Search results for: fuel properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10330

Search results for: fuel properties

2950 Effect of Temperature and Feed Solution on Microencapsulation of Quercetin by Spray Drying Technique

Authors: S. Lekhavat, U. Srimongkoluk, P. Ratanachamnong, G. Laungsopapun

Abstract:

Quercetin was encapsulated with whey protein and high methoxyl pectin by spray drying technique. Feed solution, consisting of 0.1875 0.125 and 0.0625 % w/w quercetin, respectively, was prepared and then sprays at outlet temperature of 70, 80 and 90 °C. Quercetin contents either in feed solution or in spray dried powder were determined by HPLC technique. Physicochemical properties such as viscosity and total soluble solid of feed solution as well as moisture content and water activity of spray dried powder were examined. Particle morphology was imaged using scanning electron microscope. The results showed that feed solution has total soluble solid and viscosity in range of 1.73-5.60 ºBrix and 2.58-8.15 cP, in that order. After spray drying, the moisture content and water activity value of powder are in range of 0.58-2.72 % and 0.18-0.31, respectively. Quercetin content in dried sample increased along with outlet drying temperature but decreased when total soluble solid increased. It was shown that particles are likely to shrivel when spray drying at high temperature. The suggested conditions for encapsulation of quercetin are feed solution with 0.0625 % (w/w) quercetin and spray drying at drying outlet temperature of 90°C.

Keywords: drying temperature, particle morphology, spray drying, quercetin

Procedia PDF Downloads 260
2949 Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity

Authors: Mohammed Cherifi, Abderrahmane Benbrik, Siham Laouar-Meftah, Denis Lemonnier

Abstract:

The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed.

Keywords: opposed mixed convection, non-gray-gas radiation, two-sided lid-driven cavity, discrete ordinate method, SLW model

Procedia PDF Downloads 319
2948 Tool Wear Analysis in 3D Manufactured Ti6AI4V

Authors: David Downey

Abstract:

With the introduction of additive manufacturing (3D printing) to produce titanium (Ti6Al4V) components in the medical/aerospace and automotive industries, intricate geometries can be produced with virtually complete design freedom. However, the consideration of microstructural anisotropy resulting from the additive manufacturing process becomes necessary due to this design flexibility and the need to print a geometric shape that can consist of numerous angles, radii, and swept surfaces. A femoral knee implant serves as an example of a 3D-printed near-net-shaped product. The mechanical properties of the printed components, and consequently, their machinability, are affected by microstructural anisotropy. Currently, finish-machining operations performed on titanium printed parts using selective laser melting (SLM) utilize the same cutting tools employed for processing wrought titanium components. Cutting forces for components manufactured through SLM can be up to 70% higher than those for their wrought counterparts made of Ti6Al4V. Moreover, temperatures at the cutting interface of 3D printed material can surpass those of wrought titanium, leading to significant tool wear. Although the criteria for tool wear may be similar for both 3D printed and wrought materials, the rate of wear during the machining process may differ. The impact of these issues on the choice of cutting tool material and tool lifetimes will be discussed.

Keywords: additive manufacturing, build orientation, microstructural anisotropy, printed titanium Ti6Al4V, tool wear

Procedia PDF Downloads 91
2947 Recovery and Εncapsulation of Μarine Derived Antifouling Agents

Authors: Marina Stramarkou, Sofia Papadaki, Maria Kaloupi, Ioannis Batzakas

Abstract:

Biofouling is a complex problem of the aquaculture industry, as it reduces the efficiency of the equipment and causes significant losses of cultured organisms. Nowadays, the current antifouling methods are proved to be labor intensive, have limited lifetime and use toxic substances that result in fish mortality. Several species of marine algae produce a wide variety of biogenic compounds with antibacterial and antifouling properties, which are effective in the prevention and control of biofouling and can be incorporated in antifouling coatings. In the present work, Fucus spiralis, a species of macro algae, and Chlorella vulgaris, a well-known species of microalgae, were used for the isolation and recovery of bioactive compounds, belonging to groups of fatty acids, lipopeptides and amides. The recovery of the compounds was achieved through the application of the ultrasound- assisted extraction, an environmentally friendly method, using green, non-toxic solvents. Moreover, the coating of the antifouling agents was done by innovative encapsulation and coating methods, such as electro-hydrodynamic process. For the encapsulation of the bioactive compounds natural matrices were used, such as polysaccharides and proteins. Water extracts that were incorporated in protein matrices were considered the most efficient antifouling coating.

Keywords: algae, electrospinning, fatty acids, ultrasound-assisted extraction

Procedia PDF Downloads 342
2946 Integrated ERT and Magnetic Surveys in a Mineralization Zone in Erkowit, Red Sea State, Sudan

Authors: K. M. Kheiralla, M. A. Ali, M. Y. Abdelgalil, N. E. Mohamed, G. Boutsis

Abstract:

The present study focus on integrated geophysical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. The study designates that correlation of magnetic and ERT anomalies with lithology are extremely useful in mineral exploration due to variations in some specific physical properties of rocks.

Keywords: ERT, magnetic, mineralization, Red Sea, Sudan

Procedia PDF Downloads 389
2945 The State, Class and the Challenges of National Development in Nigeria since 1914

Authors: Eriba Christopher Inyila, Godwin Egena Oga

Abstract:

Statecraft appears to be one of the greatest cultural achievements in the history of man’s civilization. The state itself is often portrayed as the supreme community of the citizen’s collective goodness and will. However, history experience reveals that the state has often been held in captivity permanently in the hand of the political class to almost a total exclusion of the labouring class of workers, artisans and peasants. Consequently, the hallmark of the Nigerian state and society in contemporary era is state of permanent crisis characterized by poverty, unemployment and profound insecurity. A lasting solution to this state of anomie is often touted in terms of ethnic, religious and regional integration which border on non-material perception of realities. A neglected aspect of the approach to the study of recurrent problems in contemporary is the materialist conception of realties through class perspectives of the society. The cutting edge of the approach is found in the attempt to reconcile the contradiction between the productive forces and the social relation of production. In other words, the contemporary state is skewed in favour of ownership of properties/commanding height of economy predominantly in the hands of the few monopoly companies to the total exclusion of majority of Nigerian population classified as peasant, workers and artisan. The lopsided situation creates economic and social disequilibria.

Keywords: national development, class, the state, Nigeria

Procedia PDF Downloads 382
2944 The Influence of Lactic Acid Bacteria Combinations on Wheat Bread Quality

Authors: Vita Lele, Vadims Bartkevics, Iveta Pugajeva, Paulina Zavistanaviciute, Daiva Zadeike, Grazina Juodeikiene, Elena Bartkiene

Abstract:

Different combinations of appropriate technological properties showing lactic acid bacteria (Pediococcus pentosaceus VLGL183 and Enterococcus pseudoavium VLGL 234, Lactobacillus plantarum VLGL135 and Pediococcus pentosaceus VLGL183, Pediococcus pentosaceus VLGL183 and Lactobacillus brevis VLGL173, Pediococcus pentosaceus VLGL183 and Leuconostoc mesenteroides VLGL242, Pediococcus pentosaceus VLGL183 and Lactobacillus curvatus VLGL51, Lactobacillus plantarum VLGL135 and Lactobacillus curvatus VLGL51) for wheat sourdough production were used, and the influence of different sourdoughs on wheat bread quality parameters was evaluated. The highest overall acceptability (135.8 mm in 140 mm hedonic scale) of the bread produced with L. plantarum VLGL135 and P. pentosaceus VLGL183 sourdough was established. Also, bread produced with above mention sourdough, has the highest specific volume, shape coefficient, moisture content, and porosity, 3.40 ml /g; 2.59, 33.7 %, and 76.6 %, respectively. It was found, that the used sourdoughs reduce acrylamide content in bread (from 29.5 to 67.2%), just, the isolated lactic acid bacteria strains could be recommended for higher quality and safer bread production.

Keywords: acrylamide, lactic acid bacteria, quality, sourdough, wheat bread

Procedia PDF Downloads 174
2943 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment

Authors: B. A. Mir, Asim Malik

Abstract:

Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.

Keywords: bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization

Procedia PDF Downloads 259
2942 Strategies for Drought Adpatation and Mitigation via Wastewater Management

Authors: Simrat Kaur, Fatema Diwan, Brad Reddersen

Abstract:

The unsustainable and injudicious use of natural renewable resources beyond the self-replenishment limits of our planet has proved catastrophic. Most of the Earth’s resources, including land, water, minerals, and biodiversity, have been overexploited. Owing to this, there is a steep rise in the global events of natural calamities of contrasting nature, such as torrential rains, storms, heat waves, rising sea levels, and megadroughts. These are all interconnected through common elements, namely oceanic currents and land’s the green cover. The deforestation fueled by the ‘economic elites’ or the global players have already cleared massive forests and ecological biomes in every region of the globe, including the Amazon. These were the natural carbon sinks prevailing and performing CO2 sequestration for millions of years. The forest biomes have been turned into mono cultivation farms to produce feedstock crops such as soybean, maize, and sugarcane; which are one of the biggest green house gas emitters. Such unsustainable agriculture practices only provide feedstock for livestock and food processing industries with huge carbon and water footprints. These are two main factors that have ‘cause and effect’ relationships in the context of climate change. In contrast to organic and sustainable farming, the mono-cultivation practices to produce food, fuel, and feedstock using chemicals devoid of the soil of its fertility, abstract surface, and ground waters beyond the limits of replenishment, emit green house gases, and destroy biodiversity. There are numerous cases across the planet where due to overuse; the levels of surface water reservoir such as the Lake Mead in Southwestern USA and ground water such as in Punjab, India, have deeply shrunk. Unlike the rain fed food production system on which the poor communities of the world relies; the blue water (surface and ground water) dependent mono-cropping for industrial and processed food create water deficit which put the burden on the domestic users. Excessive abstraction of both surface and ground waters for high water demanding feedstock (soybean, maize, sugarcane), cereal crops (wheat, rice), and cash crops (cotton) have a dual and synergistic impact on the global green house gas emissions and prevalence of megadroughts. Both these factors have elevated global temperatures, which caused cascading events such as soil water deficits, flash fires, and unprecedented burning of the woods, creating megafires in multiple continents, namely USA, South America, Europe, and Australia. Therefore, it is imperative to reduce the green and blue water footprints of agriculture and industrial sectors through recycling of black and gray waters. This paper explores various opportunities for successful implementation of wastewater management for drought preparedness in high risk communities.

Keywords: wastewater, drought, biodiversity, water footprint, nutrient recovery, algae

Procedia PDF Downloads 100
2941 Biomedical Application of Green Biosynthesis Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract

Authors: Farideh Namvar, Rosfarizan Mohamed

Abstract:

In the field of nanotechnology, the use of various biological units instead of toxic chemicals for the reduction and stabilization of nanoparticles, has received extensive attention. This use of biological entities to create nanoparticles has designated as “Green” synthesis and it is considered to be far more beneficial due to being economical, eco-friendly and applicable for large-scale synthesis as it operates on low pressure, less input of energy and low temperatures. The lack of toxic byproducts and consequent decrease in degradation of the product renders this technique more preferable over physical and classical chemical methods. The variety of biomass having reduction properties to produce nanoparticles makes them an ideal candidate for fabrication. Metal oxide nanoparticles have been said to represent a "fundamental cornerstone of nanoscience and nanotechnology" due to their variety of properties and potential applications. However, this also provides evidence of the fact that metal oxides include many diverse types of nanoparticles with large differences in chemical composition and behaviour. In this study, iron oxide nanoparticles (Fe3O4-NPs) were synthesized using a rapid, single step and completely green biosynthetic method by reduction of ferric chloride solution with brown seaweed (Sargassum muticum) water extract containing polysaccharides as a main factor which acts as reducing agent and efficient stabilizer. Antimicrobial activity against six microorganisms was tested using well diffusion method. The resulting S-IONPs are crystalline in nature, with a cubic shape. The average particle diameter, as determined by TEM, was found to be 18.01 nm. The S-IONPs were efficiently inhibited the growth of Listeria monocytogenes, Escherichia coli and Candida species. Our favorable results suggest that S-IONPs could be a promising candidate for development of future antimicrobial therapies. The nature of biosynthesis and the therapeutic potential by S-IONPs could pave the way for further research on design of green synthesis therapeutic agents, particularly nanomedicine, to deal with treatment of infections. Further studies are needed to fully characterize the toxicity and the mechanisms involved with the antimicrobial activity of these particles. Antioxidant activity of S-IONPs synthesized by green method was measured by ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (IC50= 1000µg) radical scavenging activity. Also, with the increasing concentration of S-IONPs, catalase gene expression compared to control gene GAPDH increased. For anti-angiogenesis study the Ross fertilized eggs were divided into four groups; the control and three experimental groups. The gelatin sponges containing albumin were placed on the chorioalantoic membrane and soaked with different concentrations of S-IONPs. All the cases were photographed using a photo stereomicroscope. The number and the lengths of the vessels were measured using Image J software. The crown rump (CR) and weight of the embryo were also recorded. According to the data analysis, the number and length of the blood vessels, as well as the CR and weight of the embryos reduced significantly compared to the control (p < 0.05), dose dependently. The total hemoglobin was quantified as an indicator of the blood vessel formation, and in the treated samples decreased, which showed its inhibitory effect on angiogenesis.

Keywords: anti-angiogenesis, antimicrobial, antioxidant, biosynthesis, iron oxide (fe3o4) nanoparticles, sargassum muticum, seaweed

Procedia PDF Downloads 314
2940 Electrochemical Detection of Polycyclic Aromatic Hydrocarbons in Urban Air by Exfoliated Graphite Based Electrode

Authors: A. Sacko, H. Nyoni, T. A. M. Msagati, B. Ntsendwana

Abstract:

Carbon based materials to target environmental pollutants have become increasingly recognized in science. Electrochemical methods using carbon based materials are notable methods for high sensitive detection of organic pollutants in air. It is therefore in this light that exfoliated graphite electrode was fabricated for electrochemical analysis of PAHs in urban atmospheric air. The electrochemical properties of the graphite electrode were studied using CV and EIS in the presence of acetate buffer supporting electrolyte with 2 Mm ferricyanide as a redox probe. The graphite electrode showed enhanced current response which confirms facile kinetics and enhanced sensitivity. However, the peak to peak (DE) separation increased as a function of scan rate. The EIS showed a high charger transfer resistance. The detection phenanthrene on the exfoliated graphite was studied in the presence of acetate buffer solution at PH 3.5 using DPV. The oxidation peak of phenanthrene was observed at 0.4 V. Under optimized conditions (supporting electrolyte, pH, deposition time, etc.). The detection limit observed was at 5x 10⁻⁸ M. Thus the results demonstrate with further optimization and modification lower concentration detection can be achieved.

Keywords: electrochemical detection, exfoliated graphite, PAHs (polycyclic aromatic hydrocarbons), urban air

Procedia PDF Downloads 204
2939 Using of TFC Polysulfone Electrospun Nanofiber Mats in Oil-Water Separation

Authors: Nasser A. M. Barakat

Abstract:

Membrane technology is the most promising process for oil-water separation operation if the hydrophilicity, fouling and reusability properties could be improved. In this study, novel effective and reusable membrane for oil-water separation process is introduced based on modification of polysulfone (PSF) electrospun nanofiber mats. The modification process was achieved by incorporation of NaOH nanoparticles inside the PSF nanofibers, and formation of a thin layer from a polyamide polymer on the surface of the electrospun mat. Typically, solutions composed of PSF and NaOH (twelve solutions were prepared based on different PSF concentrations; 15, 18 and 20 wt%, and various NaOH content; 1.5, 1.7 and 2.5 wt%) have been electrospun, then the dried nanofiber mats were treated by m-phenylenediamine and 1,3,5-benzenetricarbonyl chloride to form polyamide thin layer on the surface of the mats. The results indicated that incorporation of NaOH and the formed polyamide could decrease the water contact angle from ~ 130˚ to 13˚ for the nanofiber mats obtained from 20 wt% PSF solutions containing 1.7 wt% sodium hydroxide powders. Interestingly, the membrane having the lowest contact angle could separate oil-water mixture for three successive cycles and 100% removal of the oil with relatively high water flux; 5.5 m3/m2.day. Overall, simplicity of the manufacturing technique, and effectiveness and reusability of the produced nanofiber mats open new avenue for the introduced as promising membranes for the oil-water separation process.

Keywords: electrospinning, oil-water separation, hydrophilic membrane, nanofibers

Procedia PDF Downloads 341
2938 Nature of a Supercritical Mesophase

Authors: Hamza Javar Magnier, Leslie V. Woodcock

Abstract:

It has been reported that at temperatures above the critical there is no “continuity of liquid and gas”, as originally hypothesized by van der Waals. Rather, both gas and liquid phases, with characteristic properties as such, extend to supercritical temperatures. Each phase is bounded by the locus of a percolation transition, i.e. a higher-order thermodynamic phase change associated with percolation of gas clusters in a large void, or liquid interstitial vacancies in a large cluster. Between these two-phase bounds, it is reported there exists a mesophase that resembles an otherwise homogeneous dispersion of gas micro-bubbles in liquid (foam) and a dispersion of liquid micro-droplets in gas (mist). Such a colloidal-like state of a pure one-component fluid represents a hitherto unchartered equilibrium state of matter besides pure solid, liquid or gas. Here we provide compelling evidence, from molecular dynamics (MD) simulations, for the existence of this supercritical mesophase and its colloidal nature. We report preliminary results of computer simulations for a model fluid using a simplistic representation of atoms or molecules, i.e. a hard-core repulsion with an attraction so short that the atoms are referred to as “adhesive spheres”. Molecular clusters, and hence percolation transitions, are unambiguously defined. Graphics of color-coded clusters show colloidal characteristics of the supercritical mesophase.

Keywords: critical phenomena, mesophase, supercritical, square-well, critical parameters

Procedia PDF Downloads 426
2937 A Study on Shock Formation over a Transonic Aerofoil

Authors: M. Fowsia, Dominic Xavier Fernando, Vinojitha, Rahamath Juliyana

Abstract:

Aerofoil is a primary element to be designed during the initial phase of creating any new aircraft. It is the component that forms the cross-section of the wing. The wing is used to produce lift force that balances the weight which is acting downwards. The lift force is created due to pressure difference over the top and bottom surface which is caused due to velocity variation. At sub-sonic velocities, for a real fluid, we obtain a smooth flow of air over both the surfaces. In this era of high speed travel, commercial aircraft that can travel faster than speed of sound barrier is required. However transonic velocities cause the formation of shock waves which can cause flow separation over the top and bottom surfaces. In the transonic range, shock waves move across the top and bottom surfaces of the aerofoil, until both the shock waves merge into a single shock wave that is formed near the leading edge of theaerofoil. In this paper, a transonic aerofoil is designed and its aerodynamic properties at different velocities in the Transonic range (M = 0.8; 0.9; 1; 1.1; 1.2) are studied with the help of CFD. The Pressure and Velocity distributions over the top and bottom surfaces of aerofoil are studied and the variations of shock patterns, at different velocities, are analyzed. The analysis can be used to determine the effect of drag divergence on the lift created by the aerofoil.

Keywords: transonic aerofoil, cfd, drag divergence, shock formation, viscous flow

Procedia PDF Downloads 530
2936 Surface Passivation of Multicrystalline Silicon Solar Cell via Combination of LiBr/Porous Silicon and Grain Boundaies Grooving

Authors: Dimassi Wissem

Abstract:

In this work, we investigate the effect of combination between the porous silicon (PS) layer passivized with Lithium Bromide (LiBr) and grooving of grain boundaries (GB) in multi crystalline silicon. The grain boundaries were grooved in order to reduce the area of these highly recombining regions. Using optimized conditions, grooved GB's enable deep phosphorus diffusion and deep metallic contacts. We have evaluated the effects of LiBr on the surface properties of porous silicon on the performance of silicon solar cells. The results show a significant improvement of the internal quantum efficiency, which is strongly related to the photo-generated current. We have also shown a reduction of the surface recombination velocity and an improvement of the diffusion length after the LiBr process. As a result, the I–V characteristics under the dark and AM1.5 illumination were improved. It was also observed a reduction of the GB recombination velocity, which was deduced from light-beam-induced-current (LBIC) measurements. Such grooving in multi crystalline silicon enables passivization of GB-related defects. These results are discussed and compared to solar cells based on untreated multi crystalline silicon wafers.

Keywords: Multicrystalline silicon, LiBr, porous silicon, passivation

Procedia PDF Downloads 396
2935 Failure Analysis and Verification Using an Integrated Method for Automotive Electric/Electronic Systems

Authors: Lei Chen, Jian Jiao, Tingdi Zhao

Abstract:

Failures of automotive electric/electronic systems, which are universally considered to be safety-critical and software-intensive, may cause catastrophic accidents. Analysis and verification of failures in these kinds of systems is a big challenge with increasing system complexity. Model-checking is often employed to allow formal verification by ensuring that the system model conforms to specified safety properties. The system-level effects of failures are established, and the effects on system behavior are observed through the formal verification. A hazard analysis technique, called Systems-Theoretic Process Analysis, is capable of identifying design flaws which may cause potential failure hazardous, including software and system design errors and unsafe interactions among multiple system components. This paper provides a concept on how to use model-checking integrated with Systems-Theoretic Process Analysis to perform failure analysis and verification of automotive electric/electronic systems. As a result, safety requirements are optimized, and failure propagation paths are found. Finally, an automotive electric/electronic system case study is used to verify the effectiveness and practicability of the method.

Keywords: failure analysis and verification, model checking, system-theoretic process analysis, automotive electric/electronic system

Procedia PDF Downloads 121
2934 Performance Improvement of SBR Polymer Concrete Used in Construction of Rigid Pavement Highway

Authors: Mohammed Abbas Al-Jumaili

Abstract:

There are some studies which have been conducted in resent years to investigate the possibility of producing high performance polymer concrete. However, despite the great important of this subject, very limited amount of literature is available about the strength and performance of this type of concrete in case using in rigid pavement highway. In this study, the possibility of producing high performance polymer concrete by using Styrene Butadiene Rubber (SBR) emulsion with various (SBR) percents of 5,10 ,15, and 20 % by weight of cement has been investigated. The compressive, splitting tensile and flexural strengths and dynamic modulus of elasticity tests were conducted after age of 7 and 28 days for control without polymer and SBR concretes. A total of (30) cubes, (30) cylinders and (30) prisms were prepared using different types of concrete mixes. The AASHTO guide-1993 method was used to determine slab concrete thickness of rigid pavement highway in case of using various SBR polymer concrete mixture types. The research results indicate that the use of 10% SBR by weight of cement leads to produce high performance concrete especially with regard to mechanical properties and structural relative to corresponding control concrete.

Keywords: rigid pavement highway, styrene–butadiene rubber (SBR) latex, compressive test, splitting tensile test, flexural test and dynamic modulus of elasticity test

Procedia PDF Downloads 325
2933 Bio-Hub Ecosystems: Investment Risk Analysis Using Monte Carlo Techno-Economic Analysis

Authors: Kimberly Samaha

Abstract:

In order to attract new types of investors into the emerging Bio-Economy, new methodologies to analyze investment risk are needed. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. This study modeled the economics and risk strategies of cradle-to-cradle linkages to incorporate the value-chain effects on capital/operational expenditures and investment risk reductions using a proprietary techno-economic model that incorporates investment risk scenarios utilizing the Monte Carlo methodology. The study calculated the sequential increases in profitability for each additional co-host on an operating forestry-based biomass energy plant in West Enfield, Maine. Phase I starts with the base-line of forestry biomass to electricity only and was built up in stages to include co-hosts of a greenhouse and a land-based shrimp farm. Phase I incorporates CO2 and heat waste streams from the operating power plant in an analysis of lowering and stabilizing the operating costs of the agriculture and aquaculture co-hosts. Phase II analysis incorporated a jet-fuel biorefinery and its secondary slip-stream of biochar which would be developed into two additional bio-products: 1) A soil amendment compost for agriculture and 2) A biochar effluent filter for the aquaculture. The second part of the study applied the Monte Carlo risk methodology to illustrate how co-location derisks investment in an integrated Bio-Hub versus individual investments in stand-alone projects of energy, agriculture or aquaculture. The analyzed scenarios compared reductions in both Capital and Operating Expenditures, which stabilizes profits and reduces the investment risk associated with projects in energy, agriculture, and aquaculture. The major findings of this techno-economic modeling using the Monte Carlo technique resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. In 2018, the site was designated as an economic opportunity zone as part of a Federal Program, which allows for Capital Gains tax benefits for investments on the site. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. The Bio-hub Ecosystems techno-economic analysis model is a critical model to expedite new standards for investments in circular zero-waste projects. Profitable projects will expedite adoption and advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable Bio-Economy paradigm that supports local and rural communities.

Keywords: bio-economy, investment risk, circular design, economic modelling

Procedia PDF Downloads 101
2932 Development of a Scale for Evaluating the Efficacy of Vacationing

Authors: Ju Yeon Lee, Seol Ah Oh, Hong il Kim, Hae Yong Do, Sung Won Choi

Abstract:

The purpose of this study was to develop a Well-being and Moments Scale (WAMS) for evaluating the efficacy of ‘vacationing’ as a form of mental health recuperation. ‘Vacationing’ is defined as a going outside one’s usual environment to seek refreshment and relief from one’s daily life. To develop WAMS, we followed recommended procedures for scale development, including reviewing related studies, conducting focus group interviews to elucidate the need for this assessment area, and modifying items based on expert opinion. Through this process, we developed the WAMS. The psychometric properties of the WAMS were then tested in two separate samples. Exploratory factor analysis (EFA) was conducted using 1.41 participants (mean age = 30.45 years; range: 20-50 years) to identify the underlying 3-factor structure of 'Positive Emotions', 'Life Satisfaction' and 'Self-Confidence.' The 26 items retained based on the EFA procedures were associated with excellent reliability (i.e., α = 0.93). Confirmatory factor analysis was then conducted using 200 different participants (mean age = 29.51 years; range: 20-50 years) and revealed good model fit for our hypothesized 3-factor model. Convergent validity tests also revealed correlations with other scales in the expected direction and range. Study limitations as well as the importance and utility of WMAS are also discussed.

Keywords: vacationing, positive affect, life satisfaction, self-confidence, WAMS

Procedia PDF Downloads 339
2931 New Challenge: Reduction of Aflatoxin M1 Residues in Cow’s Milk by MilBond Dietary Hydrated Sodium Calcium Aluminosilicate (HSCAS) and Its Effect on Milk Composition

Authors: A. Aly Salwa, H. Diekmann, S. Hafiz Ragaa, DG Abo Elhassan

Abstract:

This study was aimed to evaluate the effect of Milbond (HSCAS) on aflatoxin M1 in artificially contaminated cows milk. Chemisorption compounds used in this experiment were MIlBond, hydrated sodium calcium aluminosilicate (HSCAS). Raw cow milk were artificially exposed to aflatoxin M1 in a concentration of 100 ppb) with addition of Nilbond at 0.5, 1, 2 and 3 % at room temperature for 30 minutes. Aflatoxin M1 was decreased more than 95% by HSCAS at 2%. Milk composition consist of protein, fat, lactose, solid non fat and total solid were affected by addition of some adsorbents were not significantly affected (p 0.05). Tthis method did not involve degrading the toxin, milk may be free from toxin degradation products and is safe for consumption. In addition, the added material may be easily separated from milk after the substance adsorbs the toxin. Thus, this method should be developed by further researches for determining effects of these compounds on functional properties of milk. The ability of hydrated sodium calcium aluminosilicate to prevent or reduce the level of aflatoxin MI residues in milk is critically needed. This finding has important implications, because milk is ultimately consumed by humans and animals, and the reduction of aflatoxin contamination in the milk could have an important impact on their health.

Keywords: aflatoxin M1, Hydrated sodium calcium aluminium silicate, detoxification, raw cow milk

Procedia PDF Downloads 436
2930 Correlation of Material Mechanical Characteristics Obtained by Means of Standardized and Miniature Test Specimens

Authors: Vaclav Mentl, P. Zlabek, J. Volak

Abstract:

New methods of mechanical testing were developed recently that are based on making use of miniature test specimens (e.g. Small Punch Test). The most important advantage of these method is the nearly non-destructive withdrawal of test material and small size of test specimen what is interesting in cases of remaining lifetime assessment when a sufficient volume of the representative material cannot be withdrawn of the component in question. In opposite, the most important disadvantage of such methods stems from the necessity to correlate test results with the results of standardised test procedures and to build up a database of material data in service. The correlations among the miniature test specimen data and the results of standardised tests are necessary. The paper describes the results of fatigue tests performed on miniature tests specimens in comparison with traditional fatigue tests for several steels applied in power producing industry. Special miniature test specimens fixtures were designed and manufactured for the purposes of fatigue testing at the Zwick/Roell 10HPF5100 testing machine. The miniature test specimens were produced of the traditional test specimens. Seven different steels were fatigue loaded (R = 0.1) at room temperature.

Keywords: mechanical properties, miniature test specimens, correlations, small punch test, micro-tensile test, mini-charpy impact test

Procedia PDF Downloads 538
2929 Child Soldier in Africa: A Big Challenge to Human Right

Authors: Adegboyega Adeolapo Ola, Gerelene Jagganath

Abstract:

One of the greatest challenges of human right in the world, especially African states is the use of child soldiers in armed conflict, constituting a major source of destruction of lives and properties. Mostly, they are in developing countries with the situation in Sub-Saharan Africa, the abduction and employment of children as soldiers is a form of exploitative labour that is tantamount to slavery. Since the end of cold war, Child soldier has increased in Africa countries like Angola, Liberia, Sierra Leone and Uganda. This study examines the main cause of the recruitment and use of child soldiers and its challenges to human right. It further assesses the role of international regional bodies and various governments in curbing child soldiers with a view to proffer suggestions on how to address some of the resultant threat of human right. The study posits that the control of small arms and light weapons is essential in curtailing the spread of child soldier and abuse of human right. This hopefully should result in the sustainability of human/child right in African continent. It is a recommendation of this study that, in order to sustain human right in the region, all Africa leaders, government and regional bodies; such as African Union, Economic Community of West African States, South African Development Community among others, should cooperate and work together to address the issue of illicit small arms, which could eventually lead to child soldier.

Keywords: arms control, child soldier, human right, small arms

Procedia PDF Downloads 207
2928 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling

Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger

Abstract:

Fused deposition modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using the 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics, which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results, it was observed that increasing the chamber temperature from 25°C to 75°C lead to a decrease of 1.5% residual stress, while decreasing bed temperature from 100°C to 60°C, resulted in a 33% increase in residual stress and a significant rise of 138% in warpage. The simulated warpage data is validated by comparing it with the measured warpage values of the samples using 3D scanning.

Keywords: finite element analysis, fused deposition modelling, residual stress, warpage

Procedia PDF Downloads 187
2927 Synthesis, Characterization and Applications of Some Selected Dye-Functionalized P and N-Type Nanoparticles in Dye Sensitized Solar Cells

Authors: Arifa Batool, Ghulam Hussain Bhatti, Syed Mujtaba Shah

Abstract:

Inorganic n-type (TiO2, CdO) and p-type (NiO, CuO) metal oxide nanoparticles were synthesized by a facile wet chemical method at room temperature. The morphological, compositional, structural and optical properties were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy, FT-IR, XRD analysis, UV/Visible and fluorescence spectroscopy. All semiconducting nanoparticles were photosensitized with Ru (II) based Z907 dye in ethanol solvent by grafting. Grafting of dye on the surface of nanoparticles was confirmed by UV/Visible and FT-IR spectroscopy. The synthesized photo-active nanohybrid was thoroughly blended with P3HT, a solid electrolyte and I-V measurements under solar stimulated radiations 1000 W/m2 (AM 1.5) were recorded. Maximum incident photon to current conversion efficiency (IPCE) of 0.9% was achieved with dye functionalized Z907-TiO2 hybrid, IPCE of 0.72% was achieved with bulk-heterojunction of TiO2-Z907-CuO and IPCE of 0.68% was attained with nanocomposite of TiO2-CdO. TiO2 based Solar cells have maximum Jscvalue i.e.4.63 mA/cm2. Dye-functionalized TiO2-based photovoltaic devices were found more efficient than the reference device but the morphology of the device was a major check in progress.

Keywords: solar cell, bulk heterojunction, nanocomposites, photosensitization, dye sensitized solar cell

Procedia PDF Downloads 284
2926 Using OMICs Approaches to Investigate Venomic Insights into the Spider Web Silk

Authors: Franciele G. Esteves, Jose R. A. dos Santos-Pinto, Caroline L. de Souza, Mario S. Palma

Abstract:

Orb-weaving spiders use a very strong, stickiness, and elastic web to catch the prey. These web properties would be enough for the entrapment of prey; however, these spiders may be hiding venomous secrets on the web, which are being revealed now. Here we provide strong proteome, peptidome, and transcriptomic evidence for the presence of toxic components on the web silk from Nephila clavipes. Our scientific outcomes revealed, both in the web silk and in the silk-producing glands, a wide diversity of toxins/neurotoxins, defensins, and proteolytic enzymes. These toxins/neurotoxins are similar to toxins isolated from animal venoms, such as Sphigomyelinase D, Latrotoxins, Zodatoxins, Ctenitoxin Pn and Pk, Agatoxins and Theraphotoxin. Moreover, the insect-toxicity results with the web silk crude extract demonstrated that these toxic components can be lethal and/or cause paralytic effects to the prey. Therefore, through OMICs approaches, the results presented until now may contribute to a better understanding of the chemical and ecological interaction of these compounds in insect-prey capture by spider web N. clavipes, demonstrating that the web is not only a simple mechanical tool but has a chemical-active involvement in prey capture. Moreover, the results can also contribute to future studies of possible development of a selective insecticide or even in possible pharmacological applications.

Keywords: web silk toxins, silk-produncing glands, de novo transcriptome assembly, LCMS-based proteomics

Procedia PDF Downloads 135
2925 Synthesis, Density Functional Theory (DFT) and Antibacterial Studies of Highly Functionalized Novel Spiropyrrolidine 4-Quinolone-3-Carboxylic Acids Derived from 6-Acetyl Quinolone

Authors: Thangaraj Arasakumar, Athar Ata, Palathurai Subramaniam Mohan

Abstract:

A series of novel 4-quinolone-3-carboxylic acid grafted spiropyrrolidines as new type of antibacterial agents were synthesized via multicomponent 1,3-dipolar cycloaddition reaction of an azomethine ylides with a newly prepared (E)-4-oxo-6-(3-phenyl-acryloyl)-1,4-dihydro-quinoline-3-carboxylic acids in high regioselectivity with good yields. The structure of cycloadduct characterized by FT IR, mass, 1H, 13C, 2D NMR techniques and elemental analysis. Structure and spectrometry of compound 8a has been investigated theoretically by using HF and DFT approach at B3LYP, M05-2x/6-31G* levels of theories. The optimized geometries and calculated vibrational frequencies are evaluated via comparison with experimental values. A good agreement is found between the measured and calculated values. The DFT studies support the molecular mechanism of this cycloaddition reaction and determine the molecular electrostatic potential and thermodynamic properties. Furthermore, the antibacterial activities of synthesized compounds were evaluated against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) and Gram-negative bacteria strains (Escherichia coli, Klebsiella pneumoniae). Among 21 compounds screened, 8f and 8p were found to be more active against tested bacteria.

Keywords: antibacterial activity, azomethine ylide, DFT calculation, spirooxindole

Procedia PDF Downloads 215
2924 The Role of Substrate-Nozzle Distance in Atomic Nebulizers in the Photoelectrochemical Water Splitting Performance of ZnO Nanorods

Authors: Lukman Andi Priyatna, Vivi Fauzia, Ferry Anggoro Ardy Nugroho

Abstract:

Zinc oxide (ZnO) based nanostructures are ubiquitous in applications due to their favourable physicochemical properties and ease of fabrication. One widely accessible route to synthesize ZnO nanorods, which show promising performance in e.g. photoelectrochemical water splitting, is hydrothermal growth of ZnO seeds, obtained via an atomic nebulizer. Despite its popularity, study on the impact of the synthesis parameters in atomic nebulizer on the performance of the synthesized ZnO nanostructures is lacking. This study presents an investigation on the impact of the distance between substrates and atomic nebulizer nozzle on the photoelectrochemical water splitting performance of ZnO nanorods. Adjusting such a distance reveals an optimum separation which results in nanostructures with highest absorbance. Such high absorbance translates into improved photoelectrochemistry, as evaluated by higher photocurrent density, from 0.11 mA/cm² to 0.14 mA/cm² and higher Applied Bias Photon-to-Current Efficiency (ABPE) from 0.12% to 0.14%. These results underscore the importance of understanding and optimizing the experimental parameters during ZnO nanostructure synthesis. In a broader context, it advertises the need to carefully assess the corresponding fabrication parameters to optimize the performance of the obtained nanostructures.

Keywords: atomic nebulizer, photocurrent density, photoelectrochemical water splitting, ZnO nanorods

Procedia PDF Downloads 31
2923 Nanobiomaterials: Revolutionizing Drug Delivery and Tissue Engineering for Advanced Therapeutic Applications

Authors: Mohammad Hamed Asosheh

Abstract:

The development of nanobiomaterials has opened new avenues in the field of biomedical engineering, offering unparalleled possibilities for advanced therapeutic applications. This study explores the synthesis and characterization of a distinct class of nanobiomaterials designed to enhance drug delivery systems and support tissue engineering. By integrating biodegradable polymers with bioactive nanoparticles, we have engineered a multifunctional platform that ensures controlled drug release, targeted delivery, and improved biocompatibility. Our findings demonstrate that these nanobiomaterials not only exhibit excellent mechanical properties but also promote cell proliferation and differentiation, making them ideal candidates for regenerative medicine. Furthermore, in vitro and in vivo assessments reveal that the engineered materials significantly reduce cytotoxicity while enhancing the therapeutic efficacy of encapsulated drugs. This research presents a promising approach to addressing current challenges in drug delivery and tissue regeneration, with the potential to revolutionize the treatment of chronic diseases and injury repair. Future work will focus on optimizing the material composition for specific clinical applications and conducting large-scale studies to evaluate long-term safety and effectiveness.

Keywords: nanobiomaterials, drug delivery systems, therapeutic efficacy, bioactive nanoparticles

Procedia PDF Downloads 28
2922 Chemical and Sensory Properties of Chardonnay Wines Produced in Different Oak Barrels

Authors: Valentina Obradović, Josip Mesić, Maja Ergović Ravančić, Kamila Mijowska, Brankica Svitlica

Abstract:

French oak and American oak barrels are most famous all over the world, but barrels of different origin can also be used for obtaining high quality wines. The aim of this research was to compare the influence of different Slavonian (Croatian) and French oak barrels on the quality of Chardonnay wine. Grapes were grown in Croatian wine growing region of Kutjevo in 2015. Chardonnay wines were tested for basic oenological parameters (alcohol, extract, reducing sugar, SO2, acidity), total polyphenols content (Folin-Ciocalteu method), antioxidant activity (ABTS and DPPH method) and color density. Sensory evaluation was performed by students of viticulture/oenology. Samples produced by classical fermentation and ageing in French oak barrels, had better results for polyphenols and sensory evaluation (especially low toasting level) than samples in Slavonian barrels. All tested samples were scored as a “quality” or “premium quality” wines. Sur lie method of fermentation and ageing in Slavonian oak barrel had very good extraction of polyphenols and high antioxidant activity with the usage of authentic yeasts, while commercial yeast strain resulted in worse chemical and sensory parameters.

Keywords: chardonnay, French oak, Slavonian oak, sur lie

Procedia PDF Downloads 242
2921 Determination of the Phytochemicals Composition and Pharmacokinetics of whole Coffee Fruit Caffeine Extract by Liquid Chromatography-Tandem Mass Spectrometry

Authors: Boris Nemzer, Nebiyu Abshiru, Z. B. Pietrzkowski

Abstract:

Coffee cherry is one of the most ubiquitous agricultural commodities which possess nutritional and human health beneficial properties. Between the two most widely used coffee cherries Coffea arabica (Arabica) and Coffea canephora (Robusta), Coffea arabica remains superior due to its sensory properties and, therefore, remains in great demand in the global coffee market. In this study, the phytochemical contents and pharmacokinetics of Coffeeberry® Energy (CBE), a commercially available Arabica whole coffee fruit caffeine extract, are investigated. For phytochemical screening, 20 mg of CBE was dissolved in an aqueous methanol solution for analysis by mass spectrometry (MS). Quantification of caffeine and chlorogenic acids (CGAs) contents of CBE was performed using HPLC. For the bioavailability study, serum samples were collected from human subjects before and after 1, 2 and 3 h post-ingestion of 150mg CBE extract. Protein precipitation and extraction were carried out using methanol. Identification of compounds was performed using an untargeted metabolomic approach on Q-Exactive Orbitrap MS coupled to reversed-phase chromatography. Data processing was performed using Thermo Scientific Compound Discover 3.3 software. Phytochemical screening identified a total of 170 compounds, including organic acids, phenolic acids, CGAs, diterpenoids and hydroxytryptamine. Caffeine & CGAs make up more than, respectively, 70% & 9% of the total CBE composition. For serum samples, a total of 82 metabolites representing 32 caffeine- and 50 phenolic-derived metabolites were identified. Volcano plot analysis revealed 32 differential metabolites (24 caffeine- and 8 phenolic-derived) that showed an increase in serum level post-CBE dosing. Caffeine, uric acid, and trimethyluric acid isomers exhibited 4- to 10-fold increase in serum abundance post-dosing. 7-Methyluric acid, 1,7-dimethyluric acid, paraxanthine and theophylline exhibited a minimum of 1.5-fold increase in serum level. Among the phenolic-derived metabolites, iso-feruloyl quinic acid isomers (3-, 4- and 5-iFQA) showed the highest increase in serum level. These compounds were essentially absent in serum collected before dosage. More interestingly, the iFQA isomers were not originally present in the CBE extract, as our phytochemical screen did not identify these compounds. This suggests the potential formation of the isomers during the digestion and absorption processes. Pharmacokinetics parameters (Cmax, Tmax and AUC0-3h) of caffeine- and phenolic-derived metabolites were also investigated. Caffeine was rapidly absorbed, reaching a maximum concentration (Cmax) of 10.95 µg/ml in just 1 hour. Thereafter, caffeine level steadily dropped from the peak level, although it did not return to baseline within the 3-hour dosing period. The disappearance of caffeine from circulation was mirrored by the rise in the concentration of its methylxanthine metabolites. Similarly, serum concentration of iFQA isomers steadily increased, reaching maximum (Cmax: 3-iFQA, 1.54 ng/ml; 4-iFQA, 2.47 ng/ml; 5-iFQA, 2.91 ng/ml) at tmax of 1.5 hours. The isomers remained well above the baseline during the 3-hour dosing period, allowing them to remain in circulation long enough for absorption into the body. Overall, the current study provides evidence of the potential health benefits of a uniquely formulated whole coffee fruit product. Consumption of this product resulted in a distinct serum profile of bioactive compounds, as demonstrated by the more than 32 metabolites that exhibited a significant change in systemic exposure.

Keywords: phytochemicals, mass spectrometry, pharmacokinetics, differential metabolites, chlorogenic acids

Procedia PDF Downloads 69