Search results for: satellite mission scheduling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1591

Search results for: satellite mission scheduling

901 Hypersonic Propulsion Requirements for Sustained Hypersonic Flight for Air Transportation

Authors: James Rate, Apostolos Pesiridis

Abstract:

In this paper, the propulsion requirements required to achieve sustained hypersonic flight for commercial air transportation are evaluated. In addition, a design methodology is developed and used to determine the propulsive capabilities of both ramjet and scramjet engines. Twelve configurations are proposed for hypersonic flight using varying combinations of turbojet, turbofan, ramjet and scramjet engines. The optimal configuration was determined based on how well each of the configurations met the projected requirements for hypersonic commercial transport. The configurations were separated into four sub-configurations each comprising of three unique derivations. The first sub-configuration comprised four afterburning turbojets and either one or two ramjets idealised for Mach 5 cruise. The number of ramjets required was dependent on the thrust required to accelerate the vehicle from a speed where the turbojets cut out to Mach 5 cruise. The second comprised four afterburning turbojets and either one or two scramjets, similar to the first configuration. The third used four turbojets, one scramjet and one ramjet to aid acceleration from Mach 3 to Mach 5. The fourth configuration was the same as the third, but instead of turbojets, it implemented turbofan engines for the preliminary acceleration of the vehicle. From calculations which determined the fuel consumption at incremental Mach numbers this paper found that the ideal solution would require four turbojet engines and two Scramjet engines. The ideal mission profile was determined as being an 8000km sortie based on an averaging of popular long haul flights with strong business ties, which included Los Angeles to Tokyo, London to New York and Dubai to Beijing. This paper deemed that these routes would benefit from hypersonic transport links based on the previously mentioned factors. This paper has found that this configuration would be sufficient for the 8000km flight to be completed in approximately two and a half hours and would consume less fuel than Concord in doing so. However, this propulsion configuration still result in a greater fuel cost than a conventional passenger. In this regard, this investigation contributes towards the specification of the engine requirements throughout a mission profile for a hypersonic passenger vehicle. A number of assumptions have had to be made for this theoretical approach but the authors believe that this investigation lays the groundwork for appropriate framing of the propulsion requirements for sustained hypersonic flight for commercial air transportation. Despite this, it does serve as a crucial step in the development of the propulsion systems required for hypersonic commercial air transportation. This paper provides a methodology and a focus for the development of the propulsion systems that would be required for sustained hypersonic flight for commercial air transportation.

Keywords: hypersonic, ramjet, propulsion, Scramjet, Turbojet, turbofan

Procedia PDF Downloads 315
900 Satellite Connectivity for Sustainable Mobility

Authors: Roberta Mugellesi Dow

Abstract:

As the climate crisis becomes unignorable, it is imperative that new services are developed addressing not only the needs of customers but also taking into account its impact on the environment. The Telecommunication and Integrated Application (TIA) Directorate of ESA is supporting the green transition with particular attention to the sustainable mobility.“Accelerating the shift to sustainable and smart mobility” is at the core of the European Green Deal strategy, which seeks a 90% reduction in related emissions by 2050 . Transforming the way that people and goods move is essential to increasing mobility while decreasing environmental impact, and transport must be considered holistically to produce a shared vision of green intermodal mobility. The use of space technologies, integrated with terrestrial technologies, is an enabler of smarter traffic management and increased transport efficiency for automated and connected multimodal mobility. Satellite connectivity, including future 5G networks, and digital technologies such as Digital Twin, AI, Machine Learning, and cloud-based applications are key enablers of sustainable mobility.SatCom is essential to ensure that connectivity is ubiquitously available, even in remote and rural areas, or in case of a failure, by the convergence of terrestrial and SatCom connectivity networks, This is especially crucial when there are risks of network failures or cyber-attacks targeting terrestrial communication. SatCom ensures communication network robustness and resilience. The combination of terrestrial and satellite communication networks is making possible intelligent and ubiquitous V2X systems and PNT services with significantly enhanced reliability and security, hyper-fast wireless access, as well as much seamless communication coverage. SatNav is essential in providing accurate tracking and tracing capabilities for automated vehicles and in guiding them to target locations. SatNav can also enable location-based services like car sharing applications, parking assistance, and fare payment. In addition to GNSS receivers, wireless connections, radar, lidar, and other installed sensors can enable automated vehicles to monitor surroundings, to ‘talk to each other’ and with infrastructure in real-time, and to respond to changes instantaneously. SatEO can be used to provide the maps required by the traffic management, as well as evaluate the conditions on the ground, assess changes and provide key data for monitoring and forecasting air pollution and other important parameters. Earth Observation derived data are used to provide meteorological information such as wind speed and direction, humidity, and others that must be considered into models contributing to traffic management services. The paper will provide examples of services and applications that have been developed aiming to identify innovative solutions and new business models that are allowed by new digital technologies engaging space and non space ecosystem together to deliver value and providing innovative, greener solutions in the mobility sector. Examples include Connected Autonomous Vehicles, electric vehicles, green logistics, and others. For the technologies relevant are the hybrid satcom and 5G providing ubiquitous coverage, IoT integration with non space technologies, as well as navigation, PNT technology, and other space data.

Keywords: sustainability, connectivity, mobility, satellites

Procedia PDF Downloads 126
899 Electrospray Plume Characterisation of a Single Source Cone-Jet for Micro-Electronic Cooling

Authors: M. J. Gibbons, A. J. Robinson

Abstract:

Increasing expectations on small form factor electronics to be more compact while increasing performance has driven conventional cooling technologies to a thermal management threshold. An emerging solution to this problem is electrospray (ES) cooling. ES cooling enables two phase cooling by utilising Coulomb forces for energy efficient fluid atomization. Generated charged droplets are accelerated to the grounded target surface by the applied electric field and surrounding gravitational force. While in transit the like charged droplets enable plume dispersion and inhibit droplet coalescence. If the electric field is increased in the cone-jet regime, a subsequent increase in the plume spray angle has been shown. Droplet segregation in the spray plume has been observed, with primary droplets in the plume core and satellite droplets positioned on the periphery of the plume. This segregation is facilitated by inertial and electrostatic effects. This result has been corroborated by numerous authors. These satellite droplets are usually more densely charged and move at a lower relative velocity to that of the spray core due to the radial decay of the electric field. Previous experimental research by Gomez and Tang has shown that the number of droplets deposited on the periphery can be up to twice that of the spray core. This result has been substantiated by a numerical models derived by Wilhelm et al., Oh et al. and Yang et al. Yang et al. showed from their numerical model, that by varying the extractor potential the dispersion radius of the plume also varies proportionally. This research aims to investigate this dispersion density and the role it plays in the local heat transfer coefficient profile (h) of ES cooling. This will be carried out for different extractor – target separation heights (H2), working fluid flow rates (Q), and extractor applied potential (V2). The plume dispersion will be recorded by spraying a 25 µm thick, joule heated steel foil and by recording the thermal footprint of the ES plume using a Flir A-40 thermal imaging camera. The recorded results will then be analysed by in-house developed MATLAB code.

Keywords: electronic cooling, electrospray, electrospray plume dispersion, spray cooling

Procedia PDF Downloads 392
898 Establishing Correlation between Urban Heat Island and Urban Greenery Distribution by Means of Remote Sensing and Statistics Data to Prioritize Revegetation in Yerevan

Authors: Linara Salikhova, Elmira Nizamova, Aleksandra Katasonova, Gleb Vitkov, Olga Sarapulova.

Abstract:

While most European cities conduct research on heat-related risks, there is a research gap in the Caucasus region, particularly in Yerevan, Armenia. This study aims to test the method of establishing a correlation between urban heat islands (UHI) and urban greenery distribution for prioritization of heat-vulnerable areas for revegetation. Armenia has failed to consider measures to mitigate UHI in urban development strategies despite a 2.1°C increase in average annual temperature over the past 32 years. However, planting vegetation in the city is commonly used to deal with air pollution and can be effective in reducing UHI if it prioritizes heat-vulnerable areas. The research focuses on establishing such priorities while considering the distribution of urban greenery across the city. The lack of spatially explicit air temperature data necessitated the use of satellite images to achieve the following objectives: (1) identification of land surface temperatures (LST) and quantification of temperature variations across districts; (2) classification of massifs of land surface types using normalized difference vegetation index (NDVI); (3) correlation of land surface classes with LST. Examination of the heat-vulnerable city areas (in this study, the proportion of individuals aged 75 years and above) is based on demographic data (Census 2011). Based on satellite images (Sentinel-2) captured on June 5, 2021, NDVI calculations were conducted. The massifs of the land surface were divided into five surface classes. Due to capacity limitations, the average LST for each district was identified using one satellite image from Landsat-8 on August 15, 2021. In this research, local relief is not considered, as the study mainly focuses on the interconnection between temperatures and green massifs. The average temperature in the city is 3.8°C higher than in the surrounding non-urban areas. The temperature excess ranges from a low in Norq Marash to a high in Nubarashen. Norq Marash and Avan have the highest tree and grass coverage proportions, with 56.2% and 54.5%, respectively. In other districts, the balance of wastelands and buildings is three times higher than the grass and trees, ranging from 49.8% in Quanaqer-Zeytun to 76.6% in Nubarashen. Studies have shown that decreased tree and grass coverage within a district correlates with a higher temperature increase. The temperature excess is highest in Erebuni, Ajapnyak, and Nubarashen districts. These districts have less than 25% of their area covered with grass and trees. On the other hand, Avan and Norq Marash districts have a lower temperature difference, as more than 50% of their areas are covered with trees and grass. According to the findings, a significant proportion of the elderly population (35%) aged 75 years and above reside in the Erebuni, Ajapnyak, and Shengavit neighborhoods, which are more susceptible to heat stress with an LST higher than in other city districts. The findings suggest that the method of comparing the distribution of green massifs and LST can contribute to the prioritization of heat-vulnerable city areas for revegetation. The method can become a rationale for the formation of an urban greening program.

Keywords: heat-vulnerability, land surface temperature, urban greenery, urban heat island, vegetation

Procedia PDF Downloads 67
897 GIS Based Project Management Information System for Infrastructure Projects

Authors: Riki Panchal, Debasis Sarkar

Abstract:

This paper describes the work done for the GIS-based project management for different infrastructure projects. It is a review paper which gives the idea of the trends in the construction project management and various models adopted for the betterment of the project planning and execution. Traditional scheduling and progress control techniques such as bar charts and the critical path method fail to provide information pertaining to the spatial aspects of a construction project. An integrated system was developed to represent construction progress not only in terms of a CPM schedule but also in terms of a graphical representation of the construction that is synchronized with the work schedule. Hence, it is suggested to work on the common platform from where all the data can be shared and analyzed.

Keywords: GIS, project management, integrated model, infrastructure project

Procedia PDF Downloads 514
896 A Geosynchronous Orbit Synthetic Aperture Radar Simulator for Moving Ship Targets

Authors: Linjie Zhang, Baifen Ren, Xi Zhang, Genwang Liu

Abstract:

Ship detection is of great significance for both military and civilian applications. Synthetic aperture radar (SAR) with all-day, all-weather, ultra-long-range characteristics, has been used widely. In view of the low time resolution of low orbit SAR and the needs for high time resolution SAR data, GEO (Geosynchronous orbit) SAR is getting more and more attention. Since GEO SAR has short revisiting period and large coverage area, it is expected to be well utilized in marine ship targets monitoring. However, the height of the orbit increases the time of integration by almost two orders of magnitude. For moving marine vessels, the utility and efficacy of GEO SAR are still not sure. This paper attempts to find the feasibility of GEO SAR by giving a GEO SAR simulator of moving ships. This presented GEO SAR simulator is a kind of geometrical-based radar imaging simulator, which focus on geometrical quality rather than high radiometric. Inputs of this simulator are 3D ship model (.obj format, produced by most 3D design software, such as 3D Max), ship's velocity, and the parameters of satellite orbit and SAR platform. Its outputs are simulated GEO SAR raw signal data and SAR image. This simulating process is accomplished by the following four steps. (1) Reading 3D model, including the ship rotations (pitch, yaw, and roll) and velocity (speed and direction) parameters, extract information of those little primitives (triangles) which is visible from the SAR platform. (2) Computing the radar scattering from the ship with physical optics (PO) method. In this step, the vessel is sliced into many little rectangles primitives along the azimuth. The radiometric calculation of each primitive is carried out separately. Since this simulator only focuses on the complex structure of ships, only single-bounce reflection and double-bounce reflection are considered. (3) Generating the raw data with GEO SAR signal modeling. Since the normal ‘stop and go’ model is not available for GEO SAR, the range model should be reconsidered. (4) At last, generating GEO SAR image with improved Range Doppler method. Numerical simulation of fishing boat and cargo ship will be given. GEO SAR images of different posture, velocity, satellite orbit, and SAR platform will be simulated. By analyzing these simulated results, the effectiveness of GEO SAR for the detection of marine moving vessels is evaluated.

Keywords: GEO SAR, radar, simulation, ship

Procedia PDF Downloads 171
895 In Its 20th Anniversary, Will Dayton Peace Agreement Continue or Complete Its Mission?

Authors: Halit Turan, Mehmet Ozturk, Serdal Akyuz

Abstract:

General Framework Agreement for Peace (Dayton Peace Agreement) in Bosnia and Herzegovina (GFAP), is one of the most challenging issues in the contemporary peace studies scholarship. It is clear that this agreement has created an exceptional state structure which Bosnia and Herzegovina has still executed for 20 years. The agreement, signed reluctantly by warring sides to end war, has carried out reaching the present day. Demonstrations held by unemployed people in the early of 2014 can be seen as a symptom of discontent about low economic wealth level which is a clear consequence of agreement. This paper lays out the influences of problems stemmed from the agreement to the future of country especially in terms of economic issues.

Keywords: Bosnia and Herzegovina, dayton peace agreement, economic problems, social discontent

Procedia PDF Downloads 248
894 The Research of Reliability of MEMS Device under Thermal Shock Test in Space Mission

Authors: Liu Ziyu, Gao Yongfeng, Li Muhua, Zhao Jiahao, Meng Song

Abstract:

The effect of thermal shock on the operation of micro electromechanical systems (MEMS) were examined. All MEMS device were tested before and after three different conditions of thermal shock (from -55℃ to 85℃, from -65℃ to 125℃, from -65℃ to 200℃). The micro lens showed no changes after thermal shock, which shows that the design of the micro lens can be well adapted to the application environment in the space. The design of the micro mirror can be well adapted to the space application environment. The micro-magnetometer, RF MEMS switch and the micro accelerometer exhibited degradation and parameter drift after thermal shock, potential mechanical was proposed.

Keywords: MEMS, thermal shock test, reliability, space environment

Procedia PDF Downloads 583
893 Keys of Success in Regional Entrepreneurial Media Collaboration Linked With a New Concept of Citizenship

Authors: Rianne Voet

Abstract:

This paper uses a literature review to search for keys of success for entrepreneurial regional media collaborations in the Netherlands and elsewhere. It specifies keys on general aspects: a digital-first strategy, innovation, a particular journalistic mission and a new role for the public. It outlines keys in practicalities: competencies, revenue model, legal structure, communication structure and organization structure. The paper elaborates on a new public function and a new concept of citizenship which, according to several authors in the literature, are required in order to be successful. Finally, it offers a model of keys for success in regional entrepreneurial media collaboration.

Keywords: media collaboration, factors of success, keys of success, regional media cooperation

Procedia PDF Downloads 266
892 Designing AI-Enabled Smart Maintenance Scheduler: Enhancing Object Reliability through Automated Management

Authors: Arun Prasad Jaganathan

Abstract:

In today's rapidly evolving technological landscape, the need for efficient and proactive maintenance management solutions has become increasingly evident across various industries. Traditional approaches often suffer from drawbacks such as reactive strategies, leading to potential downtime, increased costs, and decreased operational efficiency. In response to these challenges, this paper proposes an AI-enabled approach to object-based maintenance management aimed at enhancing reliability and efficiency. The paper contributes to the growing body of research on AI-driven maintenance management systems, highlighting the transformative impact of intelligent technologies on enhancing object reliability and operational efficiency.

Keywords: AI, machine learning, predictive maintenance, object-based maintenance, expert team scheduling

Procedia PDF Downloads 52
891 Barrier Analysis of Sustainable Development of Small Towns: A Perspective of Southwest China

Authors: Yitian Ren, Liyin Shen, Tao Zhou, Xiao Li

Abstract:

The past urbanization process in China has brought out series of problems, the Chinese government has then positioned small towns in essential roles for implementing the strategy 'The National New-type Urbanization Plan (2014-2020)'. As the connector and transfer station of cities and countryside, small towns are important force to narrow the gap between urban and rural area, and to achieve the mission of new-type urbanization in China. The sustainable development of small towns plays crucial role because cities are not capable enough to absorb the surplus rural population. Nevertheless, there are various types of barriers hindering the sustainable development of small towns, which led to the limited development of small towns and has presented a bottleneck in Chinese urbanization process. Therefore, this paper makes deep understanding of these barriers, thus effective actions can be taken to address them. And this paper chooses the perspective of Southwest China (refers to Sichuan province, Yunnan province, Guizhou province, Chongqing Municipality City and Tibet Autonomous Region), cause the urbanization rate in Southwest China is far behind the average urbanization level of the nation and the number of small towns accounts for a great proportion in mainland China, also the characteristics of small towns in Southwest China are distinct. This paper investigates the barriers of sustainable development of small towns which located in Southwest China by using the content analysis method, combing with the field work and interviews in sample small towns, then identified and concludes 18 barriers into four dimensions, namely, institutional barriers, economic barriers, social barriers and ecological barriers. Based on the research above, questionnaire survey and data analysis are implemented, thus the key barriers hinder the sustainable development of small towns in Southwest China are identified by using fuzzy set theory, those barriers are, lack of independent financial power, lack of construction land index, financial channels limitation, single industrial structure, topography variety and complexity, which mainly belongs to institutional barriers and economic barriers. In conclusion part, policy suggestions are come up with to improve the politic and institutional environment of small town development, also the market mechanism are supposed to be introduced to the development process of small towns, which can effectively overcome the economic barriers, promote the sustainable development of small towns, accelerate the in-situ urbanization by absorbing peasants in nearby villages, and achieve the mission of new-type urbanization in China from the perspective of people-oriented.

Keywords: barrier analysis, sustainable development, small town, Southwest China

Procedia PDF Downloads 338
890 Evidence of Behavioural Thermoregulation by Dugongs (Dugong dugon) at the High Latitude Limit to Their Range in Eastern Australia

Authors: Daniel R. Zeh, Michelle R. Heupel, Mark Hamann, Rhondda Jones, Colin J. Limpus, Helene Marsh

Abstract:

Marine mammals live in an environment with water temperatures nearly always lower than the mammalian core body temperature of 35 - 38°C. Marine mammals can lose heat at high rates and have evolved a range of adaptations to minimise heat loss. Our project tracked dugongs to examine if there was a discoverable relationship between the animals’ movements and the temperature of their environment that might suggest behavioural thermoregulation. Twenty-nine dugongs were fitted with acoustic and satellite/GPS transmitters in 2012, 2013 and 2014 in Moreton Bay Queensland at the high latitude limit of the species’ winter range in eastern Australia on 30 occasions (one animal was tagged twice). All 22 animals that stayed in the area and had functional transmitters made at least one (and up to 66) return trip(s) to the warmer oceanic waters outside the bay where seagrass is unavailable. Individual dugongs went in and out of the bay in synchrony with the tides and typically spent about 6 hours in the oceanic water. There was a diel pattern in the movements: 85% of outgoing trips occurred between midnight and noon. There were significant individual differences, but the likelihood of a dugong leaving the bay was independent of body length or sex. In Quarter 2 (April – June), the odds of a dugong making a trip increased by about 40% for each 1°C increase in the temperature difference between the bay and the warmer adjacent oceanic waters. In Quarter 3, the odds of making a trip were lower when the outside –inside bay temperature differences were small or negative but increased by a factor of up to 2.12 for each 1°C difference in outside – inside temperatures. In Quarter 4, the odds of making a trip were higher when it was cooler outside the bay and decreased by a factor of nearly 0.5 for each 1°C difference in outside – inside bay temperatures. The activity spaces of the dugongs generally declined as winter progressed suggesting a change in the cost-effectiveness of moving outside the bay. Our analysis suggests that dugongs can thermoregulate their core temperature through the behaviour of moving to water having more favourable temperature.

Keywords: acoustic, behavioral thermoregulation, dugongs, movements, satellite, telemetry, quick fix GPS

Procedia PDF Downloads 170
889 Stochastic Energy and Reserve Scheduling with Wind Generation and Generic Energy Storage Systems

Authors: Amirhossein Khazali, Mohsen Kalantar

Abstract:

Energy storage units can play an important role to provide an economic and secure operation of future energy systems. In this paper, a stochastic energy and reserve market clearing scheme is presented considering storage energy units. The approach is proposed to deal with stochastic and non-dispatchable renewable sources with a high level of penetration in the energy system. A two stage stochastic programming scheme is formulated where in the first stage the energy market is cleared according to the forecasted amount of wind generation and demands and in the second stage the real time market is solved according to the assumed scenarios.

Keywords: energy and reserve market, energy storage device, stochastic programming, wind generation

Procedia PDF Downloads 565
888 Low-Cost Aviation Solutions to Strengthen Counter-Poaching Efforts in Kenya

Authors: Kuldeep Rawat, Michael O'Shea, Maureen McGough

Abstract:

The paper will discuss a National Institute of Justice (NIJ) funded project to provide cost-effective aviation technologies and research to support counter-poaching operations related to endangered, protected, and/or regulated wildlife. The goal of this project is to provide cost-effective aviation technology and research support to Kenya Wildlife Service (KWS) in their counter-poaching efforts. In pursuit of this goal, Elizabeth City State University (ECSU) is assisting the National Institute of Justice (NIJ) in enhancing the Kenya Wildlife Service’s aviation technology and related capacity to meet its counter-poaching mission. Poaching, at its core, is systemic as poachers go to the most extreme lengths to kill high target species such as elephant and rhino. These high target wildlife species live in underdeveloped or impoverished nations, where poachers find fewer barriers to their operations. In Kenya, with fifty-nine (59) parks and reserves, spread over an area of 225,830 square miles (584,897 square kilometers) adequate surveillance on the ground is next to impossible. Cost-effective aviation surveillance technologies, based on a comprehensive needs assessment and operational evaluation, are needed to curb poaching and effectively prevent wildlife trafficking. As one of the premier law enforcement Air Wings in East Africa, KWS plays a crucial role in Kenya, not only in counter-poaching and wildlife conservation efforts, but in aerial surveillance, counterterrorism and national security efforts as well. While the Air Wing has done, a remarkable job conducting aerial patrols with limited resources, additional aircraft and upgraded technology should significantly advance the Air Wing’s ability to achieve its wildlife protection mission. The project includes: (i) Needs Assessment of the KWS Air Wing, to include the identification of resources, current and prospective capacity, operational challenges and priority goals for expansion, (ii) Acquisition of Low-Cost Aviation Technology to meet priority needs, and (iii) Operational Evaluation of technology performance, with a focus on implementation and effectiveness. The Needs Assessment reflects the priorities identified through two site visits to the KWS Air Wing in Nairobi, Kenya, as well as field visits to multiple national parks receiving aerial support and interviewing/surveying KWS Air wing pilots and leadership. Needs Assessment identified some immediate technology needs that includes, GPS with upgrades, including weather application, Night flying capabilities, to include runway lights and night vision technology, Cameras and surveillance equipment, Flight tracking system and/or Emergency Position Indicating Radio Beacon, Lightweight ballistic-resistant body armor, and medical equipment, to include a customized stretcher and standard medical evacuation equipment. Results of this assessment, along with significant input from the KWS Air Wing, will guide the second phase of this project: technology acquisition. Acquired technology will then be evaluated in the field, with a focus on implementation and effectiveness. Results will ultimately be translated for any rural or tribal law enforcement agencies with comparable aerial surveillance missions and operational environments, and jurisdictional challenges, seeking to implement low-cost aviation technology. Results from Needs Assessment phase, including survey results and our ongoing technology acquisition and baseline operational evaluation will be discussed in the paper.

Keywords: aerial surveillance mission, aviation technology, counter-poaching, wildlife protection

Procedia PDF Downloads 270
887 An Assessment of the Impacts of Agro-Ecological Practices towards the Improvement of Crop Health and Yield Capacity: A Case of Mopani District, Limpopo, South Africa

Authors: Tshilidzi C. Manyanya, Nthaduleni S. Nethengwe, Edmore Kori

Abstract:

The UNFCCC, FAO, GCF, IPCC and other global structures advocate for agro-ecology do address food security and sovereignty. However, most of the expected outcomes concerning agro-ecological were not empirically tested for universal application. Agro-ecology is theorised to increase crop health over ago-ecological farms and decrease over conventional farms. Increased crop health means increased carbon sequestration and thus less CO2 in the atmosphere. This is in line with the view that global warming is anthropogenically enhanced through GHG emissions. Agro-ecology mainly affects crop health, soil carbon content and yield on the cultivated land. Economic sustainability is directly related to yield capacity, which is theorized to increase by 3-10% in a space of 3 - 10 years as a result of agro-ecological implementation. This study aimed to empirically assess the practicality and validity of these assumptions. The study utilized mainly GIS and RS techniques to assess the effectiveness of agro-ecology in crop health improvement from satellite images. The assessment involved a longitudinal study (2013 – 2015) assessing the changes that occur after a farm retrofits from conventional agriculture to agro-ecology. The assumptions guided the objectives of the study. For each objective, an agro-ecological farm was compared with a conventional farm in the same climatic conditional occupying the same general location. Crop health was assessed using satellite images analysed through ArcGIS and Erdas. This entailed the production of NDVI and Re-classified outputs of the farm area. The NDVI ranges of the entire period of study were thus compared in a stacked histogram for each farm to assess for trends. Yield capacity was calculated based on the production records acquired from the farmers and plotted in a stacked bar graph as percentages of a total for each farm. The results of the study showed decreasing crop health trends over 80% of the conventional farms and an increase over 80% of the organic farms. Yield capacity showed similar patterns to those of crop health. The study thus showed that agro-ecology is an effective strategy for crop-health improvement and yield increase.

Keywords: agro-ecosystem, conventional farm, dialectical, sustainability

Procedia PDF Downloads 212
886 Urban Heat Islands Analysis of Matera, Italy Based on the Change of Land Cover Using Satellite Landsat Images from 2000 to 2017

Authors: Giuseppina Anna Giorgio, Angela Lorusso, Maria Ragosta, Vito Telesca

Abstract:

Climate change is a major public health threat due to the effects of extreme weather events on human health and on quality of life in general. In this context, mean temperatures are increasing, in particular, extreme temperatures, with heat waves becoming more frequent, more intense, and longer lasting. In many cities, extreme heat waves have drastically increased, giving rise to so-called Urban Heat Island (UHI) phenomenon. In an urban centre, maximum temperatures may be up to 10° C warmer, due to different local atmospheric conditions. UHI occurs in the metropolitan areas as function of the population size and density of a city. It consists of a significant difference in temperature compared to the rural/suburban areas. Increasing industrialization and urbanization have increased this phenomenon and it has recently also been detected in small cities. Weather conditions and land use are one of the key parameters in the formation of UHI. In particular surface urban heat island is directly related to temperatures, to land surface types and surface modifications. The present study concern a UHI analysis of Matera city (Italy) based on the analysis of temperature, change in land use and land cover, using Corine Land Cover maps and satellite Landsat images. Matera, located in Southern Italy, has a typical Mediterranean climate with mild winters and hot and humid summers. Moreover, Matera has been awarded the international title of the 2019 European Capital of Culture. Matera represents a significant example of vernacular architecture. The structure of the city is articulated by a vertical succession of dug layers sometimes excavated or partly excavated and partly built, according to the original shape and height of the calcarenitic slope. In this study, two meteorological stations were selected: MTA (MaTera Alsia, in industrial zone) and MTCP (MaTera Civil Protection, suburban area located in a green zone). In order to evaluate the increase in temperatures (in terms of UHI occurrences) over time, and evaluating the effect of land use on weather conditions, the climate variability of temperatures for both stations was explored. Results show that UHI phenomena is growing in Matera city, with an increase of maximum temperature values at a local scale. Subsequently, spatial analysis was conducted by Landsat satellite images. Four years was selected in the summer period (27/08/2000, 27/07/2006, 11/07/2012, 02/08/2017). In Particular, Landsat 7 ETM+ for 2000, 2006 and 2012 years; Landsat 8 OLI/TIRS for 2017. In order to estimate the LST, Mono Window Algorithm was applied. Therefore, the increase of LST values spatial scale trend has been verified, in according to results obtained at local scale. Finally, the analysis of land use maps over the years by the LST and/or the maximum temperatures measured, show that the development of industrialized area produces a corresponding increase in temperatures and consequently a growth in UHI.

Keywords: climate variability, land surface temperature, LANDSAT images, urban heat island

Procedia PDF Downloads 118
885 Sleep Scheduling Schemes Integrating Relay Node and User Equipment in LTE-A

Authors: Chun-Chuan Yang, Jeng-Yueng Chen, Yi-Ting Mai, Hsieh-Hua Liu

Abstract:

By introduction of Relay Nodes (RNs), LTE-Advanced can provide enhanced coverage and capacity at cell edges and hot-spot areas. The authors have been researching the issue of power saving in mobile communications technology such as WiMax and LTE for some years. Based on the idea of Load-Based Power Saving (LBPS), three efficient power saving schemes for the user equipment (UE) were proposed in the authors’ previous work. In this paper, three revised schemes of the previous work in order to integrate RN and UE in power saving are proposed. Simulation study shows the proposed schemes can achieve significantly better power saving efficiency than the standard based scheme at the cost of moderately increased delay.

Keywords: DRX, LTE-A, power saving, RN

Procedia PDF Downloads 518
884 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates

Authors: Jennifer Buz, Alvin Spivey

Abstract:

The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.

Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation

Procedia PDF Downloads 121
883 An Experimental Study on the Coupled Heat Source and Heat Sink Effects on Solid Rockets

Authors: Vinayak Malhotra, Samanyu Raina, Ajinkya Vajurkar

Abstract:

Enhancing the rocket efficiency by controlling the external factors in solid rockets motors has been an active area of research for most of the terrestrial and extra-terrestrial system operations. Appreciable work has been done, but the complexity of the problem has prevented thorough understanding due to heterogenous heat and mass transfer. On record, severe issues have surfaced amounting to irreplaceable loss of mankind, instruments, facilities, and huge amount of money being invested every year. The coupled effect of an external heat source and external heat sink is an aspect yet to be articulated in combustion. Better understanding of this coupled phenomenon will induce higher safety standards, efficient missions, reduced hazard risks, with better designing, validation, and testing. The experiment will help in understanding the coupled effect of an external heat sink and heat source on the burning process, contributing in better combustion and fire safety, which are very important for efficient and safer rocket flights and space missions. Safety is the most prevalent issue in rockets, which assisted by poor combustion efficiency, emphasizes research efforts to evolve superior rockets. This signifies real, engineering, scientific, practical, systems and applications. One potential application is Solid Rocket Motors (S.R.M). The study may help in: (i) Understanding the effect on efficiency of core engines due to the primary boosters if considered as source, (ii) Choosing suitable heat sink materials for space missions so as to vary the efficiency of the solid rocket depending on the mission, (iii) Giving an idea about how the preheating of the successive stage due to previous stage acting as a source may affect the mission. The present work governs the temperature (resultant) and thus the heat transfer which is expected to be non-linear because of heterogeneous heat and mass transfer. The study will deepen the understanding of controlled inter-energy conversions and the coupled effect of external source/sink(s) surrounding the burning fuel eventually leading to better combustion thus, better propulsion. The work is motivated by the need to have enhanced fire safety and better rocket efficiency. The specific objective of the work is to understand the coupled effect of external heat source and sink on propellant burning and to investigate the role of key controlling parameters. Results as of now indicate that there exists a singularity in the coupled effect. The dominance of the external heat sink and heat source decides the relative rocket flight in Solid Rocket Motors (S.R.M).

Keywords: coupled effect, heat transfer, sink, solid rocket motors, source

Procedia PDF Downloads 218
882 Spectral Mapping of Hydrothermal Alteration Minerals for Geothermal Exploration Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Short Wave Infrared Data

Authors: Aliyu J. Abubakar, Mazlan Hashim, Amin B. Pour

Abstract:

Exploiting geothermal resources for either power, home heating, Spa, greenhouses, industrial or tourism requires an initial identification of suitable areas. This can be done cost-effectively using remote sensing satellite imagery which has synoptic capabilities of covering large areas in real time and by identifying possible areas of hydrothermal alteration and minerals related to Geothermal systems. Earth features and minerals are known to have unique diagnostic spectral reflectance characteristics that can be used to discriminate them. The focus of this paper is to investigate the applicability of mapping hydrothermal alteration in relation to geothermal systems (thermal springs) at Yankari Park Northeastern Nigeria, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data for resource exploration. The ASTER Short Wave Infrared (SWIR) bands are used to highlight and discriminate alteration areas by employing sophisticated digital image processing techniques including image transformations and spectral mapping methods. Field verifications are conducted at the Yankari Park using hand held Global Positioning System (GPS) monterra to identify locations of hydrothermal alteration and rock samples obtained at the vicinity and surrounding areas of the ‘Mawulgo’ and ‘Wikki’ thermal springs. X-Ray Diffraction (XRD) results of rock samples obtained from the field validated hydrothermal alteration by the presence of indicator minerals including; Dickite, Kaolinite, Hematite and Quart. The study indicated the applicability of mapping geothermal anomalies for resource exploration in unmapped sparsely vegetated savanna environment characterized by subtle surface manifestations such as thermal springs. The results could have implication for geothermal resource exploration especially at the prefeasibility stages by narrowing targets for comprehensive surveys and in unexplored savanna regions where expensive airborne surveys are unaffordable.

Keywords: geothermal exploration, image enhancement, minerals, spectral mapping

Procedia PDF Downloads 359
881 Photovoltaic Array Cleaning System Design and Evaluation

Authors: Ghoname Abdullah, Hidekazu Nishimura

Abstract:

Dust accumulation on the photovoltaic module's surface results in appreciable loss and negatively affects the generated power. Hence, in this paper, the design of a photovoltaic array cleaning system is presented. The cleaning system utilizes one drive motor, two guide rails, and four sweepers during the cleaning process. The cleaning system was experimentally implemented for one month to investigate its efficiency on PV array energy output. The energy capture over a month for PV array cleaned using the proposed cleaning system is compared with that of the energy capture using soiled PV array. The results show a 15% increase in energy generation from PV array with cleaning. From the results, investigating the optimal scheduling of the PV array cleaning could be an interesting research topic.

Keywords: cleaning system, dust accumulation, PV array, PV module, soiling

Procedia PDF Downloads 125
880 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 229
879 Coding of RMAC and Its Theoretical and Simulation-Based Performance Comparison with SMAC

Authors: Hamida Qumber Ali, Waseem Muhammad Arain, Shama Siddiqui, Sayeed Ghani

Abstract:

We present an implementing of RMAC in TinyOS 1.x. RMAC is a cross layer and Duty-cycle MAC protocols that was proposed to provide energy efficient transmission services for wireless sensor networks. The protocol has a unique and efficient packet transmission scheduling mechanism that enables it to overcome delivery latency and overcome traffic congestion. Design details and implementation challenges are divulged. Experiments are conducted to show the correctness of our implementation with numerous assumptions. Simulations are performed to compare the performance of RMAC and SMAC. Our results show that RMAC outperforms SMAC in energy efficiency and delay.

Keywords: MAC protocol, performance, RMAC, wireless sensor networks

Procedia PDF Downloads 318
878 Energy Management System

Authors: S. Periyadharshini, K. Ramkumar, S. Jayalalitha, M. GuruPrasath, R. Manikandan

Abstract:

This paper presents a formulation and solution for industrial load management and product grade problem. The formulation is created using linear programming technique thereby optimizing the electricity cost by scheduling the loads satisfying the process, storage, time zone and production constraints which will create an impact of reducing maximum demand and thereby reducing the electricity cost. Product grade problem is formulated using integer linear programming technique of optimization using lingo software and the results show that overall increase in profit margin. In this paper, time of use tariff is utilized and this technique will provide significant reductions in peak electricity consumption.

Keywords: cement industries, integer programming, optimal formulation, objective function, constraints

Procedia PDF Downloads 584
877 Review on Effective Texture Classification Techniques

Authors: Sujata S. Kulkarni

Abstract:

Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.

Keywords: compressed sensing, feature extraction, image classification, texture analysis

Procedia PDF Downloads 428
876 Design and Analysis of Solar Powered Plane

Authors: Malarvizhi, Venkatesan

Abstract:

This paper summarizes about the design and optimization of solar powered unmanned aerial vehicle. The purpose of this research is to increase the range and endurance. It can be used for environmental research, aerial photography, search and rescue mission and surveillance in other planets. The ultimate aim of this research is to design and analyze the solar powered plane in order to detect lift, drag and other parameters by using cfd analysis. Similarly the numerical investigation has been done to compare the results of earth’s atmosphere to the mars atmosphere. This is the approach made to check whether the solar powered plane is possible to glide in the planet mars by using renewable energy (i.e., solar energy).

Keywords: optimization, range, endurance, surveillance, lift and drag parameters

Procedia PDF Downloads 457
875 Aerosol Radiative Forcing Over Indian Subcontinent for 2000-2021 Using Satellite Observations

Authors: Shreya Srivastava, Sushovan Ghosh, Sagnik Dey

Abstract:

Aerosols directly affect Earth’s radiation budget by scattering and absorbing incoming solar radiation and outgoing terrestrial radiation. While the uncertainty in aerosol radiative forcing (ARF) has decreased over the years, it is still higher than that of greenhouse gas forcing, particularly in the South Asian region, due to high heterogeneity in their chemical properties. Understanding the Spatio-temporal heterogeneity of aerosol composition is critical in improving climate prediction. Studies using satellite data, in-situ and aircraft measurements, and models have investigated the Spatio-temporal variability of aerosol characteristics. In this study, we have taken aerosol data from Multi-angle Imaging Spectro-Radiometer (MISR) level-2 version 23 aerosol products retrieved at 4.4 km and radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 21 years (2000-2021) over the Indian subcontinent. MISR aerosol product includes size and shapes segregated aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). Additionally, 74 aerosol mixtures are included in version 23 data that is used for aerosol speciation. We have seasonally mapped aerosol optical and microphysical properties from MISR for India at quarter degrees resolution. Results show strong Spatio-temporal variability, with a constant higher value of AOD for the Indo-Gangetic Plain (IGP). The contribution of small-size particles is higher throughout the year, spatially during winter months. SSA is found to be overestimated where absorbing particles are present. The climatological map of short wave (SW) ARF at the top of the atmosphere (TOA) shows a strong cooling except in only a few places (values ranging from +2.5o to -22.5o). Cooling due to aerosols is higher in the absence of clouds. Higher negative values of ARF are found over the IGP region, given the high aerosol concentration above the region. Surface ARF values are everywhere negative for our study domain, with higher values in clear conditions. The results strongly correlate with AOD from MISR and ARF from CERES.

Keywords: aerosol Radiative forcing (ARF), aerosol composition, single scattering albedo (SSA), CERES

Procedia PDF Downloads 50
874 A New Method for Estimating the Mass Recession Rate for Ablator Systems

Authors: Bianca A. Szasz, Keiichi Okuyama

Abstract:

As the human race will continue to explore the space by creating new space transportation means and sending them to other planets, the enhance of atmospheric reentry study is crucial. In this context, an analysis of mass recession rate of ablative materials for thermal shields of reentry spacecrafts is important to be carried out. The paper describes a new estimation method for calculating the mass recession of an ablator system, this method combining an old method with a new one, which was recently elaborated by Okuyama et al. The space mission of USERS spacecraft is taken as a case study and the possibility of implementing lighter ablative materials in future space missions is taking into consideration.

Keywords: ablator system, mass recession, reentry spacecraft, ablative materials

Procedia PDF Downloads 268
873 Retrospective Demographic Analysis of Patients Lost to Follow-Up from Antiretroviral Therapy in Mulanje Mission Hospital, Malawi

Authors: Silas Webb, Joseph Hartland

Abstract:

Background: Long-term retention of patients on ART has become a major health challenge in Sub-Saharan Africa (SSA). In 2010 a systematic review of 39 papers found that 30% of patients were no longer taking their ARTs two years after starting treatment. In the same review, it was noted that there was a paucity of data as to why patients become lost to follow-up (LTFU) in SSA. This project was performed in Mulanje Mission Hospital in Malawi as part of Swindon Academy’s Global Health eSSC. The HIV prevalence for Malawi is 10.3%, one of the highest rates in the world, however prevalence soars to 18% in the Mulanje. Therefore it is essential that patients at risk of being LTFU are identified early and managed appropriately to help them continue to participate in the service. Methodology: All patients on adult antiretroviral formulations at MMH, who were classified as ‘defaulters’ (patients missing a scheduled follow up visit by more than two months) over the last 12 months were included in the study. Demographic varibales were collected from Mastercards for data analysis. A comparison group of patients currently not lost to follow up was created by using all of the patients who attended the HIV clinic between 18th-22nd July 2016 who had never defaulted from ART. Data was analysed using the chi squared (χ²) test, as data collected was categorical, with alpha levels set at 0.05. Results: Overall, 136 patients had defaulted from ART over the past 12 months at MMH. Of these, 43 patients had missing Mastercards, so 93 defaulter datasets were analysed. In the comparison group 93 datasets were also analysed and statistical analysis done using Chi-Squared testing. A higher proportion of men in the defaulting group was noted (χ²=0.034) and defaulters tended to be younger (χ²=0.052). 94.6% of patients who defaulted were taking Tenofovir, Lamivudine and Efavirenz, the standard first line ART therapy in Malawi. The mean length of time on ART was 39.0 months (RR: -22.4-100.4) in the defaulters group and 47.3 months (RR: -19.71-114.23) in the control group, with a mean difference of 8.3 less months in the defaulters group (χ ²=0.056). Discussion: The findings in this study echo the literature, however this review expands on that and shows the demographic for the patient at most risk of defaulting and being LTFU would be: a young male who has missed more than 4 doses of ART and is within his first year of treatment. For the hospital, this data is important at it identifies significant areas for public health focus. For instance, fear of disclosure and stigma may be disproportionately affecting younger men, so interventions can be aimed specifically at them to improve their health outcomes. The mean length of time on medication was 8.3 months less in the defaulters group, with a p-value of 0.056, emphasising the need for more intensive follow-up in the early stages of treatment, when patients are at the highest risk of defaulting.

Keywords: anti-retroviral therapy, ART, HIV, lost to follow up, Malawi

Procedia PDF Downloads 182
872 Object Oriented Classification Based on Feature Extraction Approach for Change Detection in Coastal Ecosystem across Kochi Region

Authors: Mohit Modi, Rajiv Kumar, Manojraj Saxena, G. Ravi Shankar

Abstract:

Change detection of coastal ecosystem plays a vital role in monitoring and managing natural resources along the coastal regions. The present study mainly focuses on the decadal change in Kochi islands connecting the urban flatland areas and the coastal regions where sand deposits have taken place. With this, in view, the change detection has been monitored in the Kochi area to apprehend the urban growth and industrialization leading to decrease in the wetland ecosystem. The region lies between 76°11'19.134"E to 76°25'42.193"E and 9°52'35.719"N to 10°5'51.575"N in the south-western coast of India. The IRS LISS-IV satellite image has been processed using a rule-based algorithm to classify the LULC and to interpret the changes between 2005 & 2015. The approach takes two steps, i.e. extracting features as a single GIS vector layer using different parametric values and to dissolve them. The multi-resolution segmentation has been carried out on the scale ranging from 10-30. The different classes like aquaculture, agricultural land, built-up, wetlands etc. were extracted using parameters like NDVI, mean layer values, the texture-based feature with corresponding threshold values using a rule set algorithm. The objects obtained in the segmentation process were visualized to be overlaying the satellite image at a scale of 15. This layer was further segmented using the spectral difference segmentation rule between the objects. These individual class layers were dissolved in the basic segmented layer of the image and were interpreted in vector-based GIS programme to achieve higher accuracy. The result shows a rapid increase in an industrial area of 40% based on industrial area statistics of 2005. There is a decrease in wetlands area which has been converted into built-up. New roads have been constructed which are connecting the islands to urban areas as well as highways. The increase in coastal region has been visualized due to sand depositions. The outcome is well supported by quantitative assessments which will empower rich understanding of land use land cover change for appropriate policy intervention and further monitoring.

Keywords: land use land cover, multiresolution segmentation, NDVI, object based classification

Procedia PDF Downloads 180