Search results for: post-editing machine translation output
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5250

Search results for: post-editing machine translation output

4560 New Methods to Acquire Grammatical Skills in A Foreign Language

Authors: Indu ray

Abstract:

In today’s digital world the internet is already flooded with information on how to master grammar in a foreign language. It is well known that one cannot master a language without grammar. Grammar is the backbone of any language. Without grammar there would be no structure to help you speak/write or listen/read. Successful communication is only possible if the form and function of linguistic utterances are firmly related to one another. Grammar has its own rules of use to formulate an easier-to-understand language. Like a tool, grammar formulates our thoughts and knowledge in a meaningful way. Every language has its own grammar. With grammar, we can quickly analyze whether there is any action in this text: (Present, past, future). Knowledge of grammar is an important prerequisite for mastering a foreign language. What’s most important is how teachers can make grammar lessons more interesting for students and thus promote grammar skills more successfully. Through this paper, we discuss a few important methods like (Interactive Grammar Exercises between students, Interactive Grammar Exercise between student to teacher, Grammar translation method, Audio -Visual Method, Deductive Method, Inductive Method). This paper is divided into two sections. In the first part, brief definitions and principles of these approaches will be provided. Then the possibility and the case of combination of this approach will be analyzed. In the last section of the paper, I would like to present a survey result conducted at my university on a few methods to quickly learn grammar in Foreign Language. We divided the Grammatical Skills in six Parts. 1.Grammatical Competence 2. Speaking Skills 3. Phonology 4. The syntax and the Semantics 5. Rule 6. Cognitive Function and conducted a survey among students. From our survey results, we can observe that phonology, speaking ability, syntax and semantics can be improved by inductive method, Audio-visual Method, and grammatical translation method, for grammar rules and cognitive functions we should choose IGE (teacher-student) method. and the IGE method (pupil-pupil). The study’s findings revealed, that the teacher delivery Methods should be blend or fusion based on the content of the Grammar.

Keywords: innovative method, grammatical skills, audio-visual, translation

Procedia PDF Downloads 77
4559 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 80
4558 Optimizing E-commerce Retention: A Detailed Study of Machine Learning Techniques for Churn Prediction

Authors: Saurabh Kumar

Abstract:

In the fiercely competitive landscape of e-commerce, understanding and mitigating customer churn has become paramount for sustainable business growth. This paper presents a thorough investigation into the application of machine learning techniques for churn prediction in e-commerce, aiming to provide actionable insights for businesses seeking to enhance customer retention strategies. We conduct a comparative study of various machine learning algorithms, including traditional statistical methods and ensemble techniques, leveraging a rich dataset sourced from Kaggle. Through rigorous evaluation, we assess the predictive performance, interpretability, and scalability of each method, elucidating their respective strengths and limitations in capturing the intricate dynamics of customer churn. We identified the XGBoost classifier to be the best performing. Our findings not only offer practical guidelines for selecting suitable modeling approaches but also contribute to the broader understanding of customer behavior in the e-commerce domain. Ultimately, this research equips businesses with the knowledge and tools necessary to proactively identify and address churn, thereby fostering long-term customer relationships and sustaining competitive advantage.

Keywords: customer churn, e-commerce, machine learning techniques, predictive performance, sustainable business growth

Procedia PDF Downloads 29
4557 Cataract Surgery and Sustainability: Comparative Study of Single-Use Versus Reusable Cassettes in Phacoemulsification

Authors: Oscar Kallay

Abstract:

Objective: This study compares the sustainability, financial implications, and surgical efficiency of two phacoemulsification cassette systems for cataract surgery: a machine with single-use cassettes and another with daily, reusable ones. Methods: The observational study involves retrospective cataract surgery data collection at the Centre Médical de l'Alliance, Braine-L’alleud, Belgium, a tertiary eye care center. Information on cassette weight, quantities, and transport volume was obtained from routine procedures and purchasing records. The costs for each machine were calculated by reviewing the invoices received from the accounting department. Results: We found significant differences across comparisons. The reusable cassette machine, when compared to the single-use machine, used 306.7 kg less plastic (75.3% reduction), required 2,494 cubic meters less storage per 1000 surgeries (67.7% decrease), and cost €54.16 less per 10 procedures (16.9% reduction). The machine with daily reusable cassettes also exhibited a 7-minute priming time advantage for 10 procedures, reducing downtime between cases. Conclusions: Our findings underscore the benefits of adopting reusable cassette systems: reduced plastic consumption, storage volume, and priming time, as well as enhanced efficiency and cost savings. Healthcare professionals and institutions are encouraged to embrace environmentally conscious initiatives. The use of reusable cassette systems for cataract surgeries offers a pathway to sustainable practices.

Keywords: cataract, epidemiolog, surgery treatment, lens and zonules, public health

Procedia PDF Downloads 17
4556 The Psycho-Linguistic Aspect of Translation Gaps in Teaching English for Specific Purposes

Authors: Elizaveta Startseva, Elena Notina, Irina Bykova, Valentina Ulyumdzhieva, Natallia Zhabo

Abstract:

With the various existing models of intercultural communication that contain a vast number of stages for foreign language acquisition, there is a need for conscious perception of the foreign culture. Such a process is associated with the emergence of linguistic conflict with the consistent students’ desire to solve the problem of the language differences, along with cultural discrepancies. The aim of this study is to present the modern ways and methods of removing psycholinguistic conflict through skills development in professional translation and intercultural communication. The study was conducted in groups of 1-4-year students of Medical Institute and Agro-Technological Institute RUDN university. In the course of training, students got knowledge in such disciplines as basic grammar and vocabulary of the English language, phonetics, lexicology, introduction to linguistics, theory of translation, annotating and referencing media texts and texts in specialty. The students learned to present their research work, participated in the University and exit conferences with their reports and presentations. Common strategies of removing linguistic and cultural conflict can be attributed to the development of such abilities of a language personality as a commitment to communication and cooperation, the formation of cultural awareness and empathy of other cultures of the individual, realistic self-esteem, emotional stability, tolerance, etc. The process of mastering a foreign language and culture of the target language leads to a reduplication of linguistic identity, which leads to successive formation of the so-called 'secondary linguistic personality.' In our study, we tried to approach the problem comprehensively, focusing on the translation gaps for technical and non-technical language still missing such a typology which could classify all of the lacunas on the same principle. When obtaining the background knowledge, students learn to overcome the difficulties posed by the national-specific and linguistic differences of cultures in contact, i.e., to eliminate the gaps (to fill in and compensate). Compensation gaps is a means of fixing it, the initial phase of elimination, followed in some cases and some not is filling semantic voids (plenus). The concept of plenus occurs in most cases of translation gaps, for example in the transcription and transliteration of (intercultural and exoticism), the replication (reproduction of the morphemic structure of words or idioms. In all the above cases the task of the translator is to ensure an identical response of the receptors of the original and translated texts, since any statement is created with the goal of obtaining communicative effect, and hence pragmatic potential is the most important part of its contents. The practical value of our work lies in improving the methodology of teaching English for specific purposes on the basis of psycholinguistic concept of the secondary language personality.

Keywords: lacuna, language barrier, plenus, secondary language personality

Procedia PDF Downloads 289
4555 MBR-RO System Operation in Quantitative and Qualitative Promotion of Waste Water Cleaning: Case Study of Shokohieyh Qoms’ Waste Water Cleaning

Authors: A. A. Hassani, M. Nasri Nasrabadi

Abstract:

According to population growth and increasing water needs of industrial and agricultural sections and lack of existing water sources, also increases of wastewater and new wastewater treatment plant construction’s high costs, it is inevitable to reuse wastewater with the approach of increasing wastewater treatment capacity and output sewage quality. In this regard, the first sewage reuse plan in industrial uses was designed with the approach of qualitative and quantitative improvement due to the increased organic load of the output sewage of Qom Shokohieh city’s’ in wastewater treatment plant. This research investigated qualitative factors COD, BOD, TSS, TDS, and input and output heavy metal of MBR-RO system and ability of increase wastewater acceptance capacity by existing in wastewater treatment plant. For this purpose, experimental results of seven-month navigation system have been used from 07/01/2013 to 02/01/2014. Existing data analysis showed that MBR system is able to remove 93.2% COD, 94.4% BOD, 13.8% TDS, 98% heavy metals and RO system is able to remove 98.9% TDS. This study showed that MBR-RO integration system is able to increase the capacity of refinery by 30%.

Keywords: industrial wastewater, wastewater reuse, MBR, RO

Procedia PDF Downloads 289
4554 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research

Procedia PDF Downloads 151
4553 Soft Exoskeleton Elastomer Pre-Tension Drive Control System

Authors: Andrey Yatsun, Andrei Malchikov

Abstract:

Exoskeletons are used to support and compensate for the load on the human musculoskeletal system. Elastomers are an important component of exoskeletons, providing additional support and compensating for the load. The algorithm of the active elastomer tension system provides the required auxiliary force depending on the angle of rotation and the tilt speed of the operator's torso. Feedback for the drive is provided by a force sensor integrated into the attachment of the exoskeleton vest. The use of direct force measurement ensures the required accuracy in all settings of the man-machine system. Non-adjustable elastic elements make it difficult to move without load, tilt forward and walk. A strategy for the organization of the auxiliary forces management system is proposed based on the allocation of 4 operating modes of the human-machine system.

Keywords: soft exoskeleton, mathematical modeling, pre-tension elastomer, human-machine interaction

Procedia PDF Downloads 66
4552 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores

Abstract:

This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.

Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino

Procedia PDF Downloads 174
4551 Policy Effectiveness in the Situation of Economic Recession

Authors: S. K. Ashiquer Rahman

Abstract:

The proper policy handling might not able to attain the target since some of recessions, e.g., pandemic-led crises, the variables shocks of the economics. At the level of this situation, the Central bank implements the monetary policy to choose increase the exogenous expenditure and level of money supply consecutively for booster level economic growth, whether the monetary policy is relatively more effective than fiscal policy in altering real output growth of a country or both stand for relatively effective in the direction of output growth of a country. The dispute with reference to the relationship between the monetary policy and fiscal policy is centered on the inflationary penalty of the shortfall financing by the fiscal authority. The latest variables socks of economics as well as the pandemic-led crises, central banks around the world predicted just about a general dilemma in relation to increase rates to face the or decrease rates to sustain the economic movement. Whether the prices hang about fundamentally unaffected, the aggregate demand has also been hold a significantly negative attitude by the outbreak COVID-19 pandemic. To empirically investigate the effects of economics shocks associated COVID-19 pandemic, the paper considers the effectiveness of the monetary policy and fiscal policy that linked to the adjustment mechanism of different economic variables. To examine the effects of economics shock associated COVID-19 pandemic towards the effectiveness of Monetary Policy and Fiscal Policy in the direction of output growth of a Country, this paper uses the Simultaneous equations model under the estimation of Two-Stage Least Squares (2SLS) and Ordinary Least Squares (OLS) Method.

Keywords: IS-LM framework, pandemic. Economics variables shocks, simultaneous equations model, output growth

Procedia PDF Downloads 95
4550 A Dirty Page Migration Method in Process of Memory Migration Based on Pre-copy Technology

Authors: Kang Zijian, Zhang Tingyu, Burra Venkata Durga Kumar

Abstract:

This article investigates the challenges in memory migration during the live migration of virtual machines. We found three challenges probably existing in pre-copy technology. One of the main challenges is the challenge of downtime migration. Decrease the downtime could promise the normal work for a virtual machine. Although pre-copy technology is greatly decreasing the downtime, we still need to shut down the machine in order to finish the last round of data transfer. This paper provides an optimization scheme for the problems existing in pro-copy technology, mainly the optimization of the dirty page migration mechanism. The typical pre-copy technology copy n-1th’s dirty pages in nth turn. However, our idea is to create a double iteration method to solve this problem.

Keywords: virtual machine, pre-copy technology, memory migration process, downtime, dirty pages migration method

Procedia PDF Downloads 151
4549 Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches

Authors: Seyed-Ali Sadegh-Zadeh, Kaveh Kavianpour, Hamed Atashbar, Elham Heidari, Saeed Shiry Ghidary, Amir M. Hajiyavand

Abstract:

Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications.

Keywords: evaluation metrics, performance measurement, supervised learning, unsupervised learning, reinforcement learning, model robustness and stability, comparative analysis

Procedia PDF Downloads 75
4548 Bridging the Gap between Different Interfaces for Business Process Modeling

Authors: Katalina Grigorova, Kaloyan Mironov

Abstract:

The paper focuses on the benefits of business process modeling. Although this discipline is developing for many years, there is still necessity of creating new opportunities to meet the ever-increasing users’ needs. Because one of these needs is related to the conversion of business process models from one standard to another, the authors have developed a converter between BPMN and EPC standards using workflow patterns as intermediate tool. Nowadays there are too many systems for business process modeling. The variety of output formats is almost the same as the systems themselves. This diversity additionally hampers the conversion of the models. The presented study is aimed at discussing problems due to differences in the output formats of various modeling environments.

Keywords: business process modeling, business process modeling standards, workflow patterns, converting models

Procedia PDF Downloads 587
4547 Cardiovascular Disease Prediction Using Machine Learning Approaches

Authors: P. Halder, A. Zaman

Abstract:

It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.

Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree

Procedia PDF Downloads 153
4546 Organizational Efficiency in the Age of the Current Financial Crisis Strategies and Tracks Progress

Authors: Aharouay Soumaya

Abstract:

Efficiency is a relative concept. It is measured by comparing the productivity obtained in what is intended as standard or objective criteria. The quantity and quality of output achieved and the level of service are also compared to targets or standards, to determine to what extent they could cause changes in efficiency. Efficiency improves when more outputs of a specified quality are produced with the same resource inputs or less, or when the same amount of output is produced with fewer resources. This article proposes a review of the literature on strategies adopted by firms in the age of the financial crisis to overcome these negative effects, and tracks progress chosen by the organization to remain successful despite the plight of firms.

Keywords: effectiveness, efficiency, organizational capacity, strategy, management tool, progress, performance

Procedia PDF Downloads 346
4545 Online Compressor Washing for Gas Turbine Power Output

Authors: Enyia James Diwa, Isaiah Thank-God Ebi, Dodeye Ina Igbong

Abstract:

The privatization of utilities has brought about very strong competition in industries such as petrochemical and gas distribution among others, considering the continuous increase in cost of fuel. This has brought about the intense reason for gas turbine owners and operators to reduce and control performance degradation of the engine in other to minimize cost. The most common and very crucial problem of the gas turbine is the fouling of compressor, which is mostly caused by a reduction in flow capacity, compressor efficiency, and pressure ratio, this, in turn, lead to the engine compressor re-matching and output power and thermal efficiency reduction. The content of this paper encompasses a detailed presentation of the major causes, effects and control mechanism of fouling. The major emphasis is on compressor water washing to enable power augmentation. A modelled gas turbine similar to that of GE LM6000 is modelled for the current study, based on TURBOMATCH which is a Cranfield University software specifically made for gas turbine performance simulation and fouling detection. The compounded and intricate challenges of compressor online water washing of large output gas turbine are carried out. The treatment is applied to axial compressor used in the petrochemical and hydrocarbon industry.

Keywords: gas turbine, fouling, degradation, compressor washing

Procedia PDF Downloads 348
4544 6G: Emerging Architectures, Technologies and Challenges

Authors: Abdulrahman Yarali

Abstract:

The advancement of technology never stops because the demands for improved internet and communication connectivity are increasing. Just as 5G networks are rolling out, the world has begun to talk about the sixth-generation networks (6G). The semantics of 6G are more or less the same as 5G networks because they strive to boost speeds, machine-to-machine (M2M) communication, and latency reduction. However, some of the distinctive focuses of 6G include the optimization of networks of machines through super speeds and innovative features. This paper discusses many aspects of the technologies, architectures, challenges, and opportunities of 6G wireless communication systems.

Keywords: 6G, characteristics, infrastructures, technologies, AI, ML, IoT, applications

Procedia PDF Downloads 25
4543 A Machine Learning Approach for Detecting and Locating Hardware Trojans

Authors: Kaiwen Zheng, Wanting Zhou, Nan Tang, Lei Li, Yuanhang He

Abstract:

The integrated circuit industry has become a cornerstone of the information society, finding widespread application in areas such as industry, communication, medicine, and aerospace. However, with the increasing complexity of integrated circuits, Hardware Trojans (HTs) implanted by attackers have become a significant threat to their security. In this paper, we proposed a hardware trojan detection method for large-scale circuits. As HTs introduce physical characteristic changes such as structure, area, and power consumption as additional redundant circuits, we proposed a machine-learning-based hardware trojan detection method based on the physical characteristics of gate-level netlists. This method transforms the hardware trojan detection problem into a machine-learning binary classification problem based on physical characteristics, greatly improving detection speed. To address the problem of imbalanced data, where the number of pure circuit samples is far less than that of HTs circuit samples, we used the SMOTETomek algorithm to expand the dataset and further improve the performance of the classifier. We used three machine learning algorithms, K-Nearest Neighbors, Random Forest, and Support Vector Machine, to train and validate benchmark circuits on Trust-Hub, and all achieved good results. In our case studies based on AES encryption circuits provided by trust-hub, the test results showed the effectiveness of the proposed method. To further validate the method’s effectiveness for detecting variant HTs, we designed variant HTs using open-source HTs. The proposed method can guarantee robust detection accuracy in the millisecond level detection time for IC, and FPGA design flows and has good detection performance for library variant HTs.

Keywords: hardware trojans, physical properties, machine learning, hardware security

Procedia PDF Downloads 147
4542 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification

Procedia PDF Downloads 465
4541 Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique

Authors: Nouredine Benouzza, Ahmed Hamida Boudinar, Azeddine Bendiabdellah

Abstract:

An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm.

Keywords: squirrel cage motor, diagnosis, eccentricity faults, current spectral analysis, rotor slot harmonic

Procedia PDF Downloads 489
4540 Enhanced Automated Teller Machine Using Short Message Service Authentication Verification

Authors: Rasheed Gbenga Jimoh, Akinbowale Nathaniel Babatunde

Abstract:

The use of Automated Teller Machine (ATM) has become an important tool among commercial banks, customers of banks have come to depend on and trust the ATM conveniently meet their banking needs. Although the overwhelming advantages of ATM cannot be over-emphasized, its alarming fraud rate has become a bottleneck in it’s full adoption in Nigeria. This study examined the menace of ATM in the society another cost of running ATM services by banks in the country. The researcher developed a prototype of an enhanced Automated Teller Machine Authentication using Short Message Service (SMS) Verification. The developed prototype was tested by Ten (10) respondents who are users of ATM cards in the country and the data collected was analyzed using Statistical Package for Social Science (SPSS). Based on the results of the analysis, it is being envisaged that the developed prototype will go a long way in reducing the alarming rate of ATM fraud in Nigeria.

Keywords: ATM, ATM fraud, e-banking, prototyping

Procedia PDF Downloads 322
4539 Progress of Legislation in Post-Colonial, Post-Communist and Socialist Countries for the Intellectual Property Protection of the Autonomous Output of Artificial Intelligence

Authors: Ammar Younas

Abstract:

This paper is an attempt to explore the legal progression in procedural laws related to “intellectual property protection for the autonomous output of artificial intelligence” in Post-Colonial, Post-Communist and Socialist Countries. An in-depth study of legal progression in Pakistan (Common Law), Uzbekistan (Post-Soviet Civil Law) and China (Socialist Law) has been conducted. A holistic attempt has been made to explore that how the ideological context of the legal systems can impact, not only on substantive components but on the procedural components of the formal laws related to IP Protection of autonomous output of Artificial Intelligence. Moreover, we have tried to shed a light on the prospective IP laws and AI Policy in the countries, which are planning to incorporate the concept of “Digital Personality” in their legal systems. This paper will also address the question: “How far IP of autonomous output of AI can be protected with the introduction of “Non-Human Legal Personality” in legislation?” By using the examples of China, Pakistan and Uzbekistan, a case has been built to highlight the legal progression in General Provisions of Civil Law, Artificial Intelligence Policy of the country and Intellectual Property laws. We have used a range of multi-disciplinary concepts and examined them on the bases of three criteria: accuracy of legal/philosophical presumption, applying to the real time situations and testing on rational falsification tests. It has been observed that the procedural laws are designed in a way that they can be seen correlating with the ideological contexts of these countries.

Keywords: intellectual property, artificial intelligence, digital personality, legal progression

Procedia PDF Downloads 118
4538 Language Politics and Identity in Translation: From a Monolingual Text to Multilingual Text in Chinese Translations

Authors: Chu-Ching Hsu

Abstract:

This paper focuses on how the government-led language policies and the political changes in Taiwan manipulate the languages choice in translations and what translation strategies are employed by the translator to show his or her language ideology behind the power struggles and decision-making. Therefore, framed by Lefevere’s theoretical concept of translating as rewriting, and carried out a diachronic and chronological study, this paper specifically sets out to investigate the language ideology and translator’s idiolect of Chinese language translations of Anglo-American novels. The examples drawn to explore these issues were taken from different versions of Chinese renditions of Mark Twain’s English-language novel The Adventures of Huckleberry Finn in which there are several different dialogues originally written in the colloquial language and dialect used in the American state of Mississippi and reproduced in Mark Twain’s works. Also, adapted corpus methodology, many examples are extracted as instances from the translated texts and source text, to illuminate how the translators in Taiwan deal with the dialectal features encoded in Twain’s works, and how different versions of Chinese translations are employed by Taiwanese translators to confirm the language polices and to express their language identity textually in different periods of the past five decades, from the 1960s onward. The finding of this study suggests that the use of Taiwanese dialect and language patterns in translations does relate to the movement of the mother-tongue language and language ideology of the translator as well as to the issue of language identity raised in the island of Taiwan. Furthermore, this study confirms that the change of political power in Taiwan does bring significantly impact in language policy-- assimilationism, pluralism or multiculturalism, which also makes Taiwan from a monolingual to multilingual society, where the language ideology and identity can be revealed not only in people’s daily communication but also in written translations.

Keywords: language politics and policies, literary translation, mother-tongue, multiculturalism, translator’s ideology

Procedia PDF Downloads 395
4537 Systematic and Meta-Analysis of Navigation in Oral and Maxillofacial Trauma and Impact of Machine Learning and AI in Management

Authors: Shohreh Ghasemi

Abstract:

Introduction: Managing oral and maxillofacial trauma is a multifaceted challenge, as it can have life-threatening consequences and significant functional and aesthetic impact. Navigation techniques have been introduced to improve surgical precision to meet this challenge. A machine learning algorithm was also developed to support clinical decision-making regarding treating oral and maxillofacial trauma. Given these advances, this systematic meta-analysis aims to assess the efficacy of navigational techniques in treating oral and maxillofacial trauma and explore the impact of machine learning on their management. Methods: A detailed and comprehensive analysis of studies published between January 2010 and September 2021 was conducted through a systematic meta-analysis. This included performing a thorough search of Web of Science, Embase, and PubMed databases to identify studies evaluating the efficacy of navigational techniques and the impact of machine learning in managing oral and maxillofacial trauma. Studies that did not meet established entry criteria were excluded. In addition, the overall quality of studies included was evaluated using Cochrane risk of bias tool and the Newcastle-Ottawa scale. Results: Total of 12 studies, including 869 patients with oral and maxillofacial trauma, met the inclusion criteria. An analysis of studies revealed that navigation techniques effectively improve surgical accuracy and minimize the risk of complications. Additionally, machine learning algorithms have proven effective in predicting treatment outcomes and identifying patients at high risk for complications. Conclusion: The introduction of navigational technology has great potential to improve surgical precision in oral and maxillofacial trauma treatment. Furthermore, developing machine learning algorithms offers opportunities to improve clinical decision-making and patient outcomes. Still, further studies are necessary to corroborate these results and establish the optimal use of these technologies in managing oral and maxillofacial trauma

Keywords: trauma, machine learning, navigation, maxillofacial, management

Procedia PDF Downloads 58
4536 A Framework of Virtualized Software Controller for Smart Manufacturing

Authors: Pin Xiu Chen, Shang Liang Chen

Abstract:

A virtualized software controller is developed in this research to replace traditional hardware control units. This virtualized software controller transfers motion interpolation calculations from the motion control units of end devices to edge computing platforms, thereby reducing the end devices' computational load and hardware requirements and making maintenance and updates easier. The study also applies the concept of microservices, dividing the control system into several small functional modules and then deploy into a cloud data server. This reduces the interdependency among modules and enhances the overall system's flexibility and scalability. Finally, with containerization technology, the system can be deployed and started in a matter of seconds, which is more efficient than traditional virtual machine deployment methods. Furthermore, this virtualized software controller communicates with end control devices via wireless networks, making the placement of production equipment or the redesign of processes more flexible and no longer limited by physical wiring. To handle the large data flow and maintain low-latency transmission, this study integrates 5G technology, fully utilizing its high speed, wide bandwidth, and low latency features to achieve rapid and stable remote machine control. An experimental setup is designed to verify the feasibility and test the performance of this framework. This study designs a smart manufacturing site with a 5G communication architecture, serving as a field for experimental data collection and performance testing. The smart manufacturing site includes one robotic arm, three Computer Numerical Control machine tools, several Input/Output ports, and an edge computing architecture. All machinery information is uploaded to edge computing servers and cloud servers via 5G communication and the Internet of Things framework. After analysis and computation, this information is converted into motion control commands, which are transmitted back to the relevant machinery for motion control through 5G communication. The communication time intervals at each stage are calculated using the C++ chrono library to measure the time difference for each command transmission. The relevant test results will be organized and displayed in the full-text.

Keywords: 5G, MEC, microservices, virtualized software controller, smart manufacturing

Procedia PDF Downloads 82
4535 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy

Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh

Abstract:

Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.

Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography

Procedia PDF Downloads 156
4534 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system

Procedia PDF Downloads 157
4533 Experience Level and Adoption of Interpretation Strategies by Iranian Interpreters

Authors: Niloofar Fathizaviyehkord

Abstract:

Just as two hands cannot make a good boxer, knowing two or more languages cannot make a skillful interpreter. Interpreting, either consecutive or simultaneous, is a cognitively demanding task requiring not only linguistic and discourse knowledge but also strategic competence. Moreover, experience level can play a very crucial role in the strategies interpreters may employ since translation and interpretation quality is a matter of experience, besides other factors, as well. With regard to the significance of strategic competence, this study investigated what strategies are mainly employed by interpreters, what strategies are employed more frequently, and whether experience level can affect the choice of strategies by interpreters or not. To collect the necessary data, the first retrospective interviews were held with 20 interpreters experienced more or less in simultaneous and consecutive interpretation to see what strategies other than those classified in the literature are employed by interpreters. Then, several classifications of strategies in literature were merged with those emerging from the retrospective interviews to come up with a comprehensive questionnaire on interpreting strategies. After seeking five experts’ opinions regarding the wording/content of the questionnaire, it was given to 60 interpreters. The statistical analysis of the questionnaire data and experience level through ANOVA showed experience level could affect the choice of strategies. This study closes with the theoretical/practical implications of the findings for interpreter training.

Keywords: experience level, consecutive and simultaneous, interpretation strategies, translation

Procedia PDF Downloads 138
4532 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data

Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour

Abstract:

Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.

Keywords: physical activity, machine learning, under 5s, disability, accelerometer

Procedia PDF Downloads 210
4531 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms

Authors: Sekkal Nawel, Mahammed Nadir

Abstract:

The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.

Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network

Procedia PDF Downloads 67