Search results for: precipitation concentration index (PCI)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8746

Search results for: precipitation concentration index (PCI)

1456 The Importance of the Fluctuation in Blood Sugar and Blood Pressure of Insulin-Dependent Diabetic Patients with Chronic Kidney Disease

Authors: Hitoshi Minakuchi, Izumi Takei, Shu Wakino, Koichi Hayashi, Hiroshi Itoh

Abstract:

Objectives: Among type 2 diabetics, patients with CKD(chronic kidney disease), insulin resistance, impaired glyconeogenesis in kidney and reduced degradation of insulin are recognized, and we observed different fluctuational patterns of blood sugar between CKD patients and non-CKD patients. On the other hand, non-dipper type blood pressure change is the risk of organ damage and mortality. We performed cross-sectional study to elucidate the characteristic of the fluctuation of blood glucose and blood pressure at insulin-treated diabetic patients with chronic kidney disease. Methods: From March 2011 to April 2013, at the Ichikawa General Hospital of Tokyo Dental College, we recruited 20 outpatients. All participants are insulin-treated type 2 diabetes with CKD. We collected serum samples, urine samples for several hormone measurements, and performed CGMS(Continuous glucose measurement system), ABPM (ambulatory blood pressure monitoring), brain computed tomography, carotid artery thickness, ankle brachial index, PWV, CVR-R, and analyzed these data statistically. Results: Among all 20 participants, hypoglycemia was decided blood glucose 70mg/dl by CGMS of 9 participants (45.0%). The event of hypoglycemia was recognized lower eGFR (29.8±6.2ml/min:41.3±8.5ml/min, P<0.05), lower HbA1c (6.44±0.57%:7.53±0.49%), higher PWV (1858±97.3cm/s:1665±109.2cm/s), higher serum glucagon (194.2±34.8pg/ml:117.0±37.1pg/ml), higher free cortisol of urine (53.8±12.8μg/day:34.8±7.1μg/day), and higher metanephrin of urine (0.162±0.031mg/day:0.076±0.029mg/day). Non-dipper type blood pressure change in ABPM was detected 8 among 9 participants with hypoglycemia (88.9%), 4 among 11 participants (36.4%) without hypoglycemia. Multiplex logistic-regression analysis revealed that the event of hypoglycemia is the independent factor of non-dipper type blood pressure change. Conclusions: Among insulin-treated type 2 diabetic patients with CKD, the events of hypoglycemia were frequently detected, and can associate with the organ derangements through the medium of non-dipper type blood pressure change.

Keywords: chronic kidney disease, hypoglycemia, non-dipper type blood pressure change, diabetic patients

Procedia PDF Downloads 406
1455 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 100
1454 Phytosynthesized Iron Nanoparticles Elicited Growth and Biosynthesis of Steviol Glycosides in Invitro Stevia rebaudiana Plant Cultures

Authors: Amir Ali, Laura Yael Mendoza

Abstract:

The application of nanomaterials is becoming the most effective strategy of elicitation to produce a desirable level of plant biomass with complex medicinal compounds. This study was designed to check the influence of phytosynthesized iron nanoparticles (FeNPs) on physical growth characteristics, antioxidant status, and production of steviol glycosides of in vitro grown Stevia rebaudiana. Effect of different concentrations of iron nanoparticles replacement of iron sulfate in MS medium (stock solution) on invitro stevia plant growth following positive control (MS basal medium), negative control (iron sulfate devoid medium), iron sulfate devoid MS medium and supplemented with FeNPs at different concentrations (5.6 mg/L, 11.2 mg/L, 16.8 mg/L, 22.4 mg/L) was evaluated. The iron deficiency leads to a drastic reduction in plant growth. In contrast, applying FeNPs leads to improvement in plant height, leave diameter, improved leave morphology, etc., in a concentration-dependent manner. Furthermore, the stress caused by FeNPs at 16.8 mg/L in cultures produced higher levels of total phenolic content (3.7 ± 0.042 mg/g dry weight: DW) and total flavonoid content (1.9 ± 0.022 mg/g DW and antioxidant activity (78 ± 4.6%). In addition, plants grown in the presence of FeNPs at 22.4 mg/L resulted in higher enzymatic antioxidant activities (SOD = 3.5 ± 0.042 U/mg; POD = 2.6 ± 0.026 U/mg; CAT = 2.8 ± 0.034 U/mg and APx = 3.6 ± 0.043 U/ mg), respectively. Furthermore, exposure to a higher dose of FeNPs (22.4 mg/L) exhibited the maximum amount of stevioside (stevioside: 4.6 ± 0.058 mg/g (DW) and rebaudioside A: 4.9 ± 0.068 mg/g DW) as compared to other doses. The current investigation confirms the effectiveness of FeNPs in growth media. It offers a suitable prospect for commercially desirable production of S. rebaudiana biomass with higher sweet glycosides profiles in vitro.

Keywords: cell culture, stevia, iron nanoparticles, antioxidants

Procedia PDF Downloads 92
1453 Adsorption Behavior and Mechanism of Illite Surface under the Action of Different Surfactants

Authors: Xiuxia Sun, Yan Jin, Zilong Liu, Shiming Wei

Abstract:

As a critical mineral component of shale, illite is essential in oil exploration and development due to its surface hydration characteristics and action mechanism. This paper, starting from the perspective of the molecular structure of organic matter, uses molecular dynamics simulation technology to deeply explore the interaction mechanism between organic molecules and the illite surface. In the study, we thoroughly considered the forces such as van der Waals force, electrostatic force, and steric hindrance and constructed an illite crystal model covering C8-C18 modifiers. Subsequently, we systematically analyzed surfactants' adsorption behavior and hydration characteristics with different alkyl chain numbers, lengths, and concentrations on the illite surface. The simulation results show that surfactant molecules with shorter alkyl chains present a lateral monolayer or inclined double-layer arrangement on the illite surface, and these two arrangements may coexist under different concentration conditions. In addition, with the increase in the number of alkyl chains, the interlayer spacing of illite increases significantly. In contrast, the change in alkyl chain length has a limited effect on surface properties. It is worth noting that the change in functional group structure has a particularly significant effect on the wettability of the illite surface, and its influence even exceeds the change in the alkyl chain structure. This discovery gives us a new perspective on understanding and regulating the wetting properties. The results obtained are consistent with the XRD analysis and wettability experimental data in this paper, further confirming the reliability of the research conclusions. This study deepened our understanding of illite's hydration characteristics and mechanism. We provided new ideas and directions for the molecular design and application development of oilfield chemicals.

Keywords: illite, surfactant, hydration, wettability, adsorption

Procedia PDF Downloads 32
1452 Plant Growth, Symbiotic Performance and Grain Yield of 63 Common Bean Genotypes Grown Under Field Conditions at Malkerns Eswatini

Authors: Rotondwa P. Gunununu, Mustapha Mohammed, Felix D. Dakora

Abstract:

Common bean is the most importantly high protein grain legume grown in Southern Africa for human consumption and income generation. Although common bean can associate with rhizobia to fix N₂ for bacterial use and plant growth, it is reported to be a poor nitrogen fixer when compared to other legumes. N₂ fixation can vary with legume species, genotype and rhizobial strain. Therefore, screening legume germplasm can reveal rhizobia/genotype combinations with high N₂-fixing efficiency for use by farmers. This study assessed symbiotic performance and N₂ fixation in 63 common bean genotypes under field conditions at Malkerns Station in Eswatini, using the ¹⁵N natural abundance technique. The shoots of common bean genotypes were sampled at a pod-filling stage, oven-dried (65oC for 72h), weighed, ground into a fine powder (0.50 mm sieve), and subjected to ¹⁵N/¹⁴N isotopic analysis using mass spectrometry. At maturity, plants from the inner rows were harvested for the determination of grain yield. The results revealed significantly higher modulation (p≤0.05) in genotypes MCA98 and CIM-RM01-97-8 relative to the other genotypes. Shoot N concentration was highest in genotype MCA 98, followed by KAB 10 F2.8-84, with most genotypes showing shoot N concentrations below 2%. Percent N derived from atmospheric N₂ fixation (%Ndfa) differed markedly among genotypes, with CIM-RM01-92-3 and DAB 174, respectively, recording the highest values of 66.65% and 66.22 % N derived from fixation. There were also significant differences in grain yield, with CIM-RM02-79-1 producing the highest yield (3618.75 kg/ha). These results represent an important contribution in the profiling of symbiotic functioning of common bean germplasm for improved N₂ fixation.

Keywords: nitrogen fixation, %Ndfa, ¹⁵N natural abundance, grain yield

Procedia PDF Downloads 211
1451 Phytobeds with Fimbristylis dichotoma and Ammannia baccifera for Treatment of Real Textile Effluent: An in situ Treatment, Anatomical Studies and Toxicity Evaluation

Authors: Suhas Kadam, Vishal Chandanshive, Niraj Rane, Sanjay Govindwar

Abstract:

Fimbristylis dichotoma, Ammannia baccifera, and their co-plantation consortium FA were found to degrade methyl orange, simulated dye mixture, and real textile effluent. Wild plants of Fimbristylis dichotoma and Ammannia baccifera with equal biomass showed 91 and 89% decolorization of methyl orange within 60 h at a concentration of 50 ppm, while 95% dye removal was achieved by consortium FA within 48 h. Floating phyto-beds with co-plantation (Fimbristylis dichotoma and Ammannia baccifera) for the treatment of real textile effluent in a constructed wetland was observed to be more efficient and achieved 79, 72, 77, 66 and 56% reductions in ADMI color value, chemical oxygen demand, biological oxygen demand, total dissolve solid and total suspended solid of textile effluent, respectively. High performance thin layer chromatography, gas chromatography-mass spectroscopy, Fourier transform infrared spectroscopy, Ultra violet-Visible spectroscopy and enzymatic assays confirmed the phytotransformation of parent dye in the new metabolites. T-RFLP analysis of rhizospheric bacteria of Fimbristylis dichotoma, Ammannia baccifera, and consortium FA revealed the presence of 88, 98 and 223 genera which could have been involved in dye removal. Toxicity evaluation of products formed after phytotransformation of methyl orange by consortium FA on bivalves Lamellidens marginalis revealed less damage in the gills architecture when analyzed histologically. Toxicity measurement by Random Amplification of Polymorphic DNA (RAPD) technique revealed normal banding pattern in treated methyl orange sample suggesting less toxic nature of phytotransformed dye products.

Keywords: constructed wetland, phyto-bed, textile effluent, phytoremediation

Procedia PDF Downloads 475
1450 Phytochemical Screening, Antimicrobial and Antioxidant Efficacy of the Endocarps Fruits of Argania spinosa (L.) Skeels (Sapotaceae) in Mostaganem

Authors: Sebaa H., Cherifi F., Djabeur Abderrezak M.

Abstract:

Argania spinosa, Sapotaceae sole representative in Algeria and Morocco; hence it is endemic in these regions. However, it is a recognised oil, forage, and timber tree highly adapted to aridity. The exploitation of the argan fruits produces considerable amounts of under or related products. These products, such as the endocarps of a fruit, recuperated after the use of kernels to extract oil. This research studies in detail the contents of total phenolic content was determined by Folin Ciocalteu reagent and Flavonoids by aluminum chloride colorimetric assay). Antioxidant activity of extracts was expressed as the percentage of DPPH radical inhibition and IC50 values (μg/mL). Antimicrobial activity evaluated using agar disk diffusion method against reference Pseudomonas aeruginosa ATTC 27453, Escherichia coli ATCC 23922. Immature endocarps showed a higher polyphenol content than mature endocarps. The total phenolic content in immature endocarps was found to vary from 983,75+ /- 0.45 to 980,1 +/- 0.43 mg gallic acid equivalents/g dry weight, whereas in mature endocarps, the polyphenol content ranged from 100,58 mg/g +/- 0.42 to 105 +/- 0.55% mg gallic acid equivalent / g dry weight. The flavonoid content was 16.5 mg equivalent catechin/g dry weight and 9.81mg equivalent catechin /g dry weight for immature and mature endocarp fruits, respectively. DPPH assay of the endocarps extract yielded a half-maximal effective concentration (IC50) value in the immature endocarps (549.33 μg/mL) than in mature endocarps (322 μg/mL). This result can be attributed to the higher phenolics and flavonoid compounds in the immature endocarps. Methanol extract of immature endocarps exhibited antibacterial activity against E.colie (inhibition zone, 11mm).

Keywords: antioxidant activity, antimicrobial activity, total phenolic content, DPPH assay

Procedia PDF Downloads 109
1449 Potentiometric Determination of Moxifloxacin in Some Pharmaceutical Formulation Using PVC Membrane Sensors

Authors: M. M. Hefnawy, A. M. A. Homoda, M. A. Abounassif, A. M. Alanazia, A. Al-Majed, Gamal A. E. Mostafa

Abstract:

PVC membrane sensors using different approach e.g. ion-pair, ionophore, and Schiff-base has been used as testing membrane sensor. Analytical applications of membrane sensors for direct measurement of variety of different ions in complex biological and environmental sample are reported. The most important step of such PVC membrane sensor is the sensing active material. The potentiometric sensors have some outstanding advantages including simple design, operation, wide linear dynamic range, relative fast response time, and rotational selectivity. The analytical applications of these techniques to pharmaceutical compounds in dosage forms are also discussed. The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 ×10-2-4.0×10-6, 1 × 10-2-5.0×10-6, 1 × 10-2-5.0×10-6 M), with detection limits of 3×10-6, 4×10-6 and 4.0×10-6 M for sensor 1, 2 and 3, respectively over a pH range of 6.0-9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 µg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6 % and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2, and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.

Keywords: potentiometry, PVC, membrane sensors, ion-pair, ionophore, schiff-base, moxifloxacin HCl, sodium tetraphenyl borate, phosphomolybdic acid, phosphotungstic acid

Procedia PDF Downloads 433
1448 The Effect of Two Methods of Upper and Lower Resistance Exercise Training on C-Reactive Protein, Interleukin-6 and Intracellular Adhesion Molecule-1 in Healthy Untrained Women

Authors: Leyla Sattarzadeh, Maghsoud Peeri, Mohammadali Azarbaijani, Hasan Matin Homaee

Abstract:

Inflammation by various mechanisms may cause atherosclerosis. Systemic circulating inflammatory markers such as C-reactive protein (CRP), pro-inflammatory cytokines such as Interleukin-6 (IL-6) and adhesion molecules like Intracellular Adhesion Molecule-1 (ICAM-1) are the predictors of cardiovascular diseases. Regarding the conflicting results about the effect of resistance exercise training on these inflammatory markers, the present study aimed to examine the effect of eight week different patterns of resistance exercise training on CRP, IL-6 and ICAM-1 levels in healthy untrained women. 40 volunteered and healthy untrained female university students (aged: 21+ 3 yr., Body Mass Index: 21.5+ 3.5 kg/m2) were selected purposefully and divided into three groups. At the end of training protocol and after subjects drop during the protocol in upper body exercise training (n=11), lower body (n=12) completed the eight week of training period although the control group (n=7) did anything. Blood samples gathered pre and post experimental period and CRP, IL-6 and ICAM-1 levels were evaluated using special laboratory kits, then the difference of pre and post values of each indices analyzed using one way Analysis of Variance (α < 0.05). The results of one way ANOVA for difference of pre and post values of CRP and ICAM-1 showed no significant changes due to the exercise training. But there were significant differences between groups about IL-6. Tukey post- hoc test indicated that there is significant difference between the differences of pre and post values of IL-6 between lower body exercise training group and control group, and eight weeks of lower body exercise training lead to significant changes in IL-6 values. There were no changes in anthropometric indices. The findings show that the different patterns of upper and lower body exercise training by involving the different amount of muscles altered the IL-6 values in lower body exercise training group probably because of engaging the bigger amount of muscles, but showed any significant changes about CRP and ICAM-1 probably due to intensity and duration of exercise or the lower levels of these markers at baseline of healthy people.

Keywords: C-reactive protein, interleukin-6, intracellular adhesion molecule-1, resistance training

Procedia PDF Downloads 246
1447 Cadmium Levels in Patients with Type 2 Diabetes Mellitus in Thasala Southern Thailand

Authors: Supabhorn Yimthiang, Wiyada Khanwian

Abstract:

Cadmium is a heavy metal that is important in the environment because it is highly toxic. The incidence and severity of type 2 diabetes mellitus are known to be associated with cadmium. The purpose of this study was to investigate the cadmium levels in patients with type 2 diabetes mellitus at diabetes mellitus clinic, Thasala hospital, Nakhon Si Thummarat, Thailand. The study population was composed of forty five subjects. Among them, twenty two were diabetic patients and twenty three were apparently healthy non-diabetic individual subjects. After an overnight fasting, blood and morning urine samples were collected from each subject to determine fasting blood sugar and cadmium levels in urine, respectively. Systolic and diastolic blood pressure values were measured by aneroid sphygmomanometer. Study approval was taken from the human subject ethics committee of Walailak University. Verbal and written informed consent was taken from all participants. In the study samples, there were 31.8% males and 68.2% females with mean age of 47+10.53 years. The geometric mean of urine cadmium was significantly higher in diabetic patients (1.015 + 0.79 µg/g creatinine) when compared with the healthy subjects (0.395 + 0.53 µg/g creatinine) (P<0.05). This result also showed that urine cadmium excretion in diabetic patients was higher than in healthy subjects by 2.6 times. Moreover, fasting blood sugar (153+47.86 μg/dl) and systolic blood pressure (183.26+17.15 mmHg) of diabetic patients was significantly different when compared with healthy subjects (79+5.38 μg/dl and 112.78+11.32 mmHg, respectively) (P<0.05). Meanwhile, the concentration of cadmium in urine showed positive correlation with fasting plasma glucose (r=0.616) and systolic blood pressure (r=0.487). This preliminary study showed that cadmium might play an important role in the development and pathogenesis of diabetes mellitus in general population. However, these findings require confirmation through additional epidemiological and biological research.

Keywords: blood pressure, cadmium, fasting blood sugar, type 2 diabetes mellitus

Procedia PDF Downloads 242
1446 Studies on the Physico-Chemical Parameters of Jebba Lake, Niger State, Nigeria

Authors: M. B. Mshelia, J. K. Balogun, J. Auta, N. O. Bankole

Abstract:

Studies on some aspects of the physico-chemical parameters of Jebba Lake, Niger State, Nigeria was carried out from January to December, 2011. The aim was to investigate some of the physico-chemical parameters relevant to life and health of fish in the water body. Six (6) sampling sites were selected at random which covered Northern (Faku and Awuru), middle (Old Gbajibo and Shankade) and southern zones (New Gbajibo and Jebba dam} of Jebba Lake. Sampling was carried out for the period of 12 Months. The Physico-chemical parameters that were considered were water temperature, pH, dissolved oxygen, electrical conductivity, water transparency, phosphate and nitrate. They were all measured using standard methods. The results showed that water temperature values ranged between 26.06 ± 0.15a in Jebba lake site to 27.34 ± 0.12b in Shankade sampling site, depth varied from 8.08m to 31.64m, water current was between 20.10.62 cm/sec and 26.46 cm/sec, Secchi disc transparency ranged from0.46±0.01 m in New Gbajibo, while the highest mean value was 0.53 ± 0.04 m in Jebba dam., pH varied from 6.49 ± 0.01 and 7.59,5.35±0.03a mg/l in New Gbajibo and 6.75 ± 0.03 mg/l in Faku.The dissolved oxygen varied between 5.35±0.03a mg/l in New Gbajibo and 6.75 ± 0.03 mg/l in Faku.,The mean conductivity value was highest in Faku and Jebba with 128.8 ± 0.32 and 128.8 ± 0.42homs/cm) respectively, Alkalinity ranged 43.00±0.02 to33.30±0.32 mg/l., The nitrate-nitrogen range (2.37 ± 0.08 – 6.40 ± 0.50mg/l)., The mean values of phosphate-phosphorus (PO4-P) recorded varied between 0.18 ± 0.00 mg/l in Faku to 0.47 + 0.10 mg/l in Old Gbajibo.The highest mean value for total dissolved solids was 57.88 ± 0.28 mg/l in Shankade, while the lowest mean value of 39.17 ± 0.42 mg/l was recorded in Faku. Free CO2 ranged from 1.75 mg/l to 2.94 mg/l, Biochemical oxygen demand (BOD) was between 4.25 mg/l and 5.41 mg/l and nitrate-nitrogen concentration was between 2.37 mg/l and 6.40 mg/l. There were significant differences (P < 0.05) between these parameters in relation to stations. Generally, the physico-chemical characteristics of Lake Jebba were within the productive values for aquatic systems, and strongly indicate that the lake is unpolluted.

Keywords: Jebba Lake, water quality, secchi disc, DO meter, sampling sites, physico-chemical parameters

Procedia PDF Downloads 429
1445 Effects of Robot-Assisted Hand Training on Upper Extremity Performance in Patients with Stroke: A Randomized Crossover Controlled, Assessor-Blinded Study

Authors: Hsin-Chieh Lee, Fen-Ling Kuo, Jui-Chi Lin

Abstract:

Background: Upper extremity functional impairment that occurs after stroke includes hemiplegia, synergy movement, muscle hypertonicity, and somatosensory impairment, which result in inefficient and inaccurate movement. Robot-assisted rehabilitation is an intensive training approach that is effective in sensorimotor and hand function recovery. However, these systems mostly focused on the proximal part of the upper limb rather than the distal part. The device used in our study was Gloreha Sinfonia, which focuses on the distal part of the upper limb and uses a dynamic support system to facilitate the whole limb function. The objective of this study was to investigate the effects of robot-assisted therapy (RT) with Gloreha device on sensorimotor, and ADLs in patients with stroke. Method: Patients with stroke (N=25) participated AB or BA (A = 12 RT sessions and B = 12 conventional therapy (CT) sessions) for 6 weeks (60 min at each session, twice a week), with 1-month break for washout period. The performance of the patients was assessed by a blinded assessor at 4 time points (pretest 1, posttest 1, pretest 2, posttest 2) which including the Fugl–Meyer Assessment-upper extremity (FMA-UE), box and block test, electromyography of the extensor digitorum communis (EDC) and brachioradialis, a grip dynamometer for motor evaluation; Semmes–Weinstein hand monofilament and Revision of the Nottingham Sensory Assessment for sensory evaluation; and the Modified Barthel Index (MBI) for assessing the ADL ability. Result: RT group significantly improved FMA-UE proximal scores (p = 0.038), FMA-UE total scores (p = 0.046), and MBI (p = 0.030). The EDC exhibited higher efficiency during the small block grasping task in the RT group than in the CT group (p = 0.050). Conclusions: RT with the Gloreha device might lead to beneficial effects on arm motor function, ADL ability, and EDC muscle recruitment efficacy in patients with subacute to chronic stroke.

Keywords: activities of daily living, hand function, robotic rehabilitation, stroke

Procedia PDF Downloads 110
1444 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome

Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler

Abstract:

Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.

Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model

Procedia PDF Downloads 151
1443 Dual Electrochemical Immunosensor for IL-13Rα2 and E-Cadherin Determination in Cell, Serum and Tissues from Cancer Patients

Authors: Amira ben Hassine, A. Valverde, V. Serafín, C. Muñoz-San Martín, M. Garranzo-Asensio, M. Gamella, R. Barderas, M. Pedrero, N. Raouafi, S. Campuzano, P. Yáñez-Sedeño, J. M. Pingarrón

Abstract:

This work describes the development of a dual electrochemical immunosensing platform for accurate determination of two target proteins, IL-13 Receptor α2 (IL-13Rα2) and E-cadherin (E-cad). The proposed methodology is based on the use of sandwich immunosensing approaches (involving horseradish peroxidase-labeled detector antibodies) implemented onto magnetic microbeads (MBs) and amperometric transduction at screen-printed dual carbon electrodes (SPdCEs). The magnetic bioconjugates were captured onto SPdCEs and the amperometric transduction was performed using the H2O2/hydroquinone (HQ) system. Under optimal experimental conditions, the developed bio platform demonstrates linear concentration ranges of 1.0–25 and 5.0-100 ng mL-1, detection limits of 0.28 and 1.04 ng mL-1 for E-cad and IL-13Rα2, respectively, and excellent selectivity against other non-target proteins. The developed immuno-platform also offers a good reproducibility among amperometric responses provided by nine different sensors constructed in the same manner (Relative Standard Deviation values of 3.1% for E-cad and 4.3% for IL-13Rα2). Moreover, obtained results confirm the practical applicability of this bio-platform for the accurate determination of the endogenous levels of both extracellular receptors in colon cancer cells (both intact and lysed) with different metastatic potential and serum and tissues from patients diagnosed with colorectal cancer at different grades. Interesting features in terms of, simplicity, speed, portability and sample amount required to provide quantitative results, make this immuno-platform more compatible than conventional methodologies with the clinical diagnosis and prognosis at the point of care.

Keywords: electrochemistry, mmunosensors, biosensors, E-cadherin, IL-13 receptor α2, cancer colorectal

Procedia PDF Downloads 130
1442 Solid Phase Micro-Extraction/Gas Chromatography-Mass Spectrometry Study of Volatile Compounds from Strawberry Tree and Autumn Heather Honeys

Authors: Marinos Xagoraris, Elisavet Lazarou, Eleftherios Alissandrakis, Christos S. Pappas, Petros A. Tarantilis

Abstract:

Strawberry tree (Arbutus unedo L.) and autumn heather (Erica manipuliflora Salisb.) are important beekeeping plants of Greece. Six monofloral honeys (four strawberry tree, two autumn heather) were analyzed by means of Solid Phase Micro-Extraction (SPME, 60 min, 60 oC) followed by Gas Chromatography coupled to Mass Spectrometry (GC-MS) for the purpose of assessing the botanical origin. A Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) fiber was employed, and benzophenone was used as internal standard. The volatile compounds with higher concentration (μg/ g of honey expressed as benzophenone) from strawberry tree honey samples, were α-isophorone (2.50-8.12); 3,4,5-trimethyl-phenol (0.20-4.62); 2-hydroxy-isophorone (0.06-0.53); 4-oxoisophorone (0.38-0.46); and β-isophorone (0.02-0.43). Regarding heather honey samples, the most abundant compounds were 1-methoxy-4-propyl-benzene (1.22-1.40); p-anisaldehyde (0.97-1.28); p-anisic acid (0.35-0.58); 2-furaldehyde (0.52-0.57); and benzaldehyde (0.41-0.56). Norisoprenoids are potent floral markers for strawberry-tree honey. β-isophorone is found exclusively in the volatile fraction of this type of honey, while also α-isophorone, 4-oxoisophorone and 2-hydroxy-isophorone could be considered as additional marker compounds. The analysis of autumn heather honey revealed that phenolic compounds are the most abundant and p-anisaldehyde; 1-methoxy-4-propyl-benzene; and p-anisic acid could serve as potent marker compounds. In conclusion, marker compounds for the determination of the botanical origin for these honeys could be identified as several norisoprenoids and phenolic components were found exclusively or in higher concentrations compared to common Greek honey varieties.

Keywords: SPME/GC-MS, volatile compounds, heather honey, strawberry tree honey

Procedia PDF Downloads 191
1441 Effect of Nanostructure on Hydrogen Embrittlement Resistance of the Severely Deformed 316LN Austenitic Steel

Authors: Frank Jaksoni Mweta, Nozomu Adachi, Yoshikazu Todaka, Hirokazu Sato, Yuta Sato, Hiromi Miura, Masakazu Kobayashi, Chihiro Watanabe, Yoshiteru Aoyagi

Abstract:

Advances in the consumption of hydrogen fuel increase demands of high strength steel pipes and storage tanks. However, high strength steels are highly sensitive to hydrogen embrittlement. Because the introduction of hydrogen into steel during the fabrication process or from the environment is unavoidable, it is essential to improve hydrogen embrittlement resistance of high strength steels through microstructural control. In the present study, the heterogeneous nanostructure with a tensile strength of about 1.8 GPa and the homogeneous nanostructure with a tensile strength of about 2.0 GPa of 316LN steels were generated after 92% heavy cold rolling and high-pressure torsion straining, respectively. The heterogeneous nanostructure is composed of twin domains, shear bands, and lamellar grains. The homogeneous nanostructure is composed of uniformly distributed ultrafine nanograins. The influence of heterogeneous and homogenous nanostructures on the hydrogen embrittlement resistance was investigated. The specimen for each nanostructure was electrochemically charged with hydrogen for 3, 6, 12, and 24 hours, respectively. Under the same hydrogen charging time, both nanostructures show almost the same concentration of the diffusible hydrogen based on the thermal desorption analysis. The tensile properties of the homogenous nanostructure were severely affected by the diffusible hydrogen. However, the diffusible hydrogen shows less impact on the tensile properties of the heterogeneous nanostructure. The difference in embrittlement behavior between the heterogeneous and homogeneous nanostructures was elucidated based on the mechanism of the cracks' growth observed in the tensile fractography. The hydrogen embrittlement was suppressed in the heterogeneous nanostructure because the twin domain became an obstacle for crack growth. The homogeneous nanostructure was not consisting an obstacle such as a twin domain; thus, the crack growth resistance was low in this nanostructure.

Keywords: diffusible hydrogen, heterogeneous nanostructure, homogeneous nanostructure, hydrogen embrittlement

Procedia PDF Downloads 116
1440 Metabolic Manipulation as a Strategy for Optimization of Biomass Productivity and Oil Content in the Microalgae Desmodesmus Sp.

Authors: Ivan A. Sandoval Salazar, Silvia F. Valderrama

Abstract:

The microalgae oil emerges as a promising source of raw material for many industrial applications. Thus, this study had as a main focus on the cultivation of the microalgae species Desmodesmus sp. in laboratory scale with a view to maximizing biomass production and triglyceride content in the lipid fraction. Initially, culture conditions were selected to optimize biomass production, which was subsequently subjected to nutritional stress by varying nitrate and phosphate concentrations in order to increase the content and productivity of fatty acids. The culture medium BOLD 3N, nitrate and phosphate, light intensity 250,500 and 1000 μmol photons.m².s⁻¹, photoperiod of 12:12 were evaluated. Under the best conditions of the tests, a maximum cell division of 1.13 div.dia⁻¹ was obtained on the sixth day of culture, beginning of the exponential phase, and a maximum concentration of 8.42x107 cell.mL⁻¹ and dry biomass of 3.49 gL⁻¹ on the 20th day, in the stationary phase. The lipid content in the first stage of culture was approximately 8% after 12 days and at the end of the culture in the stationary phase ranged from 12% to 16% (20 days). In the microalgae grown at 250 μmol fotons.m2.s-1 the fatty acid profile was mostly polyunsaturated (52%). The total of unsaturated fatty acids, identified in this species of microalga, reached values between 70 and 75%, being qualified for use in the food and pharmaceutical industry. In addition, this study showed that the cultivation conditions influenced mainly the production of polyunsaturated fatty acids, with the predominance of γ-linolenic acid. However, in the cultures submitted to the highest the intensity of light (1000 μmol photons.m².s⁻¹) and low concentrations of nitrate and phosphate, saturated and monounsaturated fatty acids, which present greater oxidative stability, were identified mainly (60 to 70 %) being qualified for the production of biodiesel and for oleochemistry.

Keywords: microalgae, Desmodesmus sp, fatty acids, biodiesel

Procedia PDF Downloads 143
1439 Investigation of Effective Parameters on Water Quality of Iranian Rivers Using Hydrochemical and Statistical Methods

Authors: Maryam Sayadi, Rana Sedighpour, Hossein Rezaie

Abstract:

In this study, in order to evaluate water quality of Gamasiab and Gharehsoo rivers located in Kermanshah province, the information of a 5-year statistical period during the years 2014-2018 was used. To evaluate the hydrochemistry of water, first the type and hydrogeochemical facies of river water were determined using Stiff and Piper diagrams. Then, based on Gibbs diagram and combination diagrams, the factors controlling the chemical parameters of the two rivers were identified. Saturation indices were used to predict the possibility of dissolution and deposition of some minerals. Then, in order to classify water in different sections, fourteen water quality indicators for different uses along with WHO standard were used. Finally, factor analysis was used to determine the processes affecting the hydrochemistry of the two rivers. The results of this study showed that in both rivers, the predominant type and facies are bicarbonate of calcite. Also, the main factor in changing the chemical quality of water in both Gamasiab and Gharehsoo rivers is the water-rock reaction. According to the results of factor analysis in both rivers, two factors have the greatest impact on water quality in the region. Among the parameters of Gamasiab river in the first factor, HCO3-, Na+ and Cl-, respectively, had the highest factor loads, and in the second factor, SO42- and Mg2+ were selected as the main parameters. The parameters Ca2+, Cl- and Na have the highest factor loads in the first factor and in the second factor Mg2+ and SO42- have the highest factor loads in Gharehsoo river. The dissolution of carbonate formations due to their abundance and expansion in the two basins has a more significant effect on changing water chemistry. It has saturated the water of rivers with aragonite, calcite and dolomite. Due to the low contribution of the second factor in changing the chemical parameters, the water of both rivers is saturated with respect to evaporative minerals such as gypsum, halite and anhydrite in all stations. Based on Schoeller diagrams, Wilcox and other quality indicators in these two sections, the amount of main physicochemical parameters are in the desired range for drinking and agriculture. The results of Langelier, Ryznar, Larson-Skold and Puckorius indices showed that water is corrosive in industry.

Keywords: factor analysis, hydrochemical, saturation index, surface water quality

Procedia PDF Downloads 118
1438 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 316
1437 Substitution of Phosphate with Liquid Smoke as a Binder on the Quality of Chicken Nugget

Authors: E. Abustam, M. Yusuf, M. I. Said

Abstract:

One of functional properties of the meat is decrease of water holding capacity (WHC) during rigor mortis. At the time of pre-rigor, WHC is higher than post-rigor. The decline of WHC has implication to the other functional properties such as decreased cooking lost and yields resulting in lower elasticity and compactness of processed meat product. In many cases, the addition of phosphate in the meat will increase the functional properties of the meat such as WHC. Furthermore, liquid smoke has also been known in increasing the WHC of fresh meat. For food safety reasons, liquid smoke in the present study was used as a substitute to phosphate in production of chicken nuggets. This study aimed to know the effect of substitution of phosphate with liquid smoke on the quality of nuggets made from post-rigor chicken thigh and breast. The study was arranged using completely randomized design of factorial pattern 2x3 with three replications. Factor 1 was thigh and breast parts of the chicken, and factor 2 was different levels of liquid smoke in substitution to phosphate (0%, 50%, and 100%). The thigh and breast post-rigor broiler aged 40 days were used as the main raw materials in making nuggets. Auxiliary materials instead of meat were phosphate, liquid smoke at concentration of 10%, tapioca flour, salt, eggs and ice. Variables measured were flexibility, shear force value, cooking loss, elasticity level, and preferences. The results of this study showed that the substitution of phosphate with 100% liquid smoke resulting high quality nuggets. Likewise, the breast part of the meat showed higher quality nuggets than thigh part. This is indicated by high elasticity, low shear force value, low cooking loss, and a high level of preference of the nuggets. It can be concluded that liquid smoke can be used as a binder in making nuggets of chicken post-rigor.

Keywords: liquid smoke, nugget quality, phosphate, post-rigor

Procedia PDF Downloads 237
1436 Effect of Chemical Mutagen on Seeds Germination of Lima Bean

Authors: G. Ultanbekova, Zh. Suleimenova, Zh. Rakhmetova, G. Mombekova, S. Mantieva

Abstract:

Plant Growth Promoting Rhizobacteria (PGPR) are a group of free-living bacteria that colonize the rhizosphere, enhance plant growth of many cereals and other important agricultural crops and protect plants from disease and abiotic stresses through a wide variety of mechanisms. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth. In the present study, strain improvement of PGPR isolates were carried out by chemical mutagenesis for the improvement of growth and yield of lima bean. Induced mutagenesis is widely used for the selection of microorganisms producing biologically active substances and further improving their activities. Strain improvement is usually done by classical mutagenesis which involves exposing the microbes to chemical or physical mutagens. The strains of Pseudomonas putida 4/1, Azotobacter chroococcum Р-29 and Bacillus subtilis were subjected to mutation process for strain improvement by treatment with a chemical agent (sodium nitrite) to cause mutation and were observed for its consequent action on the seeds germination and plant growth of lima bean (Phaseolus lunatus). Bacterial mutant strains of Pseudomonas putida M-1, Azotobacter chroococcum M-1 and Bacillus subtilis M-1, treated with sodium nitrite in the concentration of 5 mg/ml for 120 min, were found effective to enhance the germination of lima bean seeds compared to parent strains. Moreover, treatment of the lima bean seeds with a mutant strain of Bacillus subtilis M-1 had a significant stimulation effect on plant growth. The length of the stems and roots of lima bean treated with Bacillus subtilis M-1 increased significantly in comparison with parent strain in 1.6 and 1.3 times, respectively.

Keywords: chemical mutagenesis, germination, kidney bean, plant growth promoting rhizobacteria (PGPR)

Procedia PDF Downloads 192
1435 Influence of Distribution of Body Fat on Cholesterol Non-HDL and Its Effect on Kidney Filtration

Authors: Magdalena B. Kaziuk, Waldemar Kosiba

Abstract:

Background: In the XXI century we have to deal with the epidemic of obesity which is important risk factor for the cardiovascular and kidney diseases. Lipo proteins are directly involved in the atherosclerotic process. Non-high-density lipo protein (non-HDL) began following widespread recognition of its superiority over LDL as a measurement of vascular event risk. Non-HDL includes residual risk which persists in patients after achieved recommended level of LDL. Materials and Methods: The study covered 111 patients (52 females, 59 males, age 51,91±14 years), hospitalized on the intern department. Body composition was assessed using the bioimpendance method and anthropometric measurements. Physical activity data were collected during the interview. The nutritional status and the obesity type were determined with the Waist to Height Ratio and the Waist to Hip Ratio. A function of the kidney was evaluated by calculating the estimated glomerular filtration rate (eGFR) using MDRD formula. Non-HDL was calculated as a difference between concentration of the Total and HDL cholesterol. Results: 10% of patients were found to be underweight; 23.9 % had correct body weight; 15,08 % had overweight, while the remaining group had obesity: 51,02 %. People with the android shape have higher non-HDL cholesterol versus with the gynoid shape (p=0.003). The higher was non-HDL, the lower eGFR had studied subjects (p < 0.001). Significant correlation was found between high non-HDL and incorrect dietary habits in patients avoiding eating vegetables, fruits and having low physical activity (p < 0.005). Conclusions: Android type of figure raises the residual risk of the heart disease associated with higher levels of non-HDL. Increasing physical activity in these patients reduces the level of non-HDL. Non-HDL seems to be the best predictor among all cholesterol measures for the cardiovascular events and worsening eGFR.

Keywords: obesity, non-HDL cholesterol, glomerular filtration rate, lifestyle

Procedia PDF Downloads 367
1434 Incidence and Risk Factors of Central Venous Associated Infections in a Tunisian Medical Intensive Care Unit

Authors: Ammar Asma, Bouafia Nabiha, Ghammam Rim, Ezzi Olfa, Ben Cheikh Asma, Mahjoub Mohamed, Helali Radhia, Sma Nesrine, Chouchène Imed, Boussarsar Hamadi, Njah Mansour

Abstract:

Background: Central venous catheter associated infections (CVC-AI) are among the serious hospital-acquired infections. The aims of this study are to determine the incidence of CVC-AI, and their risk factors among patients followed in a Tunisian medical intensive care unit (ICU). Materials / Methods: A prospective cohort study conducted between September 15th, 2015 and November 15th, 2016 in an 8-bed medical ICU including all patients admitted for more than 48h. CVC-AI were defined according to CDC of ATLANTA criteria. The enrollment was based on clinical and laboratory diagnosis of CVC-AI. For all subjects, age, sex, underlying diseases, SAPS II score, ICU length of stay, exposure to CVC (number of CVC placed, site of insertion and duration catheterization) were recorded. Risk factors were analyzed by conditional stepwise logistic regression. The p-value of < 0.05 was considered significant. Results: Among 192 eligible patients, 144 patients (75%) had a central venous catheter. Twenty-eight patients (19.4%) had developed CVC-AI with density rate incidence 20.02/1000 CVC-days. Among these infections, 60.7% (n=17) were systemic CVC-AI (with negative blood culture), and 35.7% (n=10) were bloodstream CVC-AI. The mean SAPS II of patients with CVC-AI was 32.76 14.48; their mean Charlson index was 1.77 1.55, their mean duration of catheterization was 15.46 10.81 days and the mean duration of one central line was 5.8+/-3.72 days. Gram-negative bacteria was determined in 53.5 % of CVC-AI (n= 15) dominated by multi-drug resistant Acinetobacter baumani (n=7). Staphylococci were isolated in 3 CVC-AI. Fourteen (50%) patients with CVC-AI died. Univariate analysis identified men (p=0.034), the referral from another hospital department (p=0.03), tobacco (p=0.006), duration of sedation (p=0.003) and the duration of catheterization (p=0), as possible risk factors of CVC-AI. Multivariate analysis showed that independent factors of CVC-AI were, male sex; OR= 5.73, IC 95% [2; 16.46], p=0.001, Ramsay score; OR= 1.57, IC 95% [1.036; 2.38], p=0.033, and duration of catheterization; OR=1.093, IC 95% [1.035; 1.15], p=0.001. Conclusion: In a monocenter cohort, CVC-AI had a high density and is associated with poor outcome. Identifying the risk factors is necessary to find solutions for this major health problem.

Keywords: central venous catheter associated infection, intensive care unit, prospective cohort studies, risk factors

Procedia PDF Downloads 358
1433 Numerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Study

Authors: Amit Kumar

Abstract:

Accurate identification of deteriorated air quality regions is very helpful in devising better environmental practices and mitigation efforts. In the present study, an attempt has been made to identify the air pollutant dispersion patterns especially NOX due to vehicular and industrial sources over a rapidly developing urban city, Visakhapatnam (17°42’ N, 83°20’ E), India, during April 2009. Using the emission factors of different vehicles as well as the industry, a high resolution 1 km x 1 km gridded emission inventory has been developed for Visakhapatnam city. A dispersion model AERMOD with explicit representation of planetary boundary layer (PBL) dynamics and offline coupled through a developed coupler mechanism with a high resolution mesoscale model WRF-ARW resolution for simulating the dispersion patterns of NOX is used in the work. The meteorological as well as PBL parameters obtained by employing two PBL schemes viz., non-local Yonsei University (YSU) and local Mellor-Yamada-Janjic (MYJ) of WRF-ARW model, which are reasonably representing the boundary layer parameters are considered for integrating AERMOD. Significantly different dispersion patterns of NOX have been noticed between summer and winter months. The simulated NOX concentration is validated with available six monitoring stations of Central Pollution Control Board, India. Statistical analysis of model evaluated concentrations with the observations reveals that WRF-ARW of YSU scheme with AERMOD has shown better performance. The deteriorated air quality locations are identified over Visakhapatnam based on the validated model simulations of NOX concentrations. The present study advocates the utility of tNumerical Simulation of Air Pollutant Using Coupled AERMOD-WRF Modeling System over Visakhapatnam: A Case Studyhe developed gridded emission inventory of NOX with coupled WRF-AERMOD modeling system for air quality assessment over the study region.

Keywords: WRF-ARW, AERMOD, planetary boundary layer, air quality

Procedia PDF Downloads 273
1432 Efficient Compact Micro Dielectric Barrier Discharge (DBD) Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Authors: D. Kuvshinov, A. Siswanto, J. Lozano-Parada, W. Zimmerman

Abstract:

Ozone is well known as a powerful fast reaction rate oxidant. The ozone based processes produce no by-product left as a non-reacted ozone returns back to the original oxygen molecule. Therefore an application of ozone is widely accepted as one of the main directions for a sustainable and clean technologies development. There are number of technologies require ozone to be delivered to specific points of a production network or reactors construction. Due to space constrains, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28E-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for emerged and dry systems. With a robust compact design MROG can be used as incorporated unit for production lines of high complexity.

Keywords: dielectric barrier discharge (DBD), micro reactor, ozone, plasma

Procedia PDF Downloads 327
1431 Analyzing Nonsimilar Convective Heat Transfer in Copper/Alumina Nanofluid with Magnetic Field and Thermal Radiations

Authors: Abdulmohsen Alruwaili

Abstract:

A partial differential system featuring momentum and energy balance is often used to describe simulations of flow initiation and thermal shifting in boundary layers. The buoyancy force in terms of temperature is factored in the momentum balance equation. Buoyancy force causes the flow quantity to fluctuate along the streamwise direction 𝑋; therefore, the problem can be, to our best knowledge, analyzed through nonsimilar modeling. In this analysis, a nonsimilar model is evolved for radiative mixed convection of a magnetized power-law nanoliquid flow on top of a vertical plate installed in a stationary fluid. The upward linear stretching initiated the flow in the vertical direction. Assuming nanofluids are composite of copper (Cu) and alumina (Al₂O₃) nanoparticles, the viscous dissipation in this case is negligible. The nonsimilar system is dealt with analytically by local nonsimilarity (LNS) via numerical algorithm bvp4c. Surface temperature and flow field are shown visually in relation to factors like mixed convection, magnetic field strength, nanoparticle volume fraction, radiation parameters, and Prandtl number. The repercussions of magnetic and mixed convection parameters on the rate of energy transfer and friction coefficient are represented in tabular forms. The results obtained are compared to the published literature. It is found that the existence of nanoparticles significantly improves the temperature profile of considered nanoliquid. It is also observed that when the estimates of the magnetic parameter increase, the velocity profile decreases. Enhancement in nanoparticle concentration and mixed convection parameter improves the velocity profile.

Keywords: nanofluid, power law model, mixed convection, thermal radiation

Procedia PDF Downloads 14
1430 Understanding the Utilization of Luffa Cylindrica in the Adsorption of Heavy Metals to Clean Up Wastewater

Authors: Akanimo Emene, Robert Edyvean

Abstract:

In developing countries, a low cost method of wastewater treatment is highly recommended. Adsorption is an efficient and economically viable treatment process for wastewater. The utilisation of this process is based on the understanding of the relationship between the growth environment and the metal capacity of the biomaterial. Luffa cylindrica (LC), a plant material, was used as an adsorbent in adsorption design system of heavy metals. The chemically modified LC was used to adsorb heavy metals ions, lead and cadmium, from aqueous environmental solution at varying experimental conditions. Experimental factors, adsorption time, initial metal ion concentration, ionic strength and pH of solution were studied. The chemical nature and surface area of the tissues adsorbing heavy metals in LC biosorption systems were characterised by using electron microscopy and infra-red spectroscopy. It showed an increase in the surface area and improved adhesion capacity after chemical treatment. Metal speciation of the metal ions showed the binary interaction between the ions and the LC surface as the pH increases. Maximum adsorption was shown between pH 5 and pH 6. The ionic strength of the metal ion solution has an effect on the adsorption capacity based on the surface charge and the availability of the adsorption sites on the LC. The nature of the metal-surface complexes formed as a result of the experimental data were analysed with kinetic and isotherm models. The pseudo second order kinetic model and the two-site Langmuir isotherm model showed the best fit. Through the understanding of this process, there will be an opportunity to provide an alternative method for water purification. This will be provide an option, for when expensive water treatment technologies are not viable in developing countries.

Keywords: adsorption, luffa cylindrica, metal-surface complexes, pH

Procedia PDF Downloads 82
1429 Low-Density Lipoproteins Mediated Delivery of Paclitaxel and MRI Imaging Probes for Personalized Medicine Applications

Authors: Sahar Rakhshan, Simonetta Geninatti Crich, Diego Alberti, Rachele Stefania

Abstract:

The combination of imaging and therapeutic agents in the same smart nanoparticle is a promising option to perform a minimally invasive imaging guided therapy. In this study, Low density lipoproteins (LDL), one of the most attractive biodegradable and biocompatible nanoparticles, were used for the simultaneous delivery of Paclitaxel (PTX), a hydrophobic antitumour drug and an amphiphilic contrast agent, Gd-AAZTA-C17, in B16-F10 melanoma cell line. These cells overexpress LDL receptors, as assessed by Flow cytometry analysis. PTX and Gd-AAZTA-C17 loaded LDLs (LDL-PTX-Gd) have been prepared, characterized and their stability was assessed under 72 h incubation at 37 ◦C and compared to LDL loaded with Gd-AAZTA-C17 (LDL-Gd) and LDL-PTX. The cytotoxic effect of LDL-PTX-Gd was evaluated by MTT assay. The anti-tumour drug loaded into LDLs showed a significantly higher toxicity on B16-F10 cells with respect to the commercially available formulation Paclitaxel Kabi (PTX Kabi) used in clinical applications. It was possible to demonstrate a high uptake of LDL-Gd in B16-F10 cells. As a consequence of the high cell uptake, melanoma cells showed significantly high cytotoxic effect when incubated in the presence of PTX (LDL-PTX-Gd). Furthermore, B16-F10 have been used to perform Magnetic Resonance Imaging. By the analysis of the image signal intensity, it was possible to extrapolate the amount of internalized PTX indirectly by the decrease of relaxation times caused by Gd, proportional to its concentration. Finally, the treatment with PTX loaded LDL on B16-F10 tumour bearing mice resulted in a marked reduction of tumour growth compared to the administration of PTX Kabi alone. In conclusion, LDLs are selectively taken-up by tumour cells and can be successfully exploited for the selective delivery of Paclitaxel and imaging agents.

Keywords: low density lipoprotein, melanoma cell lines, MRI, paclitaxel, personalized medicine application, theragnostic System

Procedia PDF Downloads 119
1428 Psychological Impact of the COVID-19 Pandemic on Health Care Workers in Tunisia: Risk and Protective Factor

Authors: Ahmed Sami Hammami, Mohamed Jellazi

Abstract:

Background: The aim of the study is to evaluate the magnitude of different psychological outcomes among Tunisian health care professionals (HCP) during the COVID-19 pandemic and to identify the associated factors. Methods: HCP completed a cross-sectional questionnaire from April 4th to April, 28th 2020. The survey collected demographic information, factors that may interfere with the psychological outcomes, behavior changes and mental health measurements. The latter was assessed through 3 scales; the 7-item questions Insomnia Severity Index, the 2-item Patient Health Questionnaire and the 2-item Generalized Anxiety Disorder. Multivariable logistic regression was conducted to identify factors associated with psychological outcomes. Results: A total of 503 HCP successfully completed the survey; among those, n=493 consented to enroll in the study, 411 [83.4%] were physicians, 323 [64.2%] were women and 271 [55%] had a second-line working position. A significant proportion of HCP had anxiety 35.7%, depression 35.1% and insomnia 23.7%. Females, those with psychiatric history and those using public transport exhibited the highest proportions for overall symptoms compared to other groups e.g., depression among females vs. males: 44,9% vs. 18,2%, P=0.00. Those with a previous medical history and nurses, had more anxiety and insomnia compared to other groups e.g. anxiety among nurses vs. interns/residents vs. attending 45,1% vs 36,1% vs 27,5%; p=0.04. Multivariable logistic regression showed that female gender was a risk factor for all psychological outcomes e.g. female sex increased the odds of anxiety by 2.86; 95% confidence interval [CI], 1, 78-4, 60; P=0.00, whereas having a psychiatric history was a risk factor for both anxiety and insomnia. (e.g. for insomnia OR=2,86; 95% [CI], 1,78-4,60; P=0.00), Having protective equipment was associated with lower risk for depression (OR=0,41; 95% CI, 0,27-0,62; P=0.00) and anxiety. Physical activity was also protective against depression and anxiety (OR=0,41, 95% CI, 0,25-0,67, P=0.00). Conclusion: Psychological symptoms are usually undervalued among HCP, though the COVID-19 pandemic played a major role in exacerbating this burden. Prompt psychological support should be endorsed and simple measures such as physical activity and ensuring the necessary protection are paramount to improve mental health outcomes and the quality of care provided to patients.

Keywords: COVID-19 pandemic, health care professionals, mental health, protective factors, psychological symptoms, risk factors

Procedia PDF Downloads 192
1427 Impact of Environmental Pollution on Oxidative Stress Indices in African Cat Fish (Clarias gariepinus) from Araromi River in Ondo State, Nigeria

Authors: Arojojoye Oluwatosin Adetola, Nwaechefu Olajumoke Olufunlayo, Ademola Adetokunbo Oyagbemi, Jeremiah Moyinoluwalogo Afolabi, Asaolu Racheal Oluwabukola

Abstract:

The effects of man’s activities on the environment include depletion of natural resources alongside pollution of water bodies. Petroleum exploration in the Niger Delta region of Nigeria has compromised the aquatic environment with grave consequences on the entire ecosystem. In this study, we assessed the environmental safety of Araromi River, located in an oil-producing area in Ondo State, in the Niger Delta region of Nigeria by determining the levels of heavy metals (copper, cadmium, chromium, nickel, lead) and some biomarkers of oxidative stress (malondialdehyde, glutathione-S-transferase, glutathione peroxidase, catalase, superoxide dismutase, myeloperoxidase and reduced glutathione) in Clarias gariepinus (350-400g) from the river using standard methods. Clarias gariepinus from a clean fish farm in the same geographical location as the reference site (Ilesannmi fishery) was used as a control. Water samples from both sites were also analysed for some physicochemical parameters, heavy metals, and bacterial contamination. Our findings show a significant increase in malondialdehyde level (index of lipid peroxidation) as well as alterations in antioxidant status in the organs of Clarias gariepinus from Araromi River compared with control. A significant increase in bacterial contaminants, heavy metal pollutants, and particulate matter deposits were also observed in the water sample from Araromi River compared with control. In conclusion, high levels of indicators of environmental pollution observed in the water sample from Araromi River coupled with induction of oxidative stress in Clarias gariepinus from the river show that Araromi River is polluted; therefore, consumption of fishes and other aquatic organisms from the river may be unsafe for the people in that community.

Keywords: Araromi River, Clarias gariepinus, environmental pollution, heavy metals, oxidative stress

Procedia PDF Downloads 159