Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2159

Search results for: google earth engine (GEE)

2159 Utilizing Google Earth for Internet GIS

Authors: Alireza Derambakhsh

Abstract:

The objective of this examination is to explore the capability of utilizing Google Earth for Internet GIS applications. The study particularly analyzes the utilization of vector and characteristic information and the capability of showing and preparing this information in new ways utilizing the Google Earth stage. It has progressively been perceived that future improvements in GIS will fixate on Internet GIS, and in three noteworthy territories: GIS information access, spatial data scattering and GIS displaying/preparing. Google Earth is one of the group of geobrowsers that offer a free and simple to utilize administration that empower information with a spatial part to be overlain on top of a 3-D model of the Earth. This examination makes a methodological structure to accomplish its objective that comprises of three noteworthy parts: A database level, an application level and a customer level. As verification of idea a web model has been produced, which incorporates a differing scope of datasets and lets clients direst inquiries and make perceptions of this custom information. The outcomes uncovered that both vector and property information can be successfully spoken to and imagined utilizing Google Earth. In addition, the usefulness to question custom information and envision results has been added to the Google Earth stage.

Keywords: Google earth, internet GIS, vector, characteristic information

Procedia PDF Downloads 266
2158 Evaluation of Coastal Erosion in the Jurisdiction of the Municipalities of Puerto Colombia and Tubará, Atlántico – Colombia in Google Earth Engine with Landsat and Sentinel 2 Images

Authors: Francisco Reyes, Hector Ramirez

Abstract:

In the coastal zones are home to mangrove swamps, coral reefs, and seagrass ecosystems, which are the most biodiverse and fragile on the planet. These areas support a great diversity of marine life; they are also extraordinarily important for humans in the provision of food, water, wood, and other associated goods and services; they also contribute to climate regulation. The lack of an automated model that generates information on the dynamics of changes in coastlines and coastal erosion is identified as a central problem. Coastlines were determined from 1984 to 2020 on the Google Earth platform Engine from Landsat and Sentinel images, using the Normalized Differential Water Index (MNDWI) and Digital Shoreline Analysis System (DSAS) v5.0. Starting from the 2020 coastline, the 10-year prediction (Year 2031) was determined with the erosion of 238.32 hectares and an accretion of 181.96 hectares, while the 20-year prediction (Year 2041) will be presented an erosion of 544.04 hectares and an accretion of 133.94 hectares. The erosion and accretion of Playa Muelle in the municipality of Puerto Colombia were established, which will register the highest value of erosion. The coverage that presented the greatest change was that of artificialized Territories.

Keywords: coastline, coastal erosion, MNDWI, Google Earth Engine, Colombia

Procedia PDF Downloads 68
2157 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform

Authors: S. Hutasavi, D. Chen

Abstract:

The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.

Keywords: built-up area extraction, google earth engine, adaptive thresholding method, rapid mapping

Procedia PDF Downloads 80
2156 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine

Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy

Abstract:

Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.

Keywords: land cover, google earth engine, machine learning, remote sensing

Procedia PDF Downloads 84
2155 Semantic Search Engine Based on Query Expansion with Google Ranking and Similarity Measures

Authors: Ahmad Shahin, Fadi Chakik, Walid Moudani

Abstract:

Our study is about elaborating a potential solution for a search engine that involves semantic technology to retrieve information and display it significantly. Semantic search engines are not used widely over the web as the majorities are still in Beta stage or under construction. Many problems face the current applications in semantic search, the major problem is to analyze and calculate the meaning of query in order to retrieve relevant information. Another problem is the ontology based index and its updates. Ranking results according to concept meaning and its relation with query is another challenge. In this paper, we are offering a light meta-engine (QESM) which uses Google search, and therefore Google’s index, with some adaptations to its returned results by adding multi-query expansion. The mission was to find a reliable ranking algorithm that involves semantics and uses concepts and meanings to rank results. At the beginning, the engine finds synonyms of each query term entered by the user based on a lexical database. Then, query expansion is applied to generate different semantically analogous sentences. These are generated randomly by combining the found synonyms and the original query terms. Our model suggests the use of semantic similarity measures between two sentences. Practically, we used this method to calculate semantic similarity between each query and the description of each page’s content generated by Google. The generated sentences are sent to Google engine one by one, and ranked again all together with the adapted ranking method (QESM). Finally, our system will place Google pages with higher similarities on the top of the results. We have conducted experimentations with 6 different queries. We have observed that most ranked results with QESM were altered with Google’s original generated pages. With our experimented queries, QESM generates frequently better accuracy than Google. In some worst cases, it behaves like Google.

Keywords: semantic search engine, Google indexing, query expansion, similarity measures

Procedia PDF Downloads 388
2154 Comparison of Slope Data between Google Earth and the Digital Terrain Model, for Registration in Car

Authors: André Felipe Gimenez, Flávia Alessandra Ribeiro da Silva, Roberto Saverio Souza Costa

Abstract:

Currently, the rural producer has been facing problems regarding environmental regularization, which is precisely why the CAR (Rural Environmental Registry) was created. CAR is an electronic registry for rural properties with the purpose of assimilating notions about legal reserve areas, permanent preservation areas, areas of limited use, stable areas, forests and remnants of native vegetation, and all rural properties in Brazil. . The objective of this work was to evaluate and compare altimetry and slope data from google Earth with a digital terrain model (MDT) generated by aerophotogrammetry, in three plots of a steep slope, for the purpose of declaration in the CAR (Rural Environmental Registry). The realization of this work is justified in these areas, in which rural landowners have doubts about the reliability of the use of the free software Google Earth to diagnose inclinations greater than 25 degrees, as recommended by federal law 12651/2012. Added to the fact that in the literature, there is a deficiency of this type of study for the purpose of declaration of the CAR. The results showed that when comparing the drone altimetry data with the Google Earth image data, in areas of high slope (above 40% slope), Google underestimated the real values of terrain slope. Thus, it is concluded that Google Earth is not reliable for diagnosing areas with an inclination greater than 25 degrees (46% declivity) for the purpose of declaration in the CAR, being essential to carry out the local topographic survey.

Keywords: MDT, drone, RPA, SiCar, photogrammetry

Procedia PDF Downloads 81
2153 Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Study Case of the Beterou Catchment

Authors: Ella Sèdé Maforikan

Abstract:

Accurate land cover mapping is essential for effective environmental monitoring and natural resources management. This study focuses on assessing the classification performance of two satellite datasets and evaluating the impact of different input feature combinations on classification accuracy in the Beterou catchment, situated in the northern part of Benin. Landsat-8 and Sentinel-2 images from June 1, 2020, to March 31, 2021, were utilized. Employing the Random Forest (RF) algorithm on Google Earth Engine (GEE), a supervised classification categorized the land into five classes: forest, savannas, cropland, settlement, and water bodies. GEE was chosen due to its high-performance computing capabilities, mitigating computational burdens associated with traditional land cover classification methods. By eliminating the need for individual satellite image downloads and providing access to an extensive archive of remote sensing data, GEE facilitated efficient model training on remote sensing data. The study achieved commendable overall accuracy (OA), ranging from 84% to 85%, even without incorporating spectral indices and terrain metrics into the model. Notably, the inclusion of additional input sources, specifically terrain features like slope and elevation, enhanced classification accuracy. The highest accuracy was achieved with Sentinel-2 (OA = 91%, Kappa = 0.88), slightly surpassing Landsat-8 (OA = 90%, Kappa = 0.87). This underscores the significance of combining diverse input sources for optimal accuracy in land cover mapping. The methodology presented herein not only enables the creation of precise, expeditious land cover maps but also demonstrates the prowess of cloud computing through GEE for large-scale land cover mapping with remarkable accuracy. The study emphasizes the synergy of different input sources to achieve superior accuracy. As a future recommendation, the application of Light Detection and Ranging (LiDAR) technology is proposed to enhance vegetation type differentiation in the Beterou catchment. Additionally, a cross-comparison between Sentinel-2 and Landsat-8 for assessing long-term land cover changes is suggested.

Keywords: land cover mapping, Google Earth Engine, random forest, Beterou catchment

Procedia PDF Downloads 21
2152 Empirical Study on Factors Influencing SEO

Authors: Pakinee Aimmanee, Phoom Chokratsamesiri

Abstract:

Search engine has become an essential tool nowadays for people to search for their needed information on the internet. In this work, we evaluate the performance of the search engine from three factors: the keyword frequency, the number of inbound links, and the difficulty of the keyword. The evaluations are based on the ranking position and the number of days that Google has seen or detect the webpage. We find that the keyword frequency and the difficulty of the keyword do not affect the Google ranking where the number of inbound links gives remarkable improvement of the ranking position. The optimal number of inbound links found in the experiment is 10.

Keywords: SEO, information retrieval, web search, knowledge technologies

Procedia PDF Downloads 248
2151 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System

Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma

Abstract:

Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.

Keywords: machine learning, wearable devices, user interface, user experience, internet of things

Procedia PDF Downloads 251
2150 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System

Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple

Abstract:

This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.

Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation

Procedia PDF Downloads 67
2149 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 186
2148 Calculation and Comparison of a Turbofan Engine Performance Parameters with Various Definitions

Authors: O. Onal, O. Turan

Abstract:

In this paper, some performance parameters of a selected turbofan engine (JT9D) are analyzed. The engine is a high bypass turbofan engine which powers a wide-body aircraft and it produces 206 kN thrust force (thrust/weight ratio is 5.4). The objective parameters for the engine include calculation of power, specific fuel consumption, specific thrust, engine propulsive, thermal and overall efficiencies according to the various definitions given in the literature. Furthermore, in the case study, wasted energy from the exhaust is calculated at the maximum power setting (i.e. take off phase) for the engine.

Keywords: turbofan, power, efficiency, trust

Procedia PDF Downloads 257
2147 Study of Dual Fuel Engine as Environmentally Friendly Engine

Authors: Nilam S. Octaviani, Semin

Abstract:

The diesel engine is an internal combustion engine that uses compressed air to combust. The diesel engines are widely used in the world because it has the most excellent combustion efficiency than other types of internal combustion engine.  However, the exhaust emissions of it produce pollutants that are harmful to human health and the environment. Therefore, natural gas used as an alternative fuel using on compression ignition engine to respond those environment issues. This paper aims to discuss the comparison of the technical characteristics and exhaust gases emission from conventional diesel engine and dual fuel diesel engine. According to the study, the dual fuel engine applications have a lower compression pressure and has longer ignition delay compared with normal diesel mode. The engine power is decreased at dual fuel mode. However, the exhaust gases emission on dual fuel engine significantly reduce the nitrogen oxide (NOx), carbon dioxide (CO2) and particular metter (PM) emissions.

Keywords: diesel engine, dual fuel diesel engine, emission reduction, technical characteristics

Procedia PDF Downloads 262
2146 ANSYS Investigation on Stability and Performance of a Solar Driven Inline Alpha Stirling Engine

Authors: Joseph Soliman, Youssef Attia, Khairy Megalla

Abstract:

The stable operation of an inline Stirling engine will be achieved when both engine configurations and operating conditions are optimum. This paper presents stability and performance investigation of an inline Stirling engine using ANSYS. Dynamic motion of engine pistons such as the displacer and the power piston are both obtained. For engine design, the optimum parameters are given such as engine specifications, engine characteristics and working conditions to yield the maximum efficiency and reliability. The prototype was built and tested and it is used as a validation case. The comparison of both experimental and simulation results are provided and discussed. Results were found to be encouraging to initiate a Stirling engine project for 3 kW power output. The working fluids are air, hydrogen, nitrogen and helum.

Keywords: stirling engine, solar energy, new energy, dynamic motion

Procedia PDF Downloads 372
2145 Blended Learning through Google Classroom

Authors: Lee Bih Ni

Abstract:

This paper discusses that good learning involves all academic groups in the school. Blended learning is learning outside the classroom. Google Classroom is a free service learning app for schools, non-profit organizations and anyone with a personal Google account. Facilities accessed through computers and mobile phones are very useful for school teachers and students. Blended learning classrooms using both traditional and technology-based methods for teaching have become the norm for many educators. Using Google Classroom gives students access to online learning. Even if the teacher is not in the classroom, the teacher can provide learning. This is the supervision of the form of the teacher when the student is outside the school.

Keywords: blended learning, learning app, google classroom, schools

Procedia PDF Downloads 107
2144 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques

Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar

Abstract:

The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.

Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion

Procedia PDF Downloads 25
2143 Design Manufacture and Testing of a Combined Alpha-Beta Double Piston Stirling Engine

Authors: A. Calvin Antony, Sakthi Kumar Arul Prakash, V. R. Sanal Kumar

Abstract:

In this paper a unique alpha-beta double piston 'stirling engine' is designed, manufactured and conducted laboratory test to ameliorate the efficiency of the stirling engine. The paper focuses on alpha and beta type engines, capturing their benefits and eradicating their short comings; along with the output observed from the flywheel. In this model alpha engine is kinematically with a piston cylinder arrangement which works quite like a beta engine. The piston of the new cylinder is so designed that it replicates a glued displacer and power piston as similar to that of beta engine. The bigger part of the piston is the power piston, which has a gap around it, while the smaller part of the piston is tightly fit in the cylinder and acts like the displacer piston. We observed that the alpha-beta double piston stirling engine produces 25% increase in power compare to a conventional alpha stirling engine. This working model is a pointer towards for the design and development of an alpha-beta double piston Stirling engine for industrial applications for producing electricity from the heat producing exhaust gases.

Keywords: alpha-beta double piston stirling engine , alpha stirling engine , beta double piston stirling engine , electricity from stirling engine

Procedia PDF Downloads 498
2142 Lubrication Performance of Multi-Level Gear Oil in a Gasoline Engine

Authors: Feng-Tsai Weng, Dong- Syuan Cai, Tsochu-Lin

Abstract:

A vehicle gasoline engine converts gasoline into power so that the car can move, and lubricants are important for engines and also gear boxes. Manufacturers have produced numbers of engine oils, and gear oils for engines and gear boxes to SAE International Standards. Some products not only can improve the lubrication of both the engine and gear box but also can raise power of vehicle this can be easily seen in the advertisement declared by the manufacturers. To observe the lubrication performance, a multi-leveled (heavy duty) gear oil was added to a gasoline engine as the oil in the vehicle. The oil was checked at about every 10,000 kilometers. The engine was detailed disassembled, cleaned, and parts were measured. The wear of components of the engine parts were checked and recorded finally. Based on the experiment results, some gear oil seems possible to be used as engine oil in particular vehicles. Vehicle owners should change oil periodically in about every 6,000 miles (or 10,000 kilometers). Used car owners may change engine oil in even longer distance.

Keywords: multi-level gear oil, engine oil, viscosity, abrasion

Procedia PDF Downloads 284
2141 A Novel Combustion Engine, Design and Modeling

Authors: M. A. Effati, M. R. Hojjati, M. Razmdideh

Abstract:

Nowadays, engine developments have focused on internal combustion engine design call for increased engine power, reduced engine size and improved fuel economy, simultaneously. In this paper, a novel design for combustion engine is proposed. Two combustion chambers were designed in two sides of cylinder. Piston was designed in a way that two sides of piston would transfer heat energy due to combustion to linear motion. This motion would convert to rotary motion through the designed mechanism connected to connecting rod. Connecting rod operation was analyzed to evaluate applied stress in 3000, 4500 and 6000 rpm. Boundary conditions including generated pressure in each side of cylinder in these 3 situations was calculated.

Keywords: combustion engine, design, finite element method, modeling

Procedia PDF Downloads 464
2140 Determination of Optimum Torque of an Internal Combustion Engine by Exergy Analysis

Authors: Veena Chaudhary, Rakesh P. Gakkhar

Abstract:

In this study, energy and exergy analysis are applied to the experimental data of an internal combustion engine operating on conventional diesel cycle. The experimental data are collected using an engine unit which enables accurate measurements of fuel flow rate, combustion air flow rate, engine load, engine speed and all relevant temperatures. First and second law efficiencies are calculated for different engine speed and compared. Results indicate that the first law (energy) efficiency is maximum at 1700 rpm whereas exergy efficiency is maximum and exergy destruction is minimum at 1900 rpm.

Keywords: diesel engine, exergy destruction, exergy efficiency, second law of thermodynamics

Procedia PDF Downloads 284
2139 Enhanced Iceberg Information Dissemination for Public and Autonomous Maritime Use

Authors: Ronald Mraz, Gary C. Kessler, Ethan Gold, John G. Cline

Abstract:

The International Ice Patrol (IIP) continually monitors iceberg activity in the North Atlantic by direct observation using ships, aircraft, and satellite imagery. Daily reports detailing navigational boundaries of icebergs have significantly reduced the risk of iceberg contact. What is currently lacking is formatting this data for automatic transmission and display of iceberg navigational boundaries in commercial navigation equipment. This paper describes the methodology and implementation of a system to format iceberg limit information for dissemination through existing radio network communications. This information will then automatically display on commercial navigation equipment. Additionally, this information is reformatted for Google Earth rendering of iceberg track line limits. Having iceberg limit information automatically available in standard navigation equipment will help support full autonomous operation of sailing vessels.

Keywords: iceberg, iceberg risk, iceberg track lines, AIS messaging, international ice patrol, North American ice service, google earth, autonomous surface vessels

Procedia PDF Downloads 99
2138 Modeling and Optimization of Performance of Four Stroke Spark Ignition Injector Engine

Authors: A. A. Okafor, C. H. Achebe, J. L. Chukwuneke, C. G. Ozoegwu

Abstract:

The performance of an engine whose basic design parameters are known can be predicted with the assistance of simulation programs into the less time, cost and near value of actual. This paper presents a comprehensive mathematical model of the performance parameters of four stroke spark ignition engine. The essence of this research work is to develop a mathematical model for the analysis of engine performance parameters of four stroke spark ignition engine before embarking on full scale construction, this will ensure that only optimal parameters are in the design and development of an engine and also allow to check and develop the design of the engine and it’s operation alternatives in an inexpensive way and less time, instead of using experimental method which requires costly research test beds. To achieve this, equations were derived which describe the performance parameters (sfc, thermal efficiency, mep and A/F). The equations were used to simulate and optimize the engine performance of the model for various engine speeds. The optimal values obtained for the developed bivariate mathematical models are: sfc is 0.2833kg/kwh, efficiency is 28.77% and a/f is 20.75.

Keywords: bivariate models, engine performance, injector engine, optimization, performance parameters, simulation, spark ignition

Procedia PDF Downloads 279
2137 Efficient Energy Management: A Novel Technique for Prolonged and Persistent Automotive Engine

Authors: Chakshu Baweja, Ishaan Prakash, Deepak Giri, Prithwish Mukherjee, Herambraj Ashok Nalawade

Abstract:

The need to prevent and control rampant and indiscriminate usage of energy in present-day realm on earth has motivated active research efforts aimed at understanding of controlling mechanisms leading to sustained energy. Although much has been done but complexity of the problem has prevented a complete understanding due to nonlinear interaction between flow, heat and mass transfer in terrestrial environment. Therefore, there is need for a systematic study to clearly understand mechanisms controlling energy-spreading phenomena to increase a system’s efficiency. The present work addresses the issue of sustaining energy and proposes a devoted technique of optimizing energy in the automotive domain. The proposed method focus on utilization of the mechanical and thermal energy of an automobile IC engine by converting and storing energy due to motion of a piston in form of electrical energy. The suggested technique utilizes piston motion of the engine to generate high potential difference capable of working as a secondary power source. This is achieved by the use of a gear mechanism and a flywheel.

Keywords: internal combustion engine, energy, electromagnetic induction, efficiency, gear ratio, hybrid vehicle, engine shaft

Procedia PDF Downloads 432
2136 Design Improvement of Aircraft Turbofan Engine Following Bird Ingestion Testing

Authors: Ahmed H. Elkholy

Abstract:

Aircraft gas turbine engines are subject to damage by airborne foreign objects such as birds and garbage dumps. In order to assess their effect on engine performance, a complete foreign object damage (FOD) test was carried out and a component failure analysis was used to verify airworthiness standards (AWS) requirements for engine certification as set by international regulations. Ingestion damage due to 1.8 Kg (4 lb.) bird strike on an engine is presented in some detail. Based on the observed damage, improvements to the engine design were suggested in two different locations: the front bearing housing and the low compressor shaft. When these improvements were implemented, the engine showed an acceptable containment capability that meets AWS requirements.

Keywords: aircraft engine, airworthiness standards, bird ingestion, foreign object damage

Procedia PDF Downloads 382
2135 Main Factor That Causes the Instabilities of the Earth’s Rotation

Authors: Jin-Sim, Kwan-U Kim, Ryong-Jin Jang, Sung-Duk Kim

Abstract:

Earth rotation is one of astronomical phenomena without which it is impossible to think of human life. That is why the investigation of the Earth's rotation is very important, and it has a long history of study. The invention of quartz clocks in the 1930s, atomic time in the 1950s, and the introduction of modern technology into astronomic observation in recent years resulted in rapid development of the study of Earth’s rotation. The theory of the Earth's rotation, however, has not been up to the high level of astronomic observation due to the limitation of time. As a typical example, we can take the problems that cover the instabilities of the Earth’s rotation, proved completely by the astronomic observations as well as polar motion, the precession and nutation of the Earth's rotation axis, which have not been described in a single equation in a quantificational way from the unique law of Earth rotation. In particular, at present the problem of what is the main factor causing the instabilities of the Earth rotation has not been solved clearly in quantificational ways yet. Therefore, this paper gives quantificational proof that the main factor that causes the instabilities of the Earth's rotation is the moment of external force other than variations in the relative atmospheric angular momentum due to the time limitation and under some assumptions or the moment of inertia of the Earth’s body.

Keywords: atmospheric angular momentum, instabilities of the earth’s rotation, law of the earth’s rotation change, moment of inertia of the earth

Procedia PDF Downloads 8
2134 Spatio-Temporal Assessment of Urban Growth and Land Use Change in Islamabad Using Object-Based Classification Method

Authors: Rabia Shabbir, Sheikh Saeed Ahmad, Amna Butt

Abstract:

Rapid land use changes have taken place in Islamabad, the capital city of Pakistan, over the past decades due to accelerated urbanization and industrialization. In this study, land use changes in the metropolitan area of Islamabad was observed by the combined use of GIS and satellite remote sensing for a time period of 15 years. High-resolution Google Earth images were downloaded from 2000-2015, and object-based classification method was used for accurate classification using eCognition software. The information regarding urban settlements, industrial area, barren land, agricultural area, vegetation, water, and transportation infrastructure was extracted. The results showed that the city experienced a spatial expansion, rapid urban growth, land use change and expanding transportation infrastructure. The study concluded the integration of GIS and remote sensing as an effective approach for analyzing the spatial pattern of urban growth and land use change.

Keywords: land use change, urban growth, Islamabad, object-based classification, Google Earth, remote sensing, GIS

Procedia PDF Downloads 114
2133 Experimental Investigation on Effect of the Zirconium + Magnesium Coating of the Piston and Valve of the Single-Cylinder Diesel Engine to the Engine Performance and Emission

Authors: Erdinç Vural, Bülent Özdalyan, Serkan Özel

Abstract:

The four-stroke single cylinder diesel engine has been used in this study, the pistons and valves of the engine have been stabilized, the aluminum oxide (Al2O3) in different ratios has been added in the power of zirconium (ZrO2) magnesium oxide (MgO), and has been coated with the plasma spray method. The pistons and valves of the combustion chamber of the engine are coated with 5 different (ZrO2 + MgO), (ZrO2 + MgO + 25% Al2O3), (ZrO2 + MgO + 50% Al2O3), (ZrO2 + MgO + 75% Al2O3), (Al2O3) sample. The material tests have been made for each of the coated engine parts with the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) using Cu Kα radiation surface analysis methods. The engine tests have been repeated for each sample in any electric dynamometer in full power 1600 rpm, 2000 rpm, 2400 rpm and 2800 rpm engine speeds. The material analysis and engine tests have shown that the best performance has been performed with (ZrO2 + MgO + 50% Al2O3). Thus, there is no significant change in HC and Smoke emissions, but NOx emission is increased, as the engine improves power, torque, specific fuel consumption and CO emissions in the tests made with sample A3.

Keywords: ceramic coating, material characterization, engine performance, exhaust emissions

Procedia PDF Downloads 335
2132 Open Source Algorithms for 3D Geo-Representation of Subsurface Formations Properties in the Oil and Gas Industry

Authors: Gabriel Quintero

Abstract:

This paper presents the result of the implementation of a series of algorithms intended to be used for representing in most of the 3D geographic software, even Google Earth, the subsurface formations properties combining 2D charts or 3D plots over a 3D background, allowing everyone to use them, no matter the economic size of the company for which they work. Besides the existence of complex and expensive specialized software for modeling subsurface formations based on the same information provided to this one, the use of this open source development shows a higher and easier usability and good results, limiting the rendered properties and polygons to a basic set of charts and tubes.

Keywords: chart, earth, formations, subsurface, visualization

Procedia PDF Downloads 402
2131 Comparison of the H-Index of Researchers of Google Scholar and Scopus

Authors: Adian Fatchur Rochim, Abdul Muis, Riri Fitri Sari

Abstract:

H-index has been widely used as a performance indicator of researchers around the world especially in Indonesia. The Government uses Scopus and Google scholar as indexing references in providing recognition and appreciation. However, those two indexing services yield to different H-index values. For that purpose, this paper evaluates the difference of the H-index from those services. Researchers indexed by Webometrics, are used as reference’s data in this paper. Currently, Webometrics only uses H-index from Google Scholar. This paper observed and compared corresponding researchers’ data from Scopus to get their H-index score. Subsequently, some researchers with huge differences in score are observed in more detail on their paper’s publisher. This paper shows that the H-index of researchers in Google Scholar is approximately 2.45 times of their Scopus H-Index. Most difference exists due to the existence of uncertified publishers, which is considered in Google Scholar but not in Scopus.

Keywords: Google Scholar, H-index, Scopus, performance indicator

Procedia PDF Downloads 230
2130 Optimal Diesel Engine Technology Analysis Matching the Platform of the Helicopter

Authors: M. Wendeker, K. Siadkowska, P. Magryta, Z. Czyz, K. Skiba

Abstract:

In the paper environmental impact analysis the optimal Diesel engine for a light helicopter was performed. The paper consist an answer to the question of what the optimal Diesel engine for a light helicopter is, taking into consideration its expected performance and design capacity. The use of turbocharged engine with self-ignition and an electronic control system can substantially reduce the negative impact on the environment by decreasing toxic substance emission, fuel consumption and therefore carbon dioxide emission. In order to establish the environmental benefits of the diesel engine technologies, mathematical models were created, providing additional insight on the environmental impact and performance of a classic turboshaft and an advanced diesel engine light helicopter, incorporating technology developments.

Keywords: diesel engine, helicopter, simulation, environmental impact

Procedia PDF Downloads 524