Search results for: quinoa protein
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2365

Search results for: quinoa protein

1675 Identification of a Novel Maize Dehydration-Responsive Gene with a Potential Role in Improving Maize Drought Tolerance

Authors: Kyle Phillips, Ndiko Ludidi

Abstract:

Global climate change has resulted in altered rainfall patterns, which has resulted in annual losses in maize crop yields due to drought. Therefore it is important to produce maize cultivars that are more drought-tolerant, which is not an easily accomplished task as plants have a plethora of physical and biochemical adaptation methods. One such mechanism is the drought-induced expression of enzymatic and non-enzymatic proteins which assist plants to resist the effects of drought on their growth and development. One of these proteins is AtRD22 which has been identified in Arabidopsis thaliana. Using an in silico approach, a maize protein with 48% sequence homology to AtRD22 has been identified. This protein appears to be localized in the extracellular matrix, similarly to AtRD22. Promoter analysis of the encoding gene reveals cis-acting elements suggestive of induction of the gene’s expression by abscisic acid (ABA). Semi-quantitative transcriptomic analysis of the putative maize RD22 has revealed an increase in transcript levels after the exposure to drought. Current work elucidates the effect of up-regulation and silencing of the maize RD22 gene on the tolerance of maize to drought. The potential role of the maize RD22 gene in maize drought tolerance can be used as a tool to improve food security.

Keywords: abscisic acid, drought-responsive cis-acting elements, maize drought tolerance, RD22

Procedia PDF Downloads 464
1674 Development of the Food Market of the Republic of Kazakhstan in the Field of Milk Processing

Authors: Gulmira Zhakupova, Tamara Tultabayeva, Aknur Muldasheva, Assem Sagandyk

Abstract:

The development of technology and production of products with increased biological value based on the use of natural food raw materials are important tasks in the policy of the food market of the Republic of Kazakhstan. For Kazakhstan, livestock farming, in particular sheep farming, is the most ancient and developed industry and way of life. The history of the Kazakh people is largely connected with this type of agricultural production, with established traditions using dairy products from sheep's milk. Therefore, the development of new technologies from sheep’s milk remains relevant. In addition, one of the most promising areas for the development of food technology for therapeutic and prophylactic purposes is sheep milk products as a source of protein, immunoglobulins, minerals, vitamins, and other biologically active compounds. This article presents the results of research on the study of milk processing technology. The objective of the study is to study the possibilities of processing sheep milk and its role in human nutrition, as well as the results of research to improve the technology of sheep milk products. The studies were carried out on the basis of sanitary and hygienic requirements for dairy products in accordance with the following test methods. To perform microbiological analysis, we used the method for identifying Salmonella bacteria (Horizontal method for identifying, counting, and serotyping Salmonella) in a certain mass or volume of product. Nutritional value is a complex of properties of food products that meet human physiological needs for energy and basic nutrients. The protein mass fraction was determined by the Kjeldahl method. This method is based on the mineralization of a milk sample with concentrated sulfuric acid in the presence of an oxidizing agent, an inert salt - potassium sulfate, and a catalyst - copper sulfate. In this case, the amino groups of the protein are converted into ammonium sulfate dissolved in sulfuric acid. The vitamin composition was determined by HPLC. To determine the content of mineral substances in the studied samples, the method of atomic absorption spectrophotometry was used. The study identified the technological parameters of sheep milk products and determined the prospects for researching sheep milk products. Microbiological studies were used to determine the safety of the study product. According to the results of the microbiological analysis, no deviations from the norm were identified. This means high safety of the products under study. In terms of nutritional value, the resulting products are high in protein. Data on the positive content of amino acids were also obtained. The results obtained will be used in the food industry and will serve as recommendations for manufacturers.

Keywords: dairy, milk processing, nutrition, colostrum

Procedia PDF Downloads 57
1673 Effect of Microencapsulated Butyric Acid Supplementation on Growth Performance, Ileal Digestibility of Protein, Gut Health and Immunity in Broilers

Authors: Saeed Ahmed, Muhammad Imran, Yasir Allah Ditta, Shahid Mehmood, Zahid Rasool

Abstract:

A study was conducted to investigate the effect of different levels of microencapsulated butyric (MEB) on growth performance, gut health and immunity in commercial broiler chickens. In total, 336 day-old Hubbard classic broilers chicks were randomly assigned to 4 dietary treatments (Control, 0.25, 0.35 and 0.45g/kg of butyric acid) under completely randomized design. Each treatment was replicated 3 times with 28 birds in each replicate. Feed intake, body weight gain, feed conversion ratio, intestinal morphology, apparent ileal digestibility of protein and immunity parameters were evaluated. At the end of the experiment (35-d) 3 birds/replicate in each group were randomly selected and slaughtered to collect blood, duodenal samples and ileal digesta. The data were analyzed by using ANOVA technique. The results indicated improved body weight gain (P = 0.0222), feed conversion ratio (P = 0.0056), duodenal villus height (P = 0.0512), AID (P = 0.0098) antibody titer against Newcastle disease improved (P = 0.0326). Treatments remained unresponsive with respect to feed intake (P = 0.9685).

Keywords: butyric acid, broilers, gut health, ileal digestibility

Procedia PDF Downloads 324
1672 Recent Trend in Gluten-Free Bakery Products

Authors: Madhuresh Dwivedi, Navneet Singh Deora, H. N. Mishra

Abstract:

In the context of bakery products, the gluten component of wheat has a crucial role in stabilizing the gas-cell and crumb structures, appearance, mouth feel and maintaining the rheological properties, thus the acceptability of these products. However, because of coeliac disease, some individuals cannot tolerate the protein gliadin present in the gluten fraction of wheat flour. Also termed as gluten-sensitive enteropathy, it is a common chronicle disorder in populations throughout the world with average prevalence of 0.37%. The safest way for celiac sufferers is to stay away from gluten-containing foods such as wheat, rye, barley as well as durum wheat, spelt wheat, and triticale. Thus, in view of the current increasing incidence of gluten intolerant sufferers (due to improved diagnostic procedures), the development of gluten-free cereal-based bakery products suitable for celiac patients represents a challenging and serious task, but also very demanding call for food technologists as well as for the bakers. The use of alternative cereal starches (like rice, soy, maize, potato and so on), gums, hydrocolloids, dietary fibres, alternative protein sources, prebiotics and combinations of them represent the most widespread approach used as replacement to mimic gluten in the manufacture of industrial processable gluten-free bakery products due to their structure-building and water binding properties.

Keywords: gluten-free, coeliac disease, alternative flour, hydrocolloid, crumb structure

Procedia PDF Downloads 277
1671 Decolonising Postgraduate Research Curricula and Its Impact on a Sustainable Protein Supply in Rural-Based Communities

Authors: Fabian Nde Fon

Abstract:

Decolonisation is one of the hottest topics in most African Universities; this is because many researchers focus on research that does not speak to their immediate community. This research looked at postgraduate research projects that can take students to the community to apply the knowledge that they have learned as an attempt to transform their community. In regards to this, an honours project was designed to try and provide a cheaper and continuous source of protein (egg) using amber-link layers and to investigate the potential of the project to promote postgraduate student development and entrepreneurship. Two ban layer production systems were created: (1) Production system one on a Hill (PS-I) and (2) Production system two in a valley, closer to a dam (PS-II) at Nqutshini, Gingindlovu, KwaZulu-Natal Province. Forty point-of-lay (18 weeks old) amber links were bought at Inverness Rearers and divided into PS-I (20), and PS-II (20), and each of the production systems was further divided into two groups of ten (PS-I-1 and PS-II-1 (partially supplemented) and PS-I-2 and PS-II-2 (supplemented with layer mash)) by a random selection. Birds' weights were balanced in each group to avoid bias. The two groups in each production system were caged separately (1.5x1.5m² for ten birds) and in close proximity. Partially supplemented birds received 0.6 kg of layer mash (60g/per bird/day) and kitchen leftovers daily, and supplemented birds were fed 1.2 kg of layer mash (120g/per bird/day). Egg collection was daily after feeding in the morning while was given ad libitium. The eggs were assessed for internal and external quality after weighing before recording. Egg production from fully supplemented birds (PS-I-2 and PS-II-2) was generally higher (P<0.05) than those of PS-I-1 and PS-II-1. The difference in production was only 6% in the valley while on the Hill, it was only 3%. However, some of the birds in the valley showed signs of respiratory infections, which was not observed with those on the Hill. There are no differences in the internal and external qualities of eggs (york colour and egg shell) determined. This implies that both systems were sustainable. It was suggested members in the community living at the valley or Hill can use these hardy layers as a cheaper source of protein and preferable to the partially supplemented systems because it is relatively cheaper. The smallholder farmers are still pursuing the project long after the students graduate; hence the benefit of the project is reciprocal for both the university and the community (entrepreneurship).

Keywords: animal nutrition, ban layer, production, postgraduate curricula, entrepreneurship

Procedia PDF Downloads 114
1670 The Multiple Sclerosis and the Role of Human Herpesvirus 6 in Its Progression

Authors: Sina Mahdavi

Abstract:

Background and Objective: Multiple sclerosis (MS) is an inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially Human Herpesvirus 6 (HHV-6), and MS is one potential cause that is not well understood. In this study, we aim to summarize the available data on HHV-6 infection in MS disease progression. Materials and Methods: For this study, the keywords "Multiple sclerosis", " Human Herpesvirus 6 ", and "central nervous system" in the databases PubMed and Google Scholar between 2017 and 2022 were searched, and 12 articles were chosen, studied, and analyzed. Results: HHV 6 tends towards TCD 4+ lymphocytes and enters the CNS due to the weakening of the blood-brain barrier due to inflammatory damage. Following the observation that the HHV-6 U24 protein has a seven amino acid sequence with myelin basic protein, which is one of the main components of the myelin sheath, it could cause a molecular mimicry mechanism followed by cross-reactivity. Reactivation of HHV-6 in the CNS can cause the release of proinflammatory cytokines, including TNF-α, leading to immune-mediated demyelination in patients with MS. Conclusion: There is a high expression of endogenous retroviruses during the course of MS, which indicates the relationship between HHV-6 and MS, and that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HHV-6 may be effective in reducing inflammatory processes in demyelinated areas of MS patients.

Keywords: multiple sclerosis, human herpesvirus 6, central nervous system, autoimmunity

Procedia PDF Downloads 111
1669 Purification and Pre-Crystallization of Recombinant PhoR Cytoplasmic Domain Protein from Mycobacterium Tuberculosis H37Rv

Authors: Oktira Roka Aji, Maelita R. Moeis, Ihsanawati, Ernawati A. Giri-Rachman

Abstract:

Globally, tuberculosis (TB) remains a leading cause of death. The emergence of multidrug-resistant strains and extensively drug-resistant strains have become a major public concern. One of the potential candidates for drug target is the cytoplasmic domain of PhoR Histidine Kinase, a part of the Two Component System (TCS) PhoR-PhoP in Mycobacterium tuberculosis (Mtb). TCS PhoR-PhoP relay extracellular signal to control the expression of 114 virulent associated genes in Mtb. The 3D structure of PhoR cytoplasmic domain is needed to screen novel drugs using structure based drug discovery. The PhoR cytoplasmic domain from Mtb H37Rv was overexpressed in E. coli BL21(DE3), then purified using IMAC Ni-NTA Agarose his-tag affinity column and DEAE-ion exchange column chromatography. The molecular weight of the purified protein was estimated to be 37 kDa after SDS-PAGE analysis. This sample was used for pre-crystallization screening by applying sitting drop vapor diffusion method using Natrix (HR2-116) 48 solutions crystal screen kit at 25ºC. Needle-like crystals were observed after the seventh day of incubation in test solution No.47 (0.1 M KCl, 0.01 M MgCl2.6H2O, 0.05 M Tris-Cl pH 8.5, 30% v/v PEG 4000). Further testing is required for confirming the crystal.

Keywords: tuberculosis, two component system, histidine kinase, needle-like crystals

Procedia PDF Downloads 432
1668 Absolute Quantification of the Bexsero Vaccine Component Factor H Binding Protein (fHbp) by Selected Reaction Monitoring: The Contribution of Mass Spectrometry in Vaccinology

Authors: Massimiliano Biagini, Marco Spinsanti, Gabriella De Angelis, Sara Tomei, Ilaria Ferlenghi, Maria Scarselli, Alessia Biolchi, Alessandro Muzzi, Brunella Brunelli, Silvana Savino, Marzia M. Giuliani, Isabel Delany, Paolo Costantino, Rino Rappuoli, Vega Masignani, Nathalie Norais

Abstract:

The gram-negative bacterium Neisseria meningitidis serogroup B (MenB) is an exclusively human pathogen representing the major cause of meningitides and severe sepsis in infants and children but also in young adults. This pathogen is usually present in the 30% of healthy population that act as a reservoir, spreading it through saliva and respiratory fluids during coughing, sneezing, kissing. Among surface-exposed protein components of this diplococcus, factor H binding protein is a lipoprotein proved to be a protective antigen used as a component of the recently licensed Bexsero vaccine. fHbp is a highly variable meningococcal protein: to reflect its remarkable sequence variability, it has been classified in three variants (or two subfamilies), and with poor cross-protection among the different variants. Furthermore, the level of fHbp expression varies significantly among strains, and this has also been considered an important factor for predicting MenB strain susceptibility to anti-fHbp antisera. Different methods have been used to assess fHbp expression on meningococcal strains, however, all these methods use anti-fHbp antibodies, and for this reason, the results are affected by the different affinity that antibodies can have to different antigenic variants. To overcome the limitations of an antibody-based quantification, we developed a quantitative Mass Spectrometry (MS) approach. Selected Reaction Monitoring (SRM) recently emerged as a powerful MS tool for detecting and quantifying proteins in complex mixtures. SRM is based on the targeted detection of ProteoTypicPeptides (PTPs), which are unique signatures of a protein that can be easily detected and quantified by MS. This approach, proven to be highly sensitive, quantitatively accurate and highly reproducible, was used to quantify the absolute amount of fHbp antigen in total extracts derived from 105 clinical isolates, evenly distributed among the three main variant groups and selected to be representative of the fHbp circulating subvariants around the world. We extended the study at the genetic level investigating the correlation between the differential level of expression and polymorphisms present within the genes and their promoter sequences. The implications of fHbp expression on the susceptibility of the strain to killing by anti-fHbp antisera are also presented. To date this is the first comprehensive fHbp expression profiling in a large panel of Neisseria meningitidis clinical isolates driven by an antibody-independent MS-based methodology, opening the door to new applications in vaccine coverage prediction and reinforcing the molecular understanding of released vaccines.

Keywords: quantitative mass spectrometry, Neisseria meningitidis, vaccines, bexsero, molecular epidemiology

Procedia PDF Downloads 312
1667 Lentiviral-Based Novel Bicistronic Therapeutic Vaccine against Chronic Hepatitis B Induces Robust Immune Response

Authors: Mohamad F. Jamiluddin, Emeline Sarry, Ana Bejanariu, Cécile Bauche

Abstract:

Introduction: Over 360 million people are chronically infected with hepatitis B virus (HBV), of whom 1 million die each year from HBV-associated liver cirrhosis or hepatocellular carcinoma. Current treatment options for chronic hepatitis B depend on interferon-α (IFNα) or nucleos(t)ide analogs, which control virus replication but rarely eliminate the virus. Treatment with PEG-IFNα leads to a sustained antiviral response in only one third of patients. After withdrawal of the drugs, the rebound of viremia is observed in the majority of patients. Furthermore, the long-term treatment is subsequently associated with the appearance of drug resistant HBV strains that is often the cause of the therapy failure. Among the new therapeutic avenues being developed, therapeutic vaccine aimed at inducing immune responses similar to those found in resolvers is of growing interest. The high prevalence of chronic hepatitis B necessitates the design of better vaccination strategies capable of eliciting broad-spectrum of cell-mediated immunity(CMI) and humoral immune response that can control chronic hepatitis B. Induction of HBV-specific T cells and B cells by therapeutic vaccination may be an innovative strategy to overcome virus persistence. Lentiviral vectors developed and optimized by THERAVECTYS, due to their ability to transduce non-dividing cells, including dendritic cells, and induce CMI response, have demonstrated their effectiveness as vaccination tools. Method: To develop a HBV therapeutic vaccine that can induce a broad but specific immune response, we generated recombinant lentiviral vector carrying IRES(Internal Ribosome Entry Site)-containing bicistronic constructs which allow the coexpression of two vaccine products, namely HBV T- cell epitope vaccine and HBV virus like particle (VLP) vaccine. HBV T-cell epitope vaccine consists of immunodominant cluster of CD4 and CD8 epitopes with spacer in between them and epitopes are derived from HBV surface protein, HBV core, HBV X and polymerase. While HBV VLP vaccine is a HBV core protein based chimeric VLP with surface protein B-cell epitopes displayed. In order to evaluate the immunogenicity, mice were immunized with lentiviral constructs by intramuscular injection. The T cell and antibody immune responses of the two vaccine products were analyzed using IFN-γ ELISpot assay and ELISA respectively to quantify the adaptive response to HBV antigens. Results: Following a single administration in mice, lentiviral construct elicited robust antigen-specific IFN-γ responses to the encoded antigens. The HBV T- cell epitope vaccine demonstrated significantly higher T cell immunogenicity than HBV VLP vaccine. Importantly, we demonstrated by ELISA that antibodies are induced against both HBV surface protein and HBV core protein when mice injected with vaccine construct (p < 0.05). Conclusion: Our results highlight that THERAVECTYS lentiviral vectors may represent a powerful platform for immunization strategy against chronic hepatitis B. Our data suggests the likely importance of Lentiviral vector based novel bicistronic construct for further study, in combination with drugs or as standalone antigens, as a therapeutic lentiviral based HBV vaccines. THERAVECTYS bicistronic HBV vaccine will be further evaluated in animal efficacy studies.

Keywords: chronic hepatitis B, lentiviral vectors, therapeutic vaccine, virus-like particle

Procedia PDF Downloads 334
1666 Polarimetric Study of System Gelatin / Carboxymethylcellulose in the Food Field

Authors: Sihem Bazid, Meriem El Kolli, Aicha Medjahed

Abstract:

Proteins and polysaccharides are the two types of biopolymers most frequently used in the food industry to control the mechanical properties and structural stability and organoleptic properties of the products. The textural and structural properties of these two types of blend polymers depend on their interaction and their ability to form organized structures. From an industrial point of view, a better understanding of mixtures protein / polysaccharide is an important issue since they are already heavily involved in processed food. It is in this context that we have chosen to work on a model system composed of a fibrous protein mixture (gelatin)/anionic polysaccharide (sodium carboxymethylcellulose). Gelatin, one of the most popular biopolymers, is widely used in food, pharmaceutical, cosmetic and photographic applications, because of its unique functional and technological properties. Sodium Carboxymethylcellulose (NaCMC) is an anionic linear polysaccharide derived from cellulose. It is an important industrial polymer with a wide range of applications. The functional properties of this anionic polysaccharide can be modified by the presence of proteins with which it might interact. Another factor may also manage the interaction of protein-polysaccharide mixtures is the triple helix of the gelatin. Its complex synthesis method results in an extracellular assembly containing several levels. Collagen can be in a soluble state or associate into fibrils, which can associate in fiber. Each level corresponds to an organization recognized by the cellular and metabolic system. Gelatin allows this approach, the formation of gelatin gel has triple helical folding of denatured collagen chains, this gel has been the subject of numerous studies, and it is now known that the properties depend only on the rate of triple helices forming the network. Chemical modification of this system is quite controlled. Observe the dynamics of the triple helix may be relevant in understanding the interactions involved in protein-polysaccharides mixtures. Gelatin is central to any industrial process, understand and analyze the molecular dynamics induced by the triple helix in the transitions gelatin, can have great economic importance in all fields and especially the food. The goal is to understand the possible mechanisms involved depending on the nature of the mixtures obtained. From a fundamental point of view, it is clear that the protective effect of NaCMC on gelatin and conformational changes of the α helix are strongly influenced by the nature of the medium. Our goal is to minimize the maximum the α helix structure changes to maintain more stable gelatin and protect against denaturation that occurs during such conversion processes in the food industry. In order to study the nature of interactions and assess the properties of mixtures, polarimetry was used to monitor the optical parameters and to assess the rate of helicity gelatin.

Keywords: gelatin, sodium carboxymethylcellulose, interaction gelatin-NaCMC, the rate of helicity, polarimetry

Procedia PDF Downloads 312
1665 Safety and Efficacy of Recombinant Clostridium botulinum Types B Vaccine Candidate

Authors: Mi-Hye Hwang, Young Min Son, Kichan Lee, Bang-Hun Hyun, Byeong Yeal Jung

Abstract:

Botulism is a paralytic disease of human beings and animals caused by neurotoxin produced by Clostridium botulinum. The neurotoxins are genetically distinguished into 8 types, A to H. Ingestion of performed toxin, usually types B, C, and D, have been shown to produce diseases in most cases of cattle botulism. Vaccination is the best measure to prevent cattle botulism. However, the commercially available toxoid-based vaccines are difficult and hazardous to produce. We produced recombinant protein using gene of heavy chain domain of botulinum toxin B of which binds to cellular receptor of neuron cells and used as immunogen. In this study, we evaluated the safety and efficacy of botulism vaccine composed of recombinant types B. Safety test was done by National Regulation for Veterinary Biologicals. For efficacy test, female ICR mice (5 weeks old) were subcutaneously injected, intraperitoneally challenged, and examined the survival rates compared with vaccination and non-vaccination group. Mouse survival rate of recombinant types B vaccine was above 80%, while one of non-vaccination group was 0%. A vaccine composed of recombinant types B was safe and efficacious in mouse. Our results suggest that recombinant heavy chain receptor binding domain can be used as an effective vaccine candidate for type B botulism.

Keywords: botulism, livestock, vaccine, recombinant protein, toxin

Procedia PDF Downloads 239
1664 Synergetic Effect of Dietary Essential Amino Acids (Lysine and Methionine) on the Growth, Body Composition and Enzymes Activities of Genetically Male Tilapia

Authors: Noor Khan, Hira Waris

Abstract:

This study was conducted on genetically male tilapia (GMT) fry reared in glass aquarium for three months to examine the synergetic effect of essential amino acids (EAA) supplementation on growth, body composition, and enzyme activities. Fish having average body weight of 16.56 ± 0.42g were fed twice a day on artificial feed (20% crude protein) procured from Oryza Organics (commercial feed) supplemented with EAA; methionine (M) and lysine (L) designated as T1 (0.3%M and 2%L), T2 (0.6%M and 4%L), T3 (0.9%M and 6%L) and control without EAA. Significantly higher growth performance was observed in T1, followed by T2, T3, and control. The results revealed that whole-body dry matter and crude protein were significantly higher (p ≤ 0.05) in T3 (0.9% and 6%) feeding fish, while the crude fat was lower (p ≤ 0.05) in a similar group of fish. Additionally, protease, amylase, and lipase activities were also observed maximum (p ≤ 0.05) in response to T3 than other treatments and control. However, the EAA, especially lysine and methionine, were found significantly higher (p ≤ 0.05) in T1 compared to other treatments. Conclusively, the addition of EAA, methionine, and lysine in the feed not only enhanced the growth performance of GMT fry but also improved body proximate composition and essential amino acid profile.

Keywords: genetically male tilapia, body composition, digestive enzyme activities, amino acid profile

Procedia PDF Downloads 147
1663 The Use of Global Positioning Systems to Evaluate the Effect of Protein and Carbohydrate Supplementation on Collegiate Soccer Performance

Authors: Joshua Bradley, Matthew Buns

Abstract:

This study aimed to identify the effect of concurrent nutritional supplementation on soccer performance as players ingested either carbohydrate CHO (52 g of Cytocarb Maltodextrin) or a combined carbohydrate and protein PRO (Muscle Milk Pro Series 17g CHO + 50 g PRO liquid) supplement. Twelve male, junior college soccer players (age: 18 ± 6 years, wt. 73.3 ± 8.6 kg) completed three trials wearing global positioning systems (GPS) to measure total running distance and sprinting distance during soccer simulation games. The first match simulation was a baseline match with no supplementation. One hour prior to the second match, simulation players were randomly assigned to one of two supplemental groups CHO or CHO + PRO. A repeated measures ANOVA with a Greenhouse-Geisser correction revealed a statistically significant increase in the total distance run for the CHO supplementation group in comparison to the CHO + PRO group (10.19 ± .200 km vs. 9.77± .194km, p = .035). Although the total running distance was meaningfully influenced by the supplementation, the pattern of response for total sprinting distance was not influenced by supplementation. There was a decline in sprinting distance and total running distance from first half to second half, both for the control (M = -0.01 km, SD = 0.17) and CHO supplementation group (-0.04 km, SD = .19), although these differences were not statistically meaningful. There was a positive correlation between sprinting distance and total distance, which was statistically significant (r = -.514, n = 36, p = .01) In conclusion, supplementation influenced the pattern of activity and demonstrated between-trial differences.

Keywords: GPS, nutrition, simulation, supplementation

Procedia PDF Downloads 146
1662 The Sensitization Profile of Children Allergic to IgE-mediated Cow's Milk Proteins

Authors: Gadiri Sabiha

Abstract:

Introduction : IgE-dependent cow's milk protein allergy (APLV) is one of the most common allergies in children and is one of the three most common allergies observed in children under 6 years of age. Its natural evolution is most often towards healing. The objective is to determine the sensitization profile of patients allergic to cow's milk (VL). Material and method :A retrospective study carried out on a pediatric population (age < 12 years) over a period of four years (2018-2021) in the context of a suspected food allergy to cow's milk proteins carried out on 121 children aged between 8 months -12 years The search for specific IgE was carried out by immunodot (EUROLINE Pediatric; EUROIMMUN) test which allows a semi-quantitative determination of specific IgE. Results 36 patients (29.7%) had a cow's milk protein allergy (ALPV) with a slight female predominance (58.33% girls vs 41.66% boys) The main clinical signs were: acute diarrhoea; vomiting; Intense abdominal pain, and cutaneous signs (pruritus/urticaria) with respective frequencies of 72%; 58%; 44% and 19%. The 3 major and specific VL allergens identified were beta-lactoglobulin 59% caseins 51% and alpha-lactalbumin 29.7%, The profile of sensitization to LV varies according to age, in infants before 1 year of anti-casein, IgE are predominant 83.3%, followed by beta-lactoglobulin 66.66% and alpha-lactolbumin 50% Conclusion CMPA is a frequent pathology which ranks among the three most common food allergies in children. This is the first to appear, most often starting in infants under 6 months old.

Keywords: specific Ige, food allergy, cow 's milk, child

Procedia PDF Downloads 71
1661 The Effect of Combined Doxorubicin and Dioscorea esculenta on Apoptosis Induction in Human Breast Cancer Cells

Authors: Dina Fatmawati, Sofia Mubarika, Mae Sri Wahyuningsih

Abstract:

Chemotherapy for breast cancer is largely ineffective, but innovative combinations of chemotherapeutic agents and natural compounds represent a promising strategy. In our previous study, the combination of Doxorubicin (Dox) and ethanolic extract of Dioscorea esculenta tuber ((EED) was found to have a synergistic effect on T47D human breast cancer cell line. In this study, we investigated the apoptotic effect of the combination on T47D human breast cancer cells and normal fibroblasts cell line and its effects on the expression of Caspase-3 and cleaved poly (ADP-Ribose) Polymerase-1 (cPARP-1) protein. T47D cell lines and fibroblasts cells were treated with the combination of Dox and EED. Apoptotic effect of the combination was determined using flow cytrometry assay. Protein expressions were determined by immunocytochemistry staining. The percentage of apoptotic cells were significantly higher in T47D cell lines (75%) than that of in fibroblast cells (23%). The expression of Caspase 3 (84.53%) and cPARP-1 (83.36%) were significantly higher in the cancer cell lines than those of normal cells. These results indicate that the combination of doxorubicin and Dioscorea esculenta is a promising candidate for the treatment of breast cancer cells.

Keywords: Dioscorea esculenta, Doxorubicin, apoptosis, immunocytochemistry, cancer cells

Procedia PDF Downloads 458
1660 A Computational Approach to Screen Antagonist’s Molecule against Mycobacterium tuberculosis Lipoprotein LprG (Rv1411c)

Authors: Syed Asif Hassan, Tabrej Khan

Abstract:

Tuberculosis (TB) caused by bacillus Mycobacterium tuberculosis (Mtb) continues to take a disturbing toll on human life and healthcare facility worldwide. The global burden of TB remains enormous. The alarming rise of multi-drug resistant strains of Mycobacterium tuberculosis calls for an increase in research efforts towards the development of new target specific therapeutics against diverse strains of M. tuberculosis. Therefore, the discovery of new molecular scaffolds targeting new drug sites should be a priority for a workable plan for fighting resistance in Mycobacterium tuberculosis (Mtb). Mtb non-acylated lipoprotein LprG (Rv1411c) has a Toll-like receptor 2 (TLR2) agonist actions that depend on its association with triacylated glycolipids binding specifically with the hydrophobic pocket of Mtb LprG lipoprotein. The detection of a glycolipid carrier function has important implications for the role of LprG in Mycobacterial physiology and virulence. Therefore, considering the pivotal role of glycolipids in mycobacterial physiology and host-pathogen interactions, designing competitive antagonist (chemotherapeutics) ligands that competitively bind to glycolipid binding domain in LprG lipoprotein, will lead to inhibition of tuberculosis infection in humans. In this study, a unified approach involving ligand-based virtual screening protocol USRCAT (Ultra Shape Recognition) software and molecular docking studies using Auto Dock Vina 1.1.2 using the X-ray crystal structure of Mtb LprG protein was implemented. The docking results were further confirmed by DSX (DrugScore eXtented), a robust program to evaluate the binding energy of ligands bound to the Ligand binding domain of the Mtb LprG lipoprotein. The ligand, which has the higher hypothetical affinity, also has greater negative value. Based on the USRCAT, Lipinski’s values and molecular docking results, [(2R)-2,3-di(hexadecanoyl oxy)propyl][(2S,3S,5S,6R)-3,4,5-trihydroxy-2,6-bis[[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6 (hydroxymethyl)tetrahydropyran-2-yl]oxy]cyclohexyl] phosphate (XPX) was confirmed as a promising drug-like lead compound (antagonist) binding specifically to the hydrophobic domain of LprG protein with affinity greater than that of PIM2 (agonist of LprG protein) with a free binding energy of -9.98e+006 Kcal/mol and binding affinity of -132 Kcal/mol, respectively. A further, in vitro assay of this compound is required to establish its potency in inhibiting molecular evasion mechanism of MTB within the infected host macrophages. These results will certainly be helpful in future anti-TB drug discovery efforts against Multidrug-Resistance Tuberculosis (MDR-TB).

Keywords: antagonist, agonist, binding affinity, chemotherapeutics, drug-like, multi drug resistance tuberculosis (MDR-TB), RV1411c protein, toll-like receptor (TLR2)

Procedia PDF Downloads 271
1659 Gene Expression Profile Reveals Breast Cancer Proliferation and Metastasis

Authors: Nandhana Vivek, Bhaskar Gogoi, Ayyavu Mahesh

Abstract:

Breast cancer metastasis plays a key role in cancer progression and fatality. The present study examines the potential causes of metastasis in breast cancer by investigating the novel interactions between genes and their pathways. The gene expression profile of GSE99394, GSE1246464, and GSE103865 was downloaded from the GEO data repository to analyze the differentially expressed genes (DEGs). Protein-protein interactions, target factor interactions, pathways and gene relationships, and functional enrichment networks were investigated. The proliferation pathway was shown to be highly expressed in breast cancer progression and metastasis in all three datasets. Gene Ontology analysis revealed 11 DEGs as gene targets to control breast cancer metastasis: LYN, DLGAP5, CXCR4, CDC6, NANOG, IFI30, TXP2, AGTR1, MKI67, and FTH1. Upon studying the function, genomic and proteomic data, and pathway involvement of the target genes, DLGAP5 proved to be a promising candidate due to it being highly differentially expressed in all datasets. The study takes a unique perspective on the avenues through which DLGAP5 promotes metastasis. The current investigation helps pave the way in understanding the role DLGAP5 plays in metastasis, which leads to an increased incidence of death among breast cancer patients.

Keywords: genomics, metastasis, microarray, cancer

Procedia PDF Downloads 97
1658 Investigation of the Effects of Monoamine Oxidase Levels on the 20S Proteasome

Authors: Bhavini Patel, Aslihan Ugun-Klusek, Ellen Billet

Abstract:

The two main contributing factors to familial and idiopathic form of Parkinson’s disease (PD) are oxidative stress and altered proteolysis. Monoamine oxidase-A (MAO-A) plays a significant role in redox homeostasis by producing reactive oxygen species (ROS) via deamination of for example, dopamine. The ROS generated induces chemical modification of proteins resulting in altered biological function. The ubiquitin-proteasome system, which consists of three different types or proteolytic activity, namely “chymotrypsin-like” activity (CLA), “trypsin-like” activity (TLA) and “post acidic-like” activity (PLA), is responsible for the degradation of ubiquitinated proteins. Defects in UPS are known to be strongly correlated to PD. Herein, the effect of ROS generated by MAO-A on proteasome activity and the effects of proteasome inhibition on MAO-A protein levels in WT, mock and MAO-A overexpressed (MAO-A+) SHSY5Y neuroblastoma cell lines were investigated. The data in this study report increased proteolytic activity when MAO-A protein levels are significantly increased, in particular CLA and PLA. Additionally, 20S proteasome inhibition induced a decrease in MAO-A levels in WT and mock cells in comparison to MAO-A+ cells in which 20S proteasome inhibition induced increased MAO-A levels to be further increased at 48 hours of inhibition. This study supports the fact that MAO-A could be a potential pharmaceutical target for neuronal protection as data suggests that endogenous MAO-A levels may be essential for modulating cell death and survival.

Keywords: monoamine oxidase, neurodegeneration, Parkinson's disease, proteasome

Procedia PDF Downloads 135
1657 Determination of the Seed Vigor of Soybean Cultivated as Main and Second Crop in Turkey

Authors: Mehmet Demir Kaya, Engin Gökhan Kulan, Onur İleri, Süleyman Avcı

Abstract:

This research was conducted to determine the difference in seed vigor between the seed lots cultivated in main and second crop of soybean in Turkey. Seeds from soybean cv. Cinsoy and Umut-2002 were evaluated in the laboratory for germination, emergence, cool test at 18°C for 10 days, and cold test at 10°C for 4 days and 25°C for 6 days. Result showed that the initial oil contents of Cinsoy and Umut-2002 and seeds were determined to be 19.8 and 20.1% in main crop, and 18.7 and 22.1% in second crop, respectively. It was determined that a clear difference between main and second crop soybean seed lots for seed vigor was found. Germination and emergence percentage were higher in the seed from second crop cultivation of the cultivars. There was no significant difference in germination percentage in cool and cold test while seedling growth was better in the seeds of second crop soybean. The highest seed vigor index (477.6) was found in the seeds of the cultivars grown at second crop. Standard germination percentage did not give a sensitive separation for determining seed vigor of soybean lots. It was concluded that second crop soybean seeds were found the most suitable for seed production while main crop soybean gave higher protein lower oil content.

Keywords: Glycine max L., germination, emergence, protein content, vigor test

Procedia PDF Downloads 458
1656 New to Vancouver: The Effects of Residential Relocation on Cardiovascular Disease Risk

Authors: Rachel Karasenty Saltoun, Charlotte Roddick, Chelsea D. Christie, Frances Chen

Abstract:

Moving has become an integral part of many people’s lives. This research explores whether relocating to a new city is associated with an increase in loneliness and cardiovascular disease risk and if this increased risk diminishes with continued residency. To test this, various psychosocial variables and three cardiovascular disease risk markers (C-reactive protein, albumin, blood pressure) were assessed on two groups of individuals: those who have moved to Vancouver, Canada in the previous 6 weeks (‘Movers’) and those who have lived in Vancouver for at least five years (‘Non-Movers’). It was hypothesized that individuals who had recently relocated would have heightened levels of loneliness, blood pressure (BP), albumin, and C-reactive protein (CRP) compared to those who had not recently relocated. Length of residency was hypothesized to moderate these effects, such that after a few months, loneliness levels and cardiovascular disease risk would decrease among those who had recently relocated. Correlational analysis indicated a trend between the change in CRP and albumin levels and loneliness overtime on an individual level. However, these results must be interpreted with caution due to the small sample size. As Vancouver’s immigration rates continue to grow, this study has important implications regarding the social support resources offered to new immigrants, as well as bringing awareness at the healthcare level of the potential increase in cardiovascular disease risk among those who have recently relocated.

Keywords: cardiovascular disease risk, loneliness, moving, residential mobility

Procedia PDF Downloads 108
1655 Biocompatibility and Electrochemical Assessment of Biomedical Ti-24Nb-4Zr-8Sn Produced by Spark Plasma Sintering

Authors: Jerman Madonsela, Wallace Matizamhuka, Akiko Yamamoto, Ronald Machaka, Brendon Shongwe

Abstract:

In this study, biocompatibility evaluation of nanostructured near beta Ti-24Nb-4Zr-8Sn (Ti2448) alloy with non-toxic elements produced utilizing Spark plasma sintering (SPS) of very fine microsized powders attained through mechanical alloying was performed. The results were compared with pure titanium and Ti-6Al-4V (Ti64) alloy. Cell proliferation test was performed using murine osteoblastic cells, MC3T3-E1 at two cell densities; 400 and 4000 cells/mL for 7 days incubation. Pure titanium took a lead under both conditions suggesting that the presence of other oxide layers influence cell proliferation. No significant difference in cell proliferation was observed between Ti64 and Ti2448. Potentiodynamic measurement in Hanks, 0.9% NaCl and cell culture medium showed no distinct difference on the anodic polarization curves of the three alloys, indicating that the same anodic reaction occurred on their surface but with different rates. However, Ti2448 showed better corrosion resistance in cell culture medium with a slightly lower corrosion rate of 2.96 nA/cm2 compared to 4.86 nA/cm2 and 5.62 nA/cm2 of Ti and Ti64 respectively. Ti2448 adsorbed less protein as compared to Ti and Ti64 though no notable difference in surface wettability was observed.

Keywords: biocompatibility, osteoblast, corrosion, surface wettability, protein adsorption

Procedia PDF Downloads 222
1654 De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution

Authors: Saroj Poudel, Joshua Mancini, Douglas Pike, Jennifer Timm, Alexei Tyryshkin, Vikas Nanda, Paul Falkowski

Abstract:

On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism

Keywords: hydrogenase, prebiotic enzyme, metalloenzyme, computational design

Procedia PDF Downloads 216
1653 Characterization of Biodiesel Produced from Cow-Tallow

Authors: Nwadike Emmanuel Chinagoron, Achebe Chukwunonso, Ezeliora Chukwuemeka Daniel, Azaka Onyemazuwa Andrew

Abstract:

In this research work, the process of biodiesel production in a pilot plant was studied using cow tallow as raw material, methanol as the solvent and potassium hydroxide as catalysts. The biodiesel quality was determined by characterization. The tallow used in the production had a molecular weight of 860g. Its oil had a density value of 0.8g/ml, iodine value of 63.45, viscosity at 300C was 9.83pas, acid value was 1.96, free fatty acid (FFA) of 0.98%, saponification value of 82.75mleq/kg, specific gravity of 0.898, flash point of 1100C, cloud point of 950C and Calorific value also called Higher Heating Value (HHV) of 38.365MJ/Kg. The produced biodiesel had a density of 0.82g/ml, iodine value of 126.9, viscosity of 4.32pas at 300C, acid value of 0.561, FFA of 0.2805%, saponification value of 137.45 mleq/kg.Flash point, cloud point and centane number of the biodiesel produced are 1390C, 980C and 57.5 respectively, with fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 10%, 2.8%, 5%, 5%, 20%, and 37.2% respectively. The biodiesel higher heating values (calorific values) when estimated from viscosity, density and flash points were 41.4MJ/Kg, 63.8MJ/Kg, and 34.6MJ/Kg respectively. The biodiesel was blended with conventional diesel. The blend B-10 had values of 1320C and 960C for flash and cloud points, with Calorific value (or HHV) of 34.6 MJ/Kg (when estimated from its Flash point) and fat content, protein content, ash content, moisture content, fiber content and carbohydrate content values of 5%, 2.1%,10%, 5%, 15%, and 62.9% respectively.

Keywords: biodiesel, characterization, cow-tallow, cetane rating

Procedia PDF Downloads 537
1652 The Effect of SIRT1 on NLRP3 (Nucleotide Oligomerization Domain-Like Receptor Family, Pyrin Domain Containing 3) Inflammasome of Osteoarthritis

Authors: So Youn Park, Yi Sle Lee, Ki Whan Hong, Chi Dae Kim

Abstract:

The role of metabolism in the pathogenesis of osteoarthritis is an emerging field. Metabolic alterations may be a role in osteoarthritis (OA) pathogenesis, and these changes influence joint destruction via several cytokine. Especially, in OA patients, levels of IL-1β are elevated in the synovial fluid, synovial membrane, subchondral bone, and cartilage. The IL-1β is activated by NLRP3 inflammasomes, and NLRP3 inflammasomes are cytosolic complexes that drive the production of other inflammatory cytokines, including IL-1β. In this study, we examined that SIRT1 suppresses IL-1β through inhibiting NLRP3 inflammasomes and SIRT1 ameliorates osteoarthritis. OA fibroblasts were isolated from synovium of OA patients. IL-1β and NLRP3 were detected in synovium of OA patients by immunohistochemistry. Lipopolysaccharides (LPS) stimulated the expression of active IL-1β mRNA in OA fibroblasts and combination of LPS, and adenosine triphosphate increased more the expression of active IL-1β in OA fibroblasts. The level of IL-1β was measured by western blot and ELISA assay. NLRP3 inflammasomes complex were measured by western blot. SIRT1 did not inhibit expression of NLRP3 inflammasome. So caspase-1, apoptotic speck-like protein containing a caspase recruitment domain (ASC) and NLRP3 protein were expressed in OA fibroblasts. But SIRT1 suppressed activation of IL-1β by inhibiting activity of caspase-1 via NLRP3 inflammasome in OA fibroblasts under LPS plus ATP stimulation. These results suggest that SIRT1 is a modulator of NLRP3 inflammasomes in OA fibroblasts and ameliorate IL-1β, so expression of SIRT1 in OA fibroblast may be a potential strategy for OA inflammation treatment.

Keywords: osteoarthritis, inflammasome, SIRT1, IL-1beta

Procedia PDF Downloads 199
1651 Study Habits and Level of Difficulty Encountered by Maltese Students Studying Biology Advanced Level Topics

Authors: Marthese Azzopardi, Liberato Camilleri

Abstract:

This research was performed to investigate the study habits and level of difficulty perceived by post-secondary students in Biology at Advanced-level topics after completing their first year of study. At the end of a two-year ‘sixth form’ course, Maltese students sit for the Matriculation and Secondary Education Certificate (MATSEC) Advanced-level biology exam as a requirement to pursue science-related studies at the University of Malta. The sample was composed of 23 students (16 taking Chemistry and seven taking some ‘Other’ subject at the Advanced Level). The cohort comprised seven males and 16 females. A questionnaire constructed by the authors, was answered anonymously during the last lecture at the end of the first year of study, in May 2016. The Chi square test revealed that gender plays no effect on the various study habits (c2 (6) = 5.873, p = 0.438). ‘Reading both notes and textbooks’ was the most common method adopted by males (71.4%), whereas ‘Writing notes on each topic’ was that mostly used by females (81.3%). The Mann-Whitney U test showed no significant difference in the study habits of students and the mean assessment mark obtained at the end of the first year course (p = 0.231). Statistical difference was found with the One-ANOVA test when comparing the mean assessment mark obtained at the end of the first year course when students are clustered by their Secondary Education Certificate (SEC) grade (p < 0.001). Those obtaining a SEC grade of 2 and 3 got the highest mean assessment of 68.33% and 66.9%, respectively [SEC grading is 1-7, where 1 is the highest]. The Friedman test was used to compare the mean difficulty rating scores provided for the difficulty of each topic. The mean difficulty rating score ranges from 1 to 4, where the larger the mean rating score, the higher the difficulty. When considering the whole group of students, nine topics out of 21 were perceived as significantly more difficult than the other topics. Protein synthesis, DNA Replication and Biomolecules were the most difficult, in that order. The Mann-Whitney U test revealed that the perceived level of difficulty in comprehending Biomolecules is significantly lower for students taking Chemistry compared to those not choosing the subject (p = 0.018). Protein Synthesis was claimed as the most difficult by Chemistry students and Biomolecules by those not studying Chemistry. DNA Replication was the second most difficult topic perceived by both groups. The Mann-Whitney U test was used to examine the effect of gender on the perceived level of difficulty in comprehending various topics. It was found that females have significantly more difficulty in comprehending Biomolecules than males (p=0.039). Protein synthesis was perceived as the most difficult topic by males (mean difficulty rating score = 3.14), while Biomolecules, DNA Replication and Protein synthesis were of equal difficulty for females (mean difficulty rating score = 3.00). Males and females perceived DNA Replication as equally difficult (mean difficulty rating score = 3.00). Discovering the students’ study habits and perceived level of difficulty of specific topics is vital for the lecturer to offer guidance that leads to higher academic achievement.

Keywords: biology, perceived difficulty, post-secondary, study habits

Procedia PDF Downloads 188
1650 Preparation of Bead-On-String Alginate/Soy Protein Isolated Nanofibers via Water-Based Electrospinning and Its Application for Drug Loading

Authors: Patcharakamon Nooeaid, Piyachat Chuysrinuan

Abstract:

Electrospun natural polymers-based nanofibers are one of the most interesting materials used in tissue engineering and drug delivery applications. Bead-on-string nanofibers have gained considerable interest for sustained drug release. Vancomycin was used as the model drug and sodium alginate (SA)/soy protein isolated (SPI) as the polymer blend to fabricate the bead-on-string nanofibers by aqueous-based electrospinning. The bead-on-string SA/SPI nanofibers were successfully fabricated by the addition of poly(ethylene oxide) (PEO) as a co-blending polymer. SA-PEO with mass ratio of 70/30 showed the best spinnability with continuous nanofibers without the occurrence of beads. Bead structure formed with the addition of SPI and bead number increased with increasing SPI content. The electrospinning of 80/20 SA-PEO/SPI was obtained as a great promising bead-on-string nanofibers for drug loading, while the solution of 50/50 was not able to obtain continuous fibers. In vitro release tests showed that a more sustainable release profile up to 14 days with less initial burst release on day 1 could be obtained from the bead-on-string fibers than from smooth fibers with uniform diameter. In addition, vancomycin-loaded beaded fibers inhibited the growth of Staphylococcus aureus (S. aureus) bacteria. Therefore, the SA-PEO/SPI nanofibers showed the potential to be used as biomaterials for tissue engineering and drug delivery.

Keywords: bead-on-string fibers, electrospinning, drug delivery, tissue engineering

Procedia PDF Downloads 334
1649 Epigenetics Regulation Play Role in the Pathogenesis of Adipose Tissue Disorder, Lipedema

Authors: Musarat Ishaq, Tara Karnezis, Ramin Shayan

Abstract:

Lipedema, a poorly understood chronic disease of adipose hyper-deposition, is often mistaken for obesity and causes significant impairment to mobility and quality-of-life. To identify molecular mechanisms underpinning lipedema, we employed comprehensive omics-based comparative analyses of whole tissue, adipocyte precursors (adipose-derived stem cells (ADSCs)), and adipocytes from patients with or without lipedema. Transcriptional profiling revealed significant differences in lipedema tissue, adipocytes, and ADSCs, with altered levels of mRNAs involved inproliferation and cell adhesion. One highly up-regulated gene in lipedema adipose tissue, adipocytes and ADSCs, ZIC4, encodes Zinc Finger Protein ZIC 4, a class of transcription factor which may be involved in regulating metabolism and adipogenesis. ZIC4 inhibition impaired the adipogenesis of ADSCs into mature adipocytes. Epigenetic regulation study revealed overexpression of ZIC4 is involved in decreased promoter DNA methylation and subsequent decrease in adipogenesis. These epigenetic modifications can alter adipocytes microenvironment and adipocytes differentiation. Our study show that epigenetic events regulate the ability of ADSCs to commit and differentiate into mature adipocytes by modulating ZIC4.

Keywords: lipedema, adipose-derived stem cells, adipose tisue, adipocytes, zinc finger protein, epigenetic

Procedia PDF Downloads 175
1648 Cloning, Expression and N-Terminal Pegylation of Human Interferon Alpha-2b Analogs and Their Cytotoxic Evaluation against Cancer Cell Lines

Authors: Syeda Kiran Shahzadi, Nasir Mahmood, Muhammad Abdul Qadir

Abstract:

In the current research, three recombinant human interferon alpha-2b proteins (two modified and one normal form) were produced and Pegylated with an aim to produce more effective drugs against viral infections and cancers. The modified recombinant human interferon alpha-2b proteins were produced by site-directed modifications of interferon alpha 2b gene, targeting the amino acids at positions ‘R23’ and ‘H34’. The resulting chemically modified and unmodified forms of human interferon alpha 2b were conjugated with methoxy-polyethylene glycol propanealdehyde (400 KDa) and methoxy-polyethylene glycol succinimidyl succinate (400 KDa). Pegylation of normal and modified forms of Interferon alpha-2b prolong their release time and enhance their efficacy. The conjugation of PEG with modified and unmodified human interferon alpha 2b protein drugs was also characterized with 1H-NMR, HPLC, and SDS-PAGE. Antiproliferative assays of modified and unmodified forms of drugs were performed in cell based bioassays using MDBK cell lines. The results indicated that experimentally produced recombinant human interferon alpha-2b proteins were biologically active and resulted in significant inhibition of cell growth.

Keywords: protein refolding, antiproliferative activities, biomedical applications, human interferon alpha-2b, pegylation, mPEG-propionaldehyde, site directed mutagenesis, E. coli expression

Procedia PDF Downloads 177
1647 The Role of Piceatannol in Counteracting Glyceraldehyde-3-Phosphate Dehydrogenase Aggregation and Nuclear Translocation

Authors: Joanna Gerszon, Aleksandra Rodacka

Abstract:

In the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, protein and peptide aggregation processes play a vital role in contributing to the formation of intracellular and extracellular protein deposits. One of the major components of these deposits is the oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Therefore, the purpose of this research was to answer the question whether piceatannol, a stilbene derivative, counteracts and/or slows down oxidative stress-induced GAPDH aggregation. The study also aimed to determine if this natural occurring compound prevents unfavorable nuclear translocation of GAPDH in hippocampal cells. The isothermal titration calorimetry (ITC) analysis indicated that one molecule of GAPDH can bind up to 8 molecules of piceatannol (7.3 ± 0.9). As a consequence of piceatannol binding to the enzyme, the loss of activity was observed. Parallel with GAPDH inactivation the changes in zeta potential, and loss of free thiol groups were noted. Nevertheless, the ligand-protein binding does not influence the secondary structure of the GAPDH. Precise molecular docking analysis of the interactions inside the active center allowed to presume that these effects are due to piceatannol ability to assemble a covalent binding with nucleophilic cysteine residue (Cys149) which is directly involved in the catalytic reaction. Molecular docking also showed that simultaneously 11 molecules of ligand can be bound to dehydrogenase. Taking into consideration obtained data, the influence of piceatannol on level of GAPDH aggregation induced by excessive oxidative stress was examined. The applied methods (thioflavin-T binding-dependent fluorescence as well as microscopy methods - transmission electron microscopy, Congo Red staining) revealed that piceatannol significantly diminishes level of GAPDH aggregation. Finally, studies involving cellular model (Western blot analyses of nuclear and cytosolic fractions and confocal microscopy) indicated that piceatannol-GAPDH binding prevents GAPDH from nuclear translocation induced by excessive oxidative stress in hippocampal cells. In consequence, it counteracts cell apoptosis. These studies demonstrate that by binding with GAPDH, piceatannol blocks cysteine residue and counteracts its oxidative modifications, that induce oligomerization and GAPDH aggregation as well as it prevents hippocampal cells from apoptosis by retaining GAPDH in the cytoplasm. All these findings provide a new insight into the role of piceatannol interaction with GAPDH and present a potential therapeutic strategy for some neurological disorders related to GAPDH aggregation. This work was supported by the by National Science Centre, Poland (grant number 2017/25/N/NZ1/02849).

Keywords: glyceraldehyde-3-phosphate dehydrogenase, neurodegenerative disease, neuroprotection, piceatannol, protein aggregation

Procedia PDF Downloads 167
1646 The Impact of Missense Mutation in Phosphatidylinositol Glycan Class A Associated to Paroxysmal Nocturnal Hemoglobinuria and Multiple Congenital Anomalies-Hypotonia-Seizures Syndrome 2: A Computational Study

Authors: Ashish Kumar Agrahari, Amit Kumar

Abstract:

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder that manifests with hemolytic anemia, thrombosis, and peripheral blood cytopenias. The disease is caused by the deficiency of two glycosylphosphatidylinositols (GPI)-anchored proteins (CD55 and CD59) in the hemopoietic stem cells. The deficiency of GPI-anchored proteins has been associated with the somatic mutations in phosphatidylinositol glycan class A (PIGA). However, the mutations that do not cause PNH is associated with the multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2). To best of our knowledge, no computational study has been performed to explore the atomistic level impact of PIGA mutations on the structure and dynamics of the protein. In the current work, we are mainly interested to get insights into the molecular mechanism of PIGA mutations. In the initial step, we screened the most pathogenic mutations from the pool of publicly available mutations. Further, to get a better understanding, pathogenic mutations were mapped to the modeled structure and subjected to 50ns molecular dynamics simulation. Our computational study suggests that four mutations are highly vulnerable to altering the structural conformation and stability of the PIGA protein, which illustrates its association with PNH and MCAHS2 phenotype.

Keywords: homology modeling, molecular dynamics simulation, missense mutations PNH, MCAHS2, PIGA

Procedia PDF Downloads 145