Search results for: Vadims Bartkevics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Vadims Bartkevics

2 The Influence of Lactic Acid Bacteria Combinations on Wheat Bread Quality

Authors: Vita Lele, Vadims Bartkevics, Iveta Pugajeva, Paulina Zavistanaviciute, Daiva Zadeike, Grazina Juodeikiene, Elena Bartkiene

Abstract:

Different combinations of appropriate technological properties showing lactic acid bacteria (Pediococcus pentosaceus VLGL183 and Enterococcus pseudoavium VLGL 234, Lactobacillus plantarum VLGL135 and Pediococcus pentosaceus VLGL183, Pediococcus pentosaceus VLGL183 and Lactobacillus brevis VLGL173, Pediococcus pentosaceus VLGL183 and Leuconostoc mesenteroides VLGL242, Pediococcus pentosaceus VLGL183 and Lactobacillus curvatus VLGL51, Lactobacillus plantarum VLGL135 and Lactobacillus curvatus VLGL51) for wheat sourdough production were used, and the influence of different sourdoughs on wheat bread quality parameters was evaluated. The highest overall acceptability (135.8 mm in 140 mm hedonic scale) of the bread produced with L. plantarum VLGL135 and P. pentosaceus VLGL183 sourdough was established. Also, bread produced with above mention sourdough, has the highest specific volume, shape coefficient, moisture content, and porosity, 3.40 ml /g; 2.59, 33.7 %, and 76.6 %, respectively. It was found, that the used sourdoughs reduce acrylamide content in bread (from 29.5 to 67.2%), just, the isolated lactic acid bacteria strains could be recommended for higher quality and safer bread production.

Keywords: acrylamide, lactic acid bacteria, quality, sourdough, wheat bread

Procedia PDF Downloads 144
1 Mathematical Modelling of Slag Formation in an Entrained-Flow Gasifier

Authors: Girts Zageris, Vadims Geza, Andris Jakovics

Abstract:

Gasification processes are of great interest due to their generation of renewable energy in the form of syngas from biodegradable waste. It is, therefore, important to study the factors that play a role in the efficiency of gasification and the longevity of the machines in which gasification takes place. This study focuses on the latter, aiming to optimize an entrained-flow gasifier by reducing slag formation on its walls to reduce maintenance costs. A CFD mathematical model for an entrained-flow gasifier is constructed – the model of an actual gasifier is rendered in 3D and appropriately meshed. Then, the turbulent gas flow in the gasifier is modeled with the realizable k-ε approach, taking devolatilization, combustion and coal gasification into account. Various such simulations are conducted, obtaining results for different air inlet positions and by tracking particles of varying sizes undergoing devolatilization and gasification. The model identifies potential problematic zones where most particles collide with the gasifier walls, indicating risk regions where ash deposits could most likely form. In conclusion, the effects on the formation of an ash layer of air inlet positioning and particle size allowed in the main gasifier tank are discussed, and possible solutions for decreasing a number of undesirable deposits are proposed. Additionally, an estimate of the impact of different factors such as temperature, gas properties and gas content, and different forces acting on the particles undergoing gasification is given.

Keywords: biomass particles, gasification, slag formation, turbulence k-ε modelling

Procedia PDF Downloads 250