf of Nauclea latifolia (Sm.) against Some Selected Clinical Isolates

Authors: Mustapha Abdulsalam, R. N. Ahmed

Abstract:

Nauclea latifolia is one of the medicinal plants used in traditional Nigerian medicine in the treatment of various diseases such as fever, toothaches, malaria, diarrhea among several other conditions. Nauclea latifolia leaf extract acts as a capping and reducing agent in the formation of silver nanoparticles. Silver nanoparticles (AgNPs) were synthesized using a combination of aqueous extract of Nauclea latifolia and 1mM of silver nitrate (AgNO₃) solution to obtain concentrations of 100mg/ml-400mg/ml. Characterization of the particles was done by UV-Vis spectroscopy and Fourier transform infrared (FTIR). In this study, aqueous as well as ethanolic extract of leaf of Nauclea latifolia were investigated for antibacterial activity using the standard agar well diffusion technique against three clinical isolates (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa). The Minimum Inhibitory Concentration (MIC) was achieved by microbroth dilution method and Minimum Bactericidal Concentration (MBC) was also determined by plate assay. Characterization by UV-visible spectrometry revealed peak absorbance of 0.463 at 450.0nm, while FTIR showed the presence of two functional groups. At 400mg/ml, the highest inhibitory activities were observed with S.aureus and E.coli with zones of inhibition measuring 20mm and 18mm respectively. The MIC was obtained at 400mg/ml while MBC was at a higher concentration. The data from this study indicate the potential of silver nanoparticle of Nauclea latifolia as a suitable alternative antibacterial agent for incorporation into orthodox medicine in health care delivery in Nigeria.

Keywords: agar well diffusion, antimicrobial activity, Nauclea latifolia, silver nanoparticles

Procedia PDF Downloads 211
23236 End To End Process to Automate Batch Application

Authors: Nagmani Lnu

Abstract:

Often, Quality Engineering refers to testing the applications that either have a User Interface (UI) or an Application Programming Interface (API). We often find mature test practices, standards, and automation regarding UI or API testing. However, another kind is present in almost all types of industries that deal with data in bulk and often get handled through something called a Batch Application. This is primarily an offline application companies develop to process large data sets that often deal with multiple business rules. The challenge gets more prominent when we try to automate batch testing. This paper describes the approaches taken to test a Batch application from a Financial Industry to test the payment settlement process (a critical use case in all kinds of FinTech companies), resulting in 100% test automation in Test Creation and Test execution. One can follow this approach for any other batch use cases to achieve a higher efficiency in their testing process.

Keywords: batch testing, batch test automation, batch test strategy, payments testing, payments settlement testing

Procedia PDF Downloads 66
23235 Improving the Logistic System to Secure Effective Food Fish Supply Chain in Indonesia

Authors: Atikah Nurhayati, Asep A. Handaka

Abstract:

Indonesia is a world’s major fish producer which can feed not only its citizens but also the people of the world. Currently, the total annual production is 11 tons and expected to double by the year of 2050. Given the potential, fishery has been an important part of the national food security system in Indonesia. Despite such a potential, a big challenge is facing the Indonesians in making fish the reliable source for their food, more specifically source of protein intake. The long geographic distance between the fish production centers and the consumer concentrations has prevented effective supply chain from producers to consumers and therefore demands a good logistic system. This paper is based on our research, which aimed at analyzing the fish supply chain and is to suggest relevant improvement to the chain. The research was conducted in the Year of 2016 in selected locations of Java Island, where intensive transaction on fishery commodities occur. Data used in this research comprises secondary data of time series reports on production and distribution and primary data regarding distribution aspects which were collected through interviews with purposively selected 100 respondents representing fishers, traders and processors. The data were analyzed following the supply chain management framework and processed following logistic regression and validity tests. The main findings of the research are as follows. Firstly, it was found that improperly managed connectivity and logistic chain is the main cause for insecurity of availability and affordability for the consumers. Secondly, lack of quality of most local processed products is a major obstacle for improving affordability and connectivity. The paper concluded with a number of recommended strategies to tackle the problem. These include rationalization of the length of the existing supply chain, intensification of processing activities, and improvement of distribution infrastructure and facilities.

Keywords: fishery, food security, logistic, supply chain

Procedia PDF Downloads 246
23234 Hand Gestures Based Emotion Identification Using Flex Sensors

Authors: S. Ali, R. Yunus, A. Arif, Y. Ayaz, M. Baber Sial, R. Asif, N. Naseer, M. Jawad Khan

Abstract:

In this study, we have proposed a gesture to emotion recognition method using flex sensors mounted on metacarpophalangeal joints. The flex sensors are fixed in a wearable glove. The data from the glove are sent to PC using Wi-Fi. Four gestures: finger pointing, thumbs up, fist open and fist close are performed by five subjects. Each gesture is categorized into sad, happy, and excited class based on the velocity and acceleration of the hand gesture. Seventeen inspectors observed the emotions and hand gestures of the five subjects. The emotional state based on the investigators assessment and acquired movement speed data is compared. Overall, we achieved 77% accurate results. Therefore, the proposed design can be used for emotional state detection applications.

Keywords: emotion identification, emotion models, gesture recognition, user perception

Procedia PDF Downloads 289
23233 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling

Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng

Abstract:

This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.

Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT

Procedia PDF Downloads 89
23232 The Rehabilitation of Drug Addiction by Thai Indigenous Knowledge: A Case Study of Thamkrabok Monastery

Authors: Wanwimon Mekwimon

Abstract:

Drug addiction is a serious problem in Thailand which has occurred continuously and repeatedly and enormously impacting health and economy of drug users. The indigenous wisdom and folk medicine is an attractive alternative choice, especially in detoxification and rehabilitation period. There are two objectives: First is to study about rehabilitation process and the curing for drug eaters and 2nd is to investigate the effectiveness of the curing and rehabilitation process by indigenous wisdom at Tamkrabok monastery, Pra-Puttabat district, Saraburi province. The main informants are 10 curers, 15 patients and 17 after-1-year rehabilitators. In the process, the semi-structured questionnaire is administered, the data are analyzed and proved by triangulation. The curing and rehabilitation process which use herbal remedies has a period of 15 days (5 days for detoxification and 10 days for recovery period) and the occupational training and self-consciousness awakening were delivered. The follow-up process includes twice-a-month recall for 6 months, follow-up letters and in depth interview with their families. The outcome of 1 year post-treatment was 94% (16 from 17). There are many reasons for not relapsing: the recovering patients have drawn on their inner strength, self-awareness and coping skill as well as their family and social support while rehabilitation process which includes difficulties in contacting with family members. They can void themselves from high risk situations to relapse. Recommendations: The follow-up system should be improved for continuous quality improvement, there should be the qualification standard for herbal remedies and the comparison among rehabilitation process of Tamkrabok and another methods are to be guideline for the further development.

Keywords: rehabilitation, drug addiction, Thai indigenous knowledge, herbal remedies

Procedia PDF Downloads 246
23231 Artificial Intelligent-Based Approaches for Task ‎Offloading, ‎Resource ‎Allocation and Service ‎Placement of ‎Internet of Things ‎Applications: State of the Art

Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib‎

Abstract:

In order to support the continued growth, critical latency of ‎IoT ‎applications, and ‎various obstacles of traditional data centers, ‎mobile edge ‎computing (MEC) has ‎emerged as a promising solution that extends cloud data-processing and decision-making to edge devices. ‎By adopting a MEC structure, IoT applications could be executed ‎locally, on ‎an edge server, different fog nodes, or distant cloud ‎data centers. However, we are ‎often ‎faced with wanting to optimize conflicting criteria such as ‎minimizing energy ‎consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge ‎devices and trying to ‎keep ‎high performance (reducing ‎response time, increasing throughput and service availability) ‎at the same ‎time‎. Achieving one goal may affect the other, making task offloading (TO), ‎resource allocation (RA), and service placement (SP) complex ‎processes. ‎It is a nontrivial multi-objective optimization ‎problem ‎to study the trade-off between conflicting criteria. ‎The paper provides a survey on different TO, SP, and RA recent multi-‎objective optimization (MOO) approaches used in edge computing environments, particularly artificial intelligent (AI) ones, to satisfy various objectives, constraints, and dynamic conditions related to IoT applications‎.

Keywords: mobile edge computing, multi-objective optimization, artificial ‎intelligence ‎approaches, task offloading, resource allocation, ‎ service placement

Procedia PDF Downloads 120
23230 Adopting Data Science and Citizen Science to Explore the Development of African Indigenous Agricultural Knowledge Platform

Authors: Steven Sam, Ximena Schmidt, Hugh Dickinson, Jens Jensen

Abstract:

The goal of this study is to explore the potential of data science and citizen science approaches to develop an interactive, digital, open infrastructure that pulls together African indigenous agriculture and food systems data from multiple sources, making it accessible and reusable for policy, research and practice in modern food production efforts. The World Bank has recognised that African Indigenous Knowledge (AIK) is innovative and unique among local and subsistent smallholder farmers, and it is central to sustainable food production and enhancing biodiversity and natural resources in many poor, rural societies. AIK refers to tacit knowledge held in different languages, cultures and skills passed down from generation to generation by word of mouth. AIK is a key driver of food production, preservation, and consumption for more than 80% of citizens in Africa, and can therefore assist modern efforts of reducing food insecurity and hunger. However, the documentation and dissemination of AIK remain a big challenge confronting librarians and other information professionals in Africa, and there is a risk of losing AIK owing to urban migration, modernisation, land grabbing, and the emergence of relatively small-scale commercial farming businesses. There is also a clear disconnect between the AIK and scientific knowledge and modern efforts for sustainable food production. The study combines data science and citizen science approaches through active community participation to generate and share AIK for facilitating learning and promoting knowledge that is relevant for policy intervention and sustainable food production through a curated digital platform based on FAIR principles. The study adopts key informant interviews along with participatory photo and video elicitation approach, where farmers are given digital devices (mobile phones) to record and document their every practice involving agriculture, food production, processing, and consumption by traditional means. Data collected are analysed using the UK Science and Technology Facilities Council’s proven methodology of citizen science (Zooniverse) and data science. Outcomes are presented in participatory stakeholder workshops, where the researchers outline plans for creating the platform and developing the knowledge sharing standard framework and copyrights agreement. Overall, the study shows that learning from AIK, by investigating what local communities know and have, can improve understanding of food production and consumption, in particular in times of stress or shocks affecting the food systems and communities. Thus, the platform can be useful for local populations, research, and policy-makers, and it could lead to transformative innovation in the food system, creating a fundamental shift in the way the North supports sustainable, modern food production efforts in Africa.

Keywords: Africa indigenous agriculture knowledge, citizen science, data science, sustainable food production, traditional food system

Procedia PDF Downloads 88
23229 Progressing Institutional Quality Assurance and Accreditation of Higher Education Programmes

Authors: Dominique Parrish

Abstract:

Globally, higher education institutions are responsible for the quality assurance and accreditation of their educational programmes (Courses). The primary purpose of these activities is to ensure that the educational standards of the governing higher education authority are met and the quality of the education provided to students is assured. Despite policies and frameworks being established in many countries, to improve the veracity and accountability of quality assurance and accreditation processes, there are reportedly still mistakes, gaps and deficiencies in these processes. An analysis of Australian universities’ quality assurance and accreditation processes noted that significant improvements were needed in managing these processes and ensuring that review recommendations were implemented. It has also been suggested that the following principles are critical for higher education quality assurance and accreditation to be effective and sustainable: academic standards and performance outcomes must be defined, attainable and monitored; those involved in providing the higher education must assume responsibility for the associated quality assurance and accreditation; potential academic risks must be identified and management solutions developed; and the expectations of the public, governments and students should be considered and incorporated into Course enhancements. This phenomenological study, which was conducted in a Faculty of Science, Medicine and Health in an Australian university, sought to systematically and iteratively develop an effective quality assurance and accreditation process that integrated the evidence-based principles of success and promoted meaningful and sustainable change. Qualitative evaluative feedback was gathered, over a period of eleven months (January - November 2014), from faculty staff engaged in the quality assurance and accreditation of forty-eight undergraduate and postgraduate Courses. Reflexive analysis was used to analyse the data and inform ongoing modifications and developments to the assurance and accreditation process as well as the associated supporting resources. The study resulted in the development of a formal quality assurance and accreditation process together with a suite of targeted resources that were identified as critical for success. The research findings also provided some insights into the institutional enablers that were antecedents to successful quality assurance and accreditation processes as well as meaningful change in the educational practices of academics. While longitudinal data will be collected to further assess the value of the assurance and accreditation process on educational quality, early indicators are that there has been a change in the pedagogical perspectives and activities of academic staff and growing momentum to explore opportunities to further enhance and develop Courses. This presentation will explain the formal quality assurance and accreditation process as well as the component parts, which resulted from this study. The targeted resources that were developed will be described, the pertinent factors that contributed to the success of the process will be discussed and early indicators of sustainable academic change as well as suggestions for future research will be outlined.

Keywords: academic standards, quality assurance and accreditation, phenomenological study, process, resources

Procedia PDF Downloads 382
23228 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications

Authors: W. Schellong

Abstract:

Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.

Keywords: crossover technologies, data management, energy analysis, energy efficiency, process control

Procedia PDF Downloads 215
23227 Addressing Primary Care Clinician Burnout in a Value Based Care Setting During the COVID-19 Pandemic

Authors: Robert E. Kenney, Efrain Antunez, Samuel Nodal, Ameer Malik, Richard B. Aguilar

Abstract:

Physician burnout has gained much attention during the COVID pandemic. After-hours workload, HCC coding, HEDIS metrics, and clinical documentation negatively impact career satisfaction. These and other influences have increased the rate of physicians leaving the workforce. In addition, roughly 1% of the entire physician workforce will be retiring earlier than expected based on pre-pandemic trends. The two Medical Specialties with the highest rates of burnout are Family Medicine and Primary Care. With a predicted shortage of primary care physicians looming, the need to address physician burnout is crucial. Commonly reported issues leading to clinician burnout are clerical documentation requirements, increased time working on Electronic Health Records (EHR) after hours, and a decrease in work-life balance. Clinicians experiencing burnout with physical and emotional exhaustion are at an increased likelihood of providing lower quality and less efficient patient care. This may include a lack of suitable clinical documentation, medication reconciliation, clinical assessment, and treatment plans. While the annual baseline turnover rates of physicians hover around 6-7%, the COVID pandemic profoundly disrupted the delivery of healthcare. A report found that 43% of physicians switched jobs during the initial two years of the COVID pandemic (2020 and 2021), tripling the expected average annual rate to 21.5 %/yr. During this same time, an average of 4% and 1.5% of physicians retired or left the workforce for a non-clinical career, respectively. The report notes that 35.2% made career changes for a better work-life balance and another 35% reported the reason as being unhappy with their administration’s response to the pandemic. A physician-led primary care-focused health organization, Cano Health (CH), based out of Florida, sought to preemptively address this problem by implementing several supportive measures. Working with >120 clinics and >280 PCPs from Miami to Tampa and Orlando, managing nearly 120,000 Medicare Advantage lives, CH implemented a number of changes to assist with the clinician’s workload. Supportive services such as after hour and home visits by APRNs, in-clinic care managers, and patient educators were implemented. In 2021, assistive Artificial Intelligence Software (AIS) was integrated into the EHR platform. This AIS converts free text within PDF files into a usable (copy-paste) format facilitating documentation. The software also systematically and chronologically organizes clinical data, including labs, medical records, consultations, diagnostic images, medications, etc., into an easy-to-use organ system or chronic disease state format. This reduced the excess time and documentation burden required to meet payor and CMS guidelines. A clinician Documentation Support team was employed to improve the billing/coding performance. The effects of these newly designed workflow interventions were measured via analysis of clinician turnover from CH’s hiring and termination reporting software. CH’s annualized average clinician turnover rate in 2020 and 2021 were 17.7% and 12.6%, respectively. This represents a 30% relative reduction in turnover rate compared to the reported national average of 21.5%. Retirement rates during both years were 0.1%, demonstrating a relative reduction of >95% compared to the national average (4%). This model successfully promoted the retention of clinicians in a Value-Based Care setting.

Keywords: clinician burnout, COVID-19, value-based care, burnout, clinician retirement

Procedia PDF Downloads 85
23226 The Review of Permanent Downhole Monitoring System

Authors: Jing Hu, Dong Yang

Abstract:

With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.

Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield

Procedia PDF Downloads 86
23225 Wind Speed Forecasting Based on Historical Data Using Modern Prediction Methods in Selected Sites of Geba Catchment, Ethiopia

Authors: Halefom Kidane

Abstract:

This study aims to assess the wind resource potential and characterize the urban area wind patterns in Hawassa City, Ethiopia. The estimation and characterization of wind resources are crucial for sustainable urban planning, renewable energy development, and climate change mitigation strategies. A secondary data collection method was used to carry out the study. The collected data at 2 meters was analyzed statistically and extrapolated to the standard heights of 10-meter and 30-meter heights using the power law equation. The standard deviation method was used to calculate the value of scale and shape factors. From the analysis presented, the maximum and minimum mean daily wind speed at 2 meters in 2016 was 1.33 m/s and 0.05 m/s in 2017, 1.67 m/s and 0.14 m/s in 2018, 1.61m and 0.07 m/s, respectively. The maximum monthly average wind speed of Hawassa City in 2016 at 2 meters was noticed in the month of December, which is around 0.78 m/s, while in 2017, the maximum wind speed was recorded in the month of January with a wind speed magnitude of 0.80 m/s and in 2018 June was maximum speed which is 0.76 m/s. On the other hand, October was the month with the minimum mean wind speed in all years, with a value of 0.47 m/s in 2016,0.47 in 2017 and 0.34 in 2018. The annual mean wind speed was 0.61 m/s in 2016,0.64, m/s in 2017 and 0.57 m/s in 2018 at a height of 2 meters. From extrapolation, the annual mean wind speeds for the years 2016,2017 and 2018 at 10 heights were 1.17 m/s,1.22 m/s, and 1.11 m/s, and at the height of 30 meters, were 3.34m/s,3.78 m/s, and 3.01 m/s respectively/Thus, the site consists mainly primarily classes-I of wind speed even at the extrapolated heights.

Keywords: artificial neural networks, forecasting, min-max normalization, wind speed

Procedia PDF Downloads 80
23224 Environment and Social Management Strategy at Kuwait Integrated Petroleum Industries Company

Authors: Hannan Al-Qanai, Haitham Mustafa, Rajeswaran Sivasankar

Abstract:

Kuwait Integrated Petroleum Industries Company (KIPIC, Company), established in 2016 as a subsidiary to Kuwait Petroleum Corporation (KPC), is responsible for operating and managing the largest grassroots integrated complex for refining, petrochemicals manufacture businesses, and liquefied natural gas import facilities at Al-Zour, Kuwait. KIPIC and its Contractors/sub-contractors employ over 69,000 staff in its current projects at Al-Zour during peak construction activity. KIPIC holds a unique responsibility to the society, which includes all stakeholders, and demonstrates its social commitment in developing an integrated environment & social management system (ESMS) and ensuring sustainability. This paper mainly demonstrates the knowledge on corporate branding from a corporate social responsibility (CSR) perspective and presents the achievements and best practices of KIPIC in the field of CSR and the challenges faced in handling social issues. Moreover, the study is based on qualitative data abstracted from KIPIC Health, Safety, Security & Environment Management System (HSSE MS) procedures, audit reports, the outcome of counseling sessions, national and international laws and regulations, and International Guidelines on Environment and Social Management System (ESMS). KIPIC has committed to caring for the environmental concerns and acting on social as they do on profits and economic growth. The main findings of this paper are that the successful implementation and operationalization of CSR within an organization depends on a simple but stringent process with both top-down and bottom-up commitment.

Keywords: welfare, corporate social responsibility, social management, sustainability

Procedia PDF Downloads 217
23223 Personality Traits and Physical Activity among Staff Personnel of University of Southern Mindanao

Authors: Cheeze Janito, Crisly Dawang

Abstract:

It is important to determine the personality traits that exist in the workplace and the contribution of these personality traits in the staff’s daily work routines; a sedentary lifestyle is harmful to one’s health. This study reports the personality traits of the University of Southern Mindanao, Kabacan, Philippines, non-teaching staff, the physical activity involvement of the non-teaching staff, and the big five personality traits that shape the relationship of university non-teaching staff in engaging physical activities. A quantitative method approach, which comprised a three-part questionnaire, was used to collect the data. The fifty non-teaching staff complete the survey. The results revealed that among the big five personality traits, the university non-teaching staff scored higher in agreeableness as revealed, that there was a commonality among the respondents’ traits of consideration to the feelings of the co-workers in observance to not being rude and vividly display of respect to co-workers and workplace and scored least in the personality trait of neuroticism. The study also reported that the university non-teaching staff's main physical activity was house chores as a prime physical exercise in which respondents reported a physical activity frequency of once to twice a week; thus, this study reported that the respondents are less engaged in doing physical activities. Further, the relationship of personality traits and the physical activity of the non-teaching staff gained a p-value of .596 that indicates there is no significant relationship between the two variables, the personality trait and physical activities. This study recommends the tight promotion of staff in engaging in physical activity of at least one hundred fifty minutes of moderate-intensity activity each week. Added to this, the use of different platforms containing physical exercise literacy and the benefits of physical exercise for the holistic development of the university community.

Keywords: university staff, physical fitness, personality traits, physical activity

Procedia PDF Downloads 198
23222 Correlates of Pedagogic Malpractices

Authors: Chinaza Uleanya, Martin Duma, Bongani Gamede

Abstract:

The research investigated pedagogic malpractices by lecturers in sub-Sahara African universities. The population of the study consisted of undergraduates and lecturers in selected universities in Nigeria and South Africa. Mixed method approach was adopted for data collection. The sample population of the study was 480 undergraduate students and 16 lecturers. Questionnaires with 4 point Likert-scale were administered to 480 respondents while interviews were conducted with 6 lecturers. In addition, the teaching strategies of 10 lecturers were observed. Data analyses indicated that poor work environment demotivates lecturers and makes them involved in pedagogic malpractice which is one of the causes of learning challenges faced by undergraduates. The finding of the study also shows that pedagogic malpractice contributes to the high rate of dropout in sub-Sahara African universities. Based on the results, it was recommended that qualified lecturers be employed and given conducive environments to work.

Keywords: malpractice, pedagogy, pedagogic malpractice, correlates

Procedia PDF Downloads 307