Search results for: goal question metrics
4839 Earthquake Forecasting Procedure Due to Diurnal Stress Transfer by the Core to the Crust
Authors: Hassan Gholibeigian, Kazem Gholibeigian
Abstract:
In this paper, our goal is determination of loading versus time in crust. For this goal, we present a computational procedure to propose a cumulative strain energy time profile which can be used to predict the approximate location and time of the next major earthquake (M > 4.5) along a specific fault, which we believe, is more accurate than many of the methods presently in use. In the coming pages, after a short review of the research works presently going on in the area of earthquake analysis and prediction, earthquake mechanisms in both the jerk and sequence earthquake direction is discussed, then our computational procedure is presented using differential equations of equilibrium which govern the nonlinear dynamic response of a system of finite elements, modified with an extra term to account for the jerk produced during the quake. We then employ Von Mises developed model for the stress strain relationship in our calculations, modified with the addition of an extra term to account for thermal effects. For calculation of the strain energy the idea of Pulsating Mantle Hypothesis (PMH) is used. This hypothesis, in brief, states that the mantle is under diurnal cyclic pulsating loads due to unbalanced gravitational attraction of the sun and the moon. A brief discussion is done on the Denali fault as a case study. The cumulative strain energy is then graphically represented versus time. At the end, based on some hypothetic earthquake data, the final results are verified.Keywords: pulsating mantle hypothesis, inner core’s dislocation, outer core’s bulge, constitutive model, transient hydro-magneto-thermo-mechanical load, diurnal stress, jerk, fault behaviour
Procedia PDF Downloads 2764838 The Impact of Artificial Intelligence on Digital Crime
Authors: Á. L. Bendes
Abstract:
By the end of the second decade of the 21st century, artificial intelligence (AI) has become an unavoidable part of everyday life and has necessarily aroused the interest of researchers in almost every field of science. This is no different in the case of jurisprudence, whose main task is not only to create its own theoretical paradigm related to AI. Perhaps the biggest impact on digital crime is artificial intelligence. In addition, the need to create legal frameworks suitable for the future application of the law has a similar importance. The prognosis according to which AI can reshape the practical application of law and, ultimately, the entire legal life is also of considerable importance. In the past, criminal law was basically created to sanction the criminal acts of a person, so the application of its concepts with original content to AI-related violations is not expected to be sufficient in the future. Taking this into account, it is necessary to rethink the basic elements of criminal law, such as the act and factuality, but also, in connection with criminality barriers and criminal sanctions, several new aspects have appeared that challenge both the criminal law researcher and the legislator. It is recommended to continuously monitor technological changes in the field of criminal law as well since it will be timely to re-create both the legal and scientific frameworks to correctly assess the events related to them, which may require a criminal law response. Artificial intelligence has completely reformed the world of digital crime. New crimes have appeared, which the legal systems of many countries do not or do not adequately regulate. It is considered important to investigate and sanction these digital crimes. The primary goal is prevention, for which we need a comprehensive picture of the intertwining of artificial intelligence and digital crimes. The goal is to explore these problems, present them, and create comprehensive proposals that support legal certainty.Keywords: artificial intelligence, chat forums, defamation, international criminal cooperation, social networking, virtual sites
Procedia PDF Downloads 894837 Strategic Public Procurement: A Lever for Social Entrepreneurship and Innovation
Authors: B. Orser, A. Riding, Y. Li
Abstract:
To inform government about how gender gaps in SME ( small and medium-sized enterprise) contracting might be redressed, the research question was: What are the key obstacles to, and response strategies for, increasing the engagement of women business owners among SME suppliers to the government of Canada? Thirty-five interviews with senior policymakers, supplier diversity organization executives, and expert witnesses to the Canadian House of Commons, Standing Committee on Government Operations and Estimates. Qualitative data were conducted and analysed using N’Vivo 11 software. High order response categories included: (a) SME risk mitigation strategies, (b) SME procurement program design, and (c) performance measures. Primary obstacles cited were government red tape and long and complicated requests for proposals (RFPs). The majority of 'common' complaints occur when SMEs have questions about the federal procurement process. Witness responses included use of outcome-based rather than prescriptive procurement practices, more agile procurement, simplified RFPs, making payment within 30 days a procurement priority. Risk mitigation strategies included provision of procurement officers to assess risks and opportunities for businesses and development of more agile procurement procedures and processes. Recommendations to enhance program design included: improved definitional consistency of qualifiers and selection criteria, better co-ordination across agencies; clarification about how SME suppliers benefit from federal contracting; goal setting; specification of categories that are most suitable for women-owned businesses; and, increasing primary contractor awareness about the importance of subcontract relationships. Recommendations also included third-party certification of eligible firms and the need to enhance SMEs’ financial literacy to reduce financial errors. Finally, there remains the need for clear and consistent pre-program statistics to establish baselines (by sector, issuing department) performance measures, targets based on percentage of contracts granted, value of contract, percentage of target employee (women, indigenous), and community benefits including hiring local employees. The study advances strategies to enhance federal procurement programs to facilitate socio-economic policy objectives.Keywords: procurement, small business, policy, women
Procedia PDF Downloads 1134836 Entrepreneur Universal Education System: Future Evolution
Authors: Khaled Elbehiery, Hussam Elbehiery
Abstract:
The success of education is dependent on evolution and adaptation, while the traditional system has worked before, one type of education evolved with the digital age is virtual education that has influenced efficiency in today’s learning environments. Virtual learning has indeed proved its efficiency to overcome the drawbacks of the physical environment such as time, facilities, location, etc., but despite what it had accomplished, the educational system over all is not adequate for being a productive system yet. Earning a degree is not anymore enough to obtain a career job; it is simply missing the skills and creativity. There are always two sides of a coin; a college degree or a specialized certificate, each has its own merits, but having both can put you on a successful IT career path. For many of job-seeking individuals across world to have a clear meaningful goal for work and education and positively contribute the community, a productive correlation and cooperation among employers, universities alongside with the individual technical skills is a must for generations to come. Fortunately, the proposed research “Entrepreneur Universal Education System” is an evolution to meet the needs of both employers and students, in addition to gaining vital and real-world experience in the chosen fields is easier than ever. The new vision is to empower the education to improve organizations’ needs which means improving the world as its primary goal, adopting universal skills of effective thinking, effective action, effective relationships, preparing the students through real-world accomplishment and encouraging them to better serve their organization and their communities faster and more efficiently.Keywords: virtual education, academic degree, certificates, internship, amazon web services, Microsoft Azure, Google Cloud Platform, hybrid models
Procedia PDF Downloads 964835 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes
Authors: Vincent Liu
Abstract:
Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.Keywords: diabetes, machine learning, 30-day readmission, metaheuristic
Procedia PDF Downloads 614834 Hyper Tuned RBF SVM: Approach for the Prediction of the Breast Cancer
Authors: Surita Maini, Sanjay Dhanka
Abstract:
Machine learning (ML) involves developing algorithms and statistical models that enable computers to learn and make predictions or decisions based on data without being explicitly programmed. Because of its unlimited abilities ML is gaining popularity in medical sectors; Medical Imaging, Electronic Health Records, Genomic Data Analysis, Wearable Devices, Disease Outbreak Prediction, Disease Diagnosis, etc. In the last few decades, many researchers have tried to diagnose Breast Cancer (BC) using ML, because early detection of any disease can save millions of lives. Working in this direction, the authors have proposed a hybrid ML technique RBF SVM, to predict the BC in earlier the stage. The proposed method is implemented on the Breast Cancer UCI ML dataset with 569 instances and 32 attributes. The authors recorded performance metrics of the proposed model i.e., Accuracy 98.24%, Sensitivity 98.67%, Specificity 97.43%, F1 Score 98.67%, Precision 98.67%, and run time 0.044769 seconds. The proposed method is validated by K-Fold cross-validation.Keywords: breast cancer, support vector classifier, machine learning, hyper parameter tunning
Procedia PDF Downloads 674833 Reconstruction of Womanhood: Narratives of Unmarried Basotho Women in Lesotho
Authors: Neo Mohlabane
Abstract:
-- Feminists across various contexts have written extensively on the subject of ‘Woman.’ Recently the question of difference; to account for the cultural, ethnic, and racial diversity among women themselves has become a highly contested issue in feminist theories. Tensions have ensued where ‘western feminisms’ have been criticized for bias that is embedded in the objectification of ‘different’ women often regarded as ‘other’; traditional, therefore inferior. Thus, it is argued that womanhood; a set of socially defined attributes appropriate for women, holds different meanings depending on the context in which it is defined. Drawing on decolonial feminist approaches, this qualitative study explored the constructions of ‘womanhood’ from the perspective of unmarried Basotho women in Lesotho, where womanhood is predominantly defined in marital terms. Through the narrated life-stories of twenty unmarried Basotho women, the study revealed that as opposed to the ‘traditional’ definition that accounts for a single attribute woman as ‘wife,’ unmarried Basotho women defined ‘womanhood’ in different ways that deconstructed fixed gendered categories. The women drew meaning from their past personal experiences of childhood to construct and re-construct womanhood in adulthood. By transforming their embodied experiences of hardship and sorrow into valuable constructs with which they self-evaluated as resilient and perseverant, the women constructed a base for self-affirmation as woman. In addition, the women anchored their constructions and reconstructions of woman by transforming the meanings attached to the realms of respectability, sexuality and motherhood. Thus, to the question; what is a Woman? In part, the study concluded that there is no such thing as a ‘unitary’ definition of womanhood, instead Mosotho womanhood has always been and will always be in a state of flux; bearing multiplicity and complexity. This study highlights the need to exercise caution when using western concepts to understand the experiences of women in local African contexts. In order to decolonize feminist scholarship, African feminisms need to re-construct conceptual and theoretical frameworks appropriate for analyzing and understanding gender issues in African contexts.Keywords: decoloniality, feminism, Lesotho, womanhood
Procedia PDF Downloads 1094832 Co2e Sequestration via High Yield Crops and Methane Capture for ZEV Sustainable Aviation Fuel
Authors: Bill Wason
Abstract:
143 Crude Palm Oil Coop mills on Sumatra Island are participating in a program to transfer land from defaulted estates to small farmers while improving the sustainability of palm production to allow for biofuel & food production. GCarbon will be working with farmers to transfer technology, fertilizer, and trees to double the yield from the current baseline of 3.5 tons to at least 7 tons of oil per ha (25 tons of fruit bunches). This will be measured via evaluation of yield comparisons between participant and non-participant farms. We will also capture methane from Palm Oil Mill Effluent (POME)throughbelt press filtering. Residues will be weighed and a formula used to estimate methane emission reductions based on methodologies developed by other researchers. GCarbon will also cover mill ponds with a non-permeable membrane and collect methane for energy or steam production. A system for accelerating methane production involving ozone and electro-flocculation will be tested to intensifymethane generation and reduce the time for wastewater treatment. A meta-analysis of research on sweet potatoes and sorghum as rotation crops will look at work in the Rio Grande do Sul, Brazil where5 ha. oftest plots of industrial sweet potato have achieved yields of 60 tons and 40 tons per ha. from 2 harvests in one year (100 MT/ha./year). Field trials will be duplicated in Bom Jesus Das Selvas, Maranhaothat will test varieties of sweet potatoes to measure yields and evaluate disease risks in a very different soil and climate of NE Brazil. Hog methane will also be captured. GCarbon Brazil, Coop Sisal, and an Australian research partner will plant several varieties of agave and use agronomic procedures to get yields of 880 MT per ha. over 5 years. They will also plant new varieties expected to get 3500 MT of biomass after 5 years (176-700 MT per ha. per year). The goal is to show that the agave can adapt to Brazil’s climate without disease problems. The study will include a field visit to growing sites in Australia where agave is being grown commercially for biofuels production. Researchers will measure the biomass per hectare at various stages in the growing cycle, sugar content at harvest, and other metrics to confirm the yield of sugar per ha. is up to 10 times greater than sugar cane. The study will look at sequestration rates from measuring soil carbon and root accumulation in various plots in Australia to confirm carbon sequestered from 5 years of production. The agave developer estimates that 60-80 MT of sequestration per ha. per year occurs from agave. The three study efforts in 3 different countries will define a feedstock pathway for jet fuel that involves very high yield crops that can produce 2 to 10 times more biomass than current assumptions. This cost-effective and less land intensive strategy will meet global jet fuel demand and produce huge quantities of food for net zero aviation and feeding 9-10 billion people by 2050Keywords: zero emission SAF, methane capture, food-fuel integrated refining, new crops for SAF
Procedia PDF Downloads 1034831 Deployment of Armed Soldiers in European Cities as a Source of Insecurity among Czech Population
Authors: Blanka Havlickova
Abstract:
In the last ten years, there are growing numbers of troops with machine guns serving on streets of European cities. We can see them around government buildings, major transport hubs, synagogues, galleries and main tourist landmarks. As the main purpose of armed soldier’s presence in European cities authorities declare the prevention of terrorist attacks and psychological support for tourists and domestic population. The main objective of the following study is to find out whether the deployment of armed soldiers in European cities has a calming and reassuring effect on Czech citizens (if the presence at armed soldiers make the Czech population feel more secure) or rather becomes a stress factor (the presence of soldiers standing guard in full military fatigues recalls serious criminality and terrorist attacks which are reflected in the fears and insecurity of Czech population). The initial hypothesis of this study is connected with the priming theory, the idea that when we are exposed to an image (armed soldier), it makes us unconsciously focus on a topic connected with this image (terrorism). This paper is based on a quantitative public survey, which was carried out in the form of electronic questioning among the citizens of the Czech Republic. Respondents answered 14 questions about two European cities – London and Paris. Besides general questions investigating the respondents' awareness of these cities, some of the questions focused on the fear that the respondents had when picturing themselves leaving next Monday for the given city (London or Paris). The questions asking about respondent´s travel fears and concerns were accompanied by different photos. When answering the question about fear some respondents have been presented with a photo of Westminster Palace and the Eiffel with ordinary citizens while other respondents have been presented with a picture of the Westminster Palace, the and Eiffel's tower not only with ordinary citizens, but also with one soldier holding a machine gun. The main goal of this paper is to analyse and compare data about concerns for these two groups of respondents (presented with different pictures) and find out if and how an armed soldier with a machine gun in front of the Westminster Palace or the Eiffel Tower affects the public's concerns about visiting the site. In other words, the aim of this paper is to confirm or rebut the hypothesis that the look at a soldier with a machine gun in front of the Eiffel Tower or the Westminster Palace automatically triggers the association with a terrorist attack leading to an increase in fear and insecurity among Czech population.Keywords: terrorism, security measures, priming, risk perception
Procedia PDF Downloads 2504830 What Smart Can Learn about Art
Authors: Faten Hatem
Abstract:
This paper explores the associated understanding of the role and meaning of art and whether it is perceived to be separate from smart city construction. The paper emphasises the significance of fulfilling the inherent need for discovery and interaction, driving people to explore new places and think of works of art. This is done by exploring the ways of thinking and types of art in Milton Keynes by illustrating a general pattern of misunderstanding that relies on the separation between smart, art, and architecture, promoting a better and deeper understanding of the interconnections between neuroscience, art, and architecture. A reflective approach is used to clarify the potential and impact of using art-based research, methodology, and ways of knowing when approaching global phenomena and knowledge production while examining the process of making and developing smart cities, in particular, asserting that factors can severely impact it in the process of conducting the study itself. It follows a case study as a research strategy. The qualitative methods included data collection and analysis that involved interviews and observations that depended on visuals.Keywords: smart cities, art and smart, smart cities design, smart cities making, sustainability, city brain and smart cities metrics, smart cities standards, smart cities applications, governance, planning and policy
Procedia PDF Downloads 1184829 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.Keywords: decision tree, water quality, water pollution, machine learning
Procedia PDF Downloads 824828 A Tool for Facilitating an Institutional Risk Profile Definition
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the easy creation of an institutional risk profile for endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support risk factors set up with just the most important values that are important for a particular organisation. Subsequently, the risk profile employs fuzzy models and associated configurations for the file format metadata aggregator to support digital preservation experts with a semi-automatic estimation of endangerment level for file formats. Our goal is to make use of a domain expert knowledge base aggregated from a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation and analysis of risk factors for a requried dimension. The proposed methods improve the visibility of risk factor information and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and automatically aggregated file format metadata from linked open data sources. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.Keywords: digital information management, file format, endangerment analysis, fuzzy models
Procedia PDF Downloads 4044827 Economics of Conflict: Core Economic Dimensions of the Georgian-South Ossetian Context
Authors: V. Charaia
Abstract:
This article presents SWOT analysis for Georgian - South Ossetian conflict. The research analyzes socio-economic aspects and considers future prospects for all sides including neighbor countries and regions. Also it includes the possibilities of positive intervention of neighbor countries to solve the conflict or to mitigate its negative results. The main question of the article is: What will it take to award Georgians and South Ossetians with a peace dividend?Keywords: conflict economics, investments, trade, remittances
Procedia PDF Downloads 2354826 Performance of Neural Networks vs. Radial Basis Functions When Forming a Metamodel for Residential Buildings
Authors: Philip Symonds, Jon Taylor, Zaid Chalabi, Michael Davies
Abstract:
With the world climate projected to warm and major cities in developing countries becoming increasingly populated and polluted, governments are tasked with the problem of overheating and air quality in residential buildings. This paper presents the development of an adaptable model of these risks. Simulations are performed using the EnergyPlus building physics software. An accurate metamodel is formed by randomly sampling building input parameters and training on the outputs of EnergyPlus simulations. Metamodels are used to vastly reduce the amount of computation time required when performing optimisation and sensitivity analyses. Neural Networks (NNs) are compared to a Radial Basis Function (RBF) algorithm when forming a metamodel. These techniques were implemented using the PyBrain and scikit-learn python libraries, respectively. NNs are shown to perform around 15% better than RBFs when estimating overheating and air pollution metrics modelled by EnergyPlus.Keywords: neural networks, radial basis functions, metamodelling, python machine learning libraries
Procedia PDF Downloads 4474825 Freshwater Source of Sapropel for Healthcare
Authors: Ilona Pavlovska, Aneka Klavina, Agris Auce, Ivars Vanadzins, Alise Silova, Laura Komarovska, Linda Paegle, Baiba Silamikele, Linda Dobkevica
Abstract:
Freshwater sapropel is a common material formed by complex biological transformations of Holocene sediments in the water basement of the lakes in Latvia that has the potential to be used as medical mud. Sapropel forms over a long period in shallow waters by slowly decomposing organic sediment and has different compositions depending on the location of the source, surroundings, the water regime, etc. Official geological survey of Latvia lakes, from Latvian lake database (ezeri.lv), used in the selection of the area of the exploration. The multifunctional effect of sapropel on the whole organism explained by its complex chemical and biological structure. This unique, organic substance and its ability to maintain heat for a long time ensures deep tissue warming and has a positive effect on the treatment of various joint and skin diseases. Sapropel is a valuable resource with multiple areas of application. Investigation of sapropel sediments and survey of the five sites selected according to the criteria performed in the current study. Also, our study includes sampling at different depths and their initial treatment, evaluation of external signs, and study of physical-chemical parameters, as well as analysis of biochemical parameters and evaluation of microbiological indicators. The main selection criteria were sapropel deposits depth, hydrological regime, the history of agriculture next to the lake, and the potential exposure to industrial waste. One hundred and five sapropel samples obtained from five lakes (Audzelu, Dunakla, Ivusku, Zielu, and Mazars Kivdalova) during the wintertime. The main goal of the study is to carry out detailed and systematic research on the medical properties of sapropel to be obtained in Latvia, to promote its scientifically based use in balneology, to develop new medical procedures and services, and to promote the development of new exportable products. Latvian freshwater sapropel could be used as raw material for getting sapropel extract and use it as a remedy. All mentioned above brings us to the main question for sapropel usage in medicine, balneology, and pharmacy “how to develop quality criteria for raw sapropel and its extracts. The research was co-financed by the project "Analysis of characteristics of medical sapropel and its usage for medical purposes and elaboration of industrial extraction methods" No.1.1.1.1/16/A/165.Keywords: balneology, extracts, freshwater sapropel, Latvian lakes, medical mud, sapropel
Procedia PDF Downloads 2654824 Video-On-Demand QoE Evaluation across Different Age-Groups and Its Significance for Network Capacity
Authors: Mujtaba Roshan, John A. Schormans
Abstract:
Quality of Experience (QoE) drives churn in the broadband networks industry, and good QoE plays a large part in the retention of customers. QoE is known to be affected by the Quality of Service (QoS) factors packet loss probability (PLP), delay and delay jitter caused by the network. Earlier results have shown that the relationship between these QoS factors and QoE is non-linear, and may vary from application to application. We use the network emulator Netem as the basis for experimentation, and evaluate how QoE varies as we change the emulated QoS metrics. Focusing on Video-on-Demand, we discovered that the reported QoE may differ widely for users of different age groups, and that the most demanding age group (the youngest) can require an order of magnitude lower PLP to achieve the same QoE than is required by the most widely studied age group of users. We then used a bottleneck TCP model to evaluate the capacity cost of achieving an order of magnitude decrease in PLP, and found it be (almost always) a 3-fold increase in link capacity that was required.Keywords: network capacity, packet loss probability, quality of experience, quality of service
Procedia PDF Downloads 2734823 The Tramway in French Cities: Complication of Public Spaces and Complexity of the Design Process
Authors: Elisa Maître
Abstract:
The redeployment of tram networks in French cities has considerably modified public spaces and the way citizens use them. Above and beyond the image that trams have of contributing to the sustainable urban development, the question of safety for users in these spaces has not been studied much. This study is based on an analysis of use of public spaces laid out for trams, from the standpoint of legibility and safety concerns. The study also examines to what extent the complexity of the design process, with many interactions between numerous and varied players in this process has a role in the genesis of these problems. This work is mainly based on the analysis of links between the uses of these re-designed public spaces (through observations, interviews of users and accident studies) and the analysis of the design conditions and processes of the projects studied (mainly based on interviews with the actors of these projects). Practical analyses were based three points of view: that of the planner, that of the user (based on observations and interviews) and that of the road safety expert. The cities of Montpellier, Marseille and Nice are the three fields of study on which the demonstration of this thesis is based. On part, the results of this study allow showing that the insertion of tram poses some problems complication of public areas of French cities. These complications related to the restructuring of public spaces for the tram, create difficulties of use and safety concerns. On the other hand, interviews depth analyses, fully transcribed, have led us to develop particular dysfunction scenarios in the design process. These elements lead to question the way the legibility and safety of these new forms of public spaces are taken into account. Then, an in-depth analysis of the design processes of public spaces with trams systems would also be a way of better understanding the choices made, the compromises accepted, and the conflicts and constraints at work, weighing on the layout of these spaces. The results presented concerning the impact that spaces laid out for trams have on the difficulty of use, suggest different possibilities for improving the way in which safety for all users is taken into account in designing public spaces.Keywords: public spaces, road layout, users, design process of urban projects
Procedia PDF Downloads 2294822 Real-Time Lane Marking Detection Using Weighted Filter
Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan
Abstract:
Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.Keywords: lane marking filter, lane detection, ADAS, LDWS
Procedia PDF Downloads 1944821 A Learning Automata Based Clustering Approach for Underwater Sensor Networks to Reduce Energy Consumption
Authors: Motahareh Fadaei
Abstract:
Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.Keywords: clustering, energy consumption, learning automata, underwater sensor networks
Procedia PDF Downloads 3144820 Nationalization of the Social Life in Argentina: Accumulation of Capital, State Intervention, Labor Market, and System of Rights in the Last Decades
Authors: Mauro Cristeche
Abstract:
This work begins with a very simple question: How does the State spend? Argentina is witnessing a process of growing nationalization of social life, so it is necessary to find out the explanations of the phenomenon on the specific dynamic of the capitalist mode of production in Argentina and its transformations in the last decades. Then the new question is: what happened in Argentina that could explain this phenomenon? Since the seventies, the capital growth in Argentina faces deep competitive problems. Until that moment the agrarian wealth had worked as a compensation mechanism, but it began to find its limits. In the meantime, some important demographical and structural changes had happened. The strategy of the capitalist class had to become to seek in the cheapness of the labor force the main source of compensation of its weakness. As a result, a tendency to worsen the living conditions and fragmentation of the working class started to develop, manifested by unemployment, underemployment, and the fall of the purchasing power of the salary as a highlighted fact. As a consequence, it is suggested that the role of the State became stronger and public expenditure increased, as a historical trend, because it has to intervene to face the contradictions and constant growth problems posed by the development of capitalism in Argentina. On the one hand, the State has to guarantee the process of buying the cheapened workforce and at the same time the process of reproduction of the working class. On the other hand, it has to help to reproduce the individual capitals but needs to ‘attack’ them in different ways. This is why the role of the State is said to be the general political representative to the national portion of the total social capital. What will be studied is the dynamic of the intervention of the Argentine State in the context of the particular national process of capital growth, and its dynamics in the last decades. What this paper wants to show are the main general causes that could explain the phenomenon of nationalization of the social life and how it has impacted the life conditions of the working class and the system of rights.Keywords: Argentina, nationalization, public policies, rights, state
Procedia PDF Downloads 1364819 Digital Memory plus City Cultural Heritage: The Peking Memory Project Experience
Authors: Huiling Feng, Xiaoshuang Jia, Jihong Liang, Li Niu
Abstract:
Beijing, formerly romanized as Peking, is the capital of the People's Republic of China and the world's second most populous city proper and most populous capital city. Beijing is a noted historical and cultural whose city history dates back three millennia which is extremely rich in terms of cultural heritage. In 2012, a digital memory project led by Humanistic Beijing Studies Center in Renmin University of China started with the goal to build a total digital collection of knowledge assets about Beijing and represent Beijing memories in new fresh ways. The title of the entire project is ‘Peking Memory Project(PMP)’. The main goal is for safeguarding the documentary heritage and intellectual memory of Beijing, more specifically speaking, from the perspective of historical humanities and public participation, PMP will comprehensively applied digital technologies like digital capture, digital storage, digital process, digital presentation and digital communication to transform different kinds of cultural heritage of Beijing into digital formats that can be stored, re-organized and shared. These digital memories can be interpreted with a new perspective, be organized with a new theme, be presented in a new way and be utilized with a new need. Taking social memory as theoretical basis and digital technologies as tools, PMP is framed with ‘Two Sites and A Repository’. Two sites mean the special website(s) characterized by ‘professional’ and an interactive website characterized by ‘crowdsourcing’. A Repository means the storage pool used for safety long-time preservation of the digital memories. The work of PMP has ultimately helped to highlight the important role in safeguarding the documentary heritage and intellectual memory of Beijing.Keywords: digital memory, cultural heritage, digital technologies, peking memory project
Procedia PDF Downloads 1764818 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3394817 Base Change for Fisher Metrics: Case of the q-Gaussian Inverse Distribution
Authors: Gabriel I. Loaiza Ossa, Carlos A. Cadavid Moreno, Juan C. Arango Parra
Abstract:
It is known that the Riemannian manifold determined by the family of inverse Gaussian distributions endowed with the Fisher metric has negative constant curvature κ= -1/2, as does the family of usual Gaussian distributions. In the present paper, firstly, we arrive at this result by following a different path, much simpler than the previous ones. We first put the family in exponential form, thus endowing the family with a new set of parameters, or coordinates, θ₁, θ₂; then we determine the matrix of the Fisher metric in terms of these parameters; and finally we compute this matrix in the original parameters. Secondly, we define the inverse q-Gaussian distribution family (q < 3) as the family obtained by replacing the usual exponential function with the Tsallis q-exponential function in the expression for the inverse Gaussian distribution and observe that it supports two possible geometries, the Fisher and the q-Fisher geometry. And finally, we apply our strategy to obtain results about the Fisher and q-Fisher geometry of the inverse q-Gaussian distribution family, similar to the ones obtained in the case of the inverse Gaussian distribution family.Keywords: base of changes, information geometry, inverse Gaussian distribution, inverse q-Gaussian distribution, statistical manifolds
Procedia PDF Downloads 2444816 A Hybrid Pareto-Based Swarm Optimization Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problems
Authors: Aydin Teymourifar, Gurkan Ozturk
Abstract:
In this paper, a new hybrid particle swarm optimization algorithm is proposed for the multi-objective flexible job shop scheduling problem that is very important and hard combinatorial problem. The Pareto approach is used for solving the multi-objective problem. Several new local search heuristics are integrated into an algorithm based on the critical block concept to enhance the performance of the algorithm. The algorithm is compared with the recently published multi-objective algorithms based on benchmarks selected from the literature. Several metrics are used for quantifying performance and comparison of the achieved solutions. The algorithms are also compared based on the Weighting summation of objectives approach. The proposed algorithm can find the Pareto solutions more efficiently than the compared algorithms in less computational time.Keywords: swarm-based optimization, local search, Pareto optimality, flexible job shop scheduling, multi-objective optimization
Procedia PDF Downloads 3684815 Assessment of the Efficacy of Routine Medical Tests in Screening Medical Radiation Staff in Shiraz University of Medical Sciences Educational Centers
Authors: Z. Razi, S. M. J. Mortazavi, N. Shokrpour, Z. Shayan, F. Amiri
Abstract:
Long-term exposure to low doses of ionizing radiation occurs in radiation health care workplaces. Although doses in health professions are generally very low, there are still matters of concern. The radiation safety program promotes occupational radiation safety through accurate and reliable monitoring of radiation workers in order to effectively manage radiation protection. To achieve this goal, it has become mandatory to implement health examination periodically. As a result, based on the hematological alterations, working populations with a common occupational radiation history are screened. This paper calls into question the effectiveness of blood component analysis as a screening program which is mandatory for medical radiation workers in some countries. This study details the distribution and trends of changes in blood components, including white blood cells (WBCs), red blood cells (RBCs) and platelets as well as received cumulative doses from occupational radiation exposure. This study was conducted among 199 participants and 100 control subjects at the medical imaging departments at the central hospital of Shiraz University of Medical Sciences during the years 2006–2010. Descriptive and analytical statistics, considering the P-value<0.05 as statistically significance was used for data analysis. The results of this study show that there is no significant difference between the radiation workers and controls regarding WBCs and platelet count during 4 years. Also, we have found no statistically significant difference between the two groups with respect to RBCs. Besides, no statistically significant difference was observed with respect to RBCs with regards to gender, which has been analyzed separately because of the lower reference range for normal RBCs levels in women compared to men and. Moreover, the findings confirm that in a separate evaluation between WBCs count and the personnel’s working experience and their annual exposure dose, results showed no linear correlation between the three variables. Since the hematological findings were within the range of control levels, it can be concluded that the radiation dosage (which was not more than 7.58 mSv in this study) had been too small to stimulate any quantifiable change in medical radiation worker’s blood count. Thus, use of more accurate method for screening program based on the working profile of the radiation workers and their accumulated dose is suggested. In addition, complexity of radiation-induced functions and the influence of various factors on blood count alteration should be taken into account.Keywords: blood cell count, mandatory testing, occupational exposure, radiation
Procedia PDF Downloads 4614814 sing Eye Tracking to Measure the Impact of Persuasion Principles in Phishing Emails
Authors: Laura Bishop, Isabel Jones, Linn Halvorsen, Angela Smith
Abstract:
Phishing emails are a form of social engineering where attackers deceive email users into revealing sensitive information or installing malware such as ransomware. Scammers often use persuasion techniques to influence email users to interact with malicious content. This study will use eye-tracking equipment to analyze how participants respond to and process Cialdini’s persuasion principles when utilized within phishing emails. Eye tracking provides insights into what is happening on the subconscious level of the brain that the participant may not be aware of. An experiment is conducted to track participant eye movements, whilst interacting with and then filing a series of persuasive emails delivered at random. Eye tracking metrics will be analyzed in relation to whether a malicious email has been identified as phishing (filed as ‘suspicious’) or not phishing (filed in any other folder). This will help determine the most influential persuasion techniques and those 'areas of interest' within an email that require intervention. The results will aid further research on how to reduce the effects of persuasion on human decision-making when interacting with phishing emails.Keywords: cybersecurity, human-centric, phishing, psychology
Procedia PDF Downloads 834813 Crop Recommendation System Using Machine Learning
Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar
Abstract:
With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.Keywords: crop recommendation, precision agriculture, crop, machine learning
Procedia PDF Downloads 144812 Automated End of Sprint Detection for Force-Velocity-Power Analysis with GPS/GNSS Systems
Authors: Patrick Cormier, Cesar Meylan, Matt Jensen, Dana Agar-Newman, Chloe Werle, Ming-Chang Tsai, Marc Klimstra
Abstract:
Sprint-derived horizontal force-velocity-power (FVP) profiles can be developed with adequate validity and reliability with satellite (GPS/GNSS) systems. However, FVP metrics are sensitive to small nuances in data processing procedures such that minor differences in defining the onset and end of the sprint could result in different FVP metric outcomes. Furthermore, in team-sports, there is a requirement for rapid analysis and feedback of results from multiple athletes, therefore developing standardized and automated methods to improve the speed, efficiency and reliability of this process are warranted. Thus, the purpose of this study was to compare different methods of sprint end detection on the development of FVP profiles from 10Hz GPS/GNSS data through goodness-of-fit and intertrial reliability statistics. Seventeen national team female soccer players participated in the FVP protocol which consisted of 2x40m maximal sprints performed towards the end of a soccer specific warm-up in a training session (1020 hPa, wind = 0, temperature = 30°C) on an open grass field. Each player wore a 10Hz Catapult system unit (Vector S7, Catapult Innovations) inserted in a vest in a pouch between the scapulae. All data were analyzed following common procedures. Variables computed and assessed were the model parameters, estimated maximal sprint speed (MSS) and the acceleration constant τ, in addition to horizontal relative force (F₀), velocity at zero (V₀), and relative mechanical power (Pmax). The onset of the sprints was standardized with an acceleration threshold of 0.1 m/s². The sprint end detection methods were: 1. Time when peak velocity (MSS) was achieved (zero acceleration), 2. Time after peak velocity drops by -0.4 m/s, 3. Time after peak velocity drops by -0.6 m/s, and 4. When the integrated distance from the GPS/GNSS signal achieves 40-m. Goodness-of-fit of each sprint end detection method was determined using the residual sum of squares (RSS) to demonstrate the error of the FVP modeling with the sprint data from the GPS/GNSS system. Inter-trial reliability (from 2 trials) was assessed utilizing intraclass correlation coefficients (ICC). For goodness-of-fit results, the end detection technique that used the time when peak velocity was achieved (zero acceleration) had the lowest RSS values, followed by -0.4 and -0.6 velocity decay, and 40-m end had the highest RSS values. For intertrial reliability, the end of sprint detection techniques that were defined as the time at (method 1) or shortly after (method 2 and 3) when MSS was achieved had very large to near perfect ICC and the time at the 40 m integrated distance (method 4) had large to very large ICCs. Peak velocity was reached at 29.52 ± 4.02-m. Therefore, sport scientists should implement end of sprint detection either when peak velocity is determined or shortly after to improve goodness of fit to achieve reliable between trial FVP profile metrics. Although, more robust processing and modeling procedures should be developed in future research to improve sprint model fitting. This protocol was seamlessly integrated into the usual training which shows promise for sprint monitoring in the field with this technology.Keywords: automated, biomechanics, team-sports, sprint
Procedia PDF Downloads 1194811 The Hidden Characteristics That Tutors Hope Dundee Mmed Graduates Might Have after Graduation
Authors: Afnan Khoja, Ittisak Subrungruang, Kritchaya Ritruechai, Linda Jones, David Wall
Abstract:
Background: Some characteristics might be stated as an objective of the curriculum and some might be hidden. The hidden curriculum is the unwritten and unintended lessons and perspectives that students absorb in school. Though, the hidden characteristics are expected that tutors hope students might have in order to become medical educators. We suspected our faculty hoped we would develop skills, know and develop beyond the written outcomes. Our research question aimed to explore the hidden curriculum; as part of our learning; we had to design and report findings. Summary of Work: We undertook semi-structured interviews with a sample of the centre for medical education faculty at Dundee. Participants answered the question , of what are the hidden characteristics that they hope Dundee MMed graduates might have after graduation. Thematic analysis was carried out on the interview scripts. Summary of Results: A thematic analysis was carried out on the interview transcripts. Three main themes were identified from all respondents' comments. These were lifelong learners, being flexible and problem solvers. In addition individual respondents also described sense of humour, collaboration, humility, role model, inquisitiveness, optimism, and ability to express oneself clearly. Discussion: Tutors put great value on three behaviours lifelong learner, flexible, and problem solver, which are part of professional characteristics in leadership. Therefore, leadership characteristics is incorporated as the outcomes of hidden characteristics that tutors would like to see. Conclusion: Tutors in the Master's program of medical education at the University of Dundee hope that medical education students should present the three main hidden characteristics, which are lifelong learner, flexible, and problem solver after graduation. Take-home Messages: These hidden characteristics are considered as informal unless a change has been made to the formal curriculum. Therefore, to reach the tutors’ expectations, further studies might be held to make this personal characteristics transformation more accessible.Keywords: characteristics, hidden curriculum, transformation, informal
Procedia PDF Downloads 884810 Robots for the Elderly at Home: For Men Only
Authors: Christa Fricke, Sibylle Meyer, Gert G. Wagner
Abstract:
Our research focuses on the question of whether assistive and social robotics could pose a promising strategy to support the independent living of elderly people and potentially relieve relatives of any anxieties. To answer the question of how elderly people perceive the potential of robotics, we analysed the data from the Berlin Aging Study BASE-II (https://www.base2.mpg.de/de) (N=1463) and data from the German SYMPARTNER study (http://www.sympartner.de) (N=120) and compared those to a control group made up of people younger than 30 years (BASE II: N=241; SYMPARTNER: N=30). BASE-II is a cohort study of people living in Berlin, Germany. The sample covers more than 2200 cases; a questionnaire on the use and acceptance of assistive and social robots was carried out with a sub-sample of 1463 respondents in 2015. The SYMPARTNER study was done by SIBIS institute of Social Research, Berlin and included a total of 120 persons between the ages of 60 and 87 in Berlin and the rural German federal state of Thuringia. Both studies included a control group of persons between the ages of 20 and 35 (BASE II: N=241; SYMPARTNER: N=30). Additional data, representative for the whole population in Germany, will be surveyed in fall 2017 (Survey “Technikradar” [technology radar] by the National Academy of Science and Engineering). Since this survey is including some identical questions as BASE-II/SYMPARTNER, comparative results can be presented at 20th International Conference on Social Robotics in New York 2018. The complexity of the data gathered in BASE-II and SYMPARTNER, encompassing detailed socio-economic background characteristics as well as personality traits such as the personal attitude to risk taking, locus of control and Big Five, proves highly valuable and beneficial. Results show that participants’ expressions of resentment against robots are comparatively low. Participants’ personality traits play a role, however the effect sizes are small. Only 15 percent of participants received domestic robots with great scepticism. Participants aged older than 70 years expressed greatest rejection of the robotic assistant. The effect sizes however account for only a few percentage points. Overall, participants were surprisingly open to the robot and its usefulness. The analysis also shows that men’s acceptance of the robot is generally greater than that of women (with odds ratios of about 0.6 to 0.7). This applies to both assistive robots in the private household and in care environments. Men expect greater benefits of the robot than women. Women tend to be more sceptical of their technical feasibility than men. Interview results prove our hypothesis that men, in particular of the age group 60+, are more accustomed to delegate household chores to women. A delegation to machines instead of humans, therefore, seems palpable. The answer to the title question of this planned presentation is: social and assistive robots at home robots are not only accepted by men – but by fewer women than men.Keywords: acceptance, care, gender, household
Procedia PDF Downloads 197