Search results for: alternative substrate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4634

Search results for: alternative substrate

3944 The Impact of Mycotoxins on the Anaerobic Digestion Process

Authors: Harald Lindorfer, Bettina Frauz, Dietmar Ramhold

Abstract:

Next to the well-known inhibitors in anaerobic digestion like ammonia, antibiotics or disinfectants, the number of process failures connected with mould growth in the feedstock increased significantly in the last years. It was assumed that mycotoxins are the cause of the negative effects. The financial damage to plants associated with these process failures is considerable. The aim of this study was to find a way of predicting the failures and furthermore strategies for a fast process recovery. In a first step, mould-contaminated feedstocks causing process failures in full-scale digesters were sampled and analysed on mycotoxin content. A selection of these samples was applied to biological inhibition tests. In this test, crystalline cellulose is applied in addition to the feedstock sample as standard substrate. Affected digesters were also sampled and analytical process data as well as operational data of the plants were recorded. Additionally, different mycotoxin substances, Deoxynivalenol, Zearalenon, Aflatoxin B1, Mycophenolic acid and Citrinin, were applied as pure substances to lab-scale digesters, individually and in various combinations, and effects were monitored. As expected, various mycotoxins were detected in all of the mould-contaminated samples. Nevertheless, inhibition effects were observed with only one of the collected samples, after applying it to an inhibition test. With this sample, the biogas yield of the standard substrate was reduced by approx. 20%. This result corresponds with observations made on full-scale plants. However, none of the tested mycotoxins applied as pure substance caused a negative effect on biogas production in lab scale digesters, neither after application as individual substance nor in combination. The recording of the process data in full-scale plants affected by process failures in most cases showed a severe accumulation of fatty acids alongside a decrease in biogas production and methane concentration. In the analytical data of the digester samples, a typical distribution of fatty acids with exceptionally high acetic acid concentrations could be identified. This typical fatty acid pattern can be used as a rapid identification parameter pointing to the cause of the process troubles and enable a fast implication of countermeasures. The results of the study show that more attention needs to be paid to feedstock storage and feedstock conservation before their application to anaerobic digesters. This is all the more important since first studies indicate that the occurrence of mycotoxins will likely increase in Europe due to the ongoing climate change.

Keywords: Anaerobic digestion, Biogas, Feedstock conservation, Fungal mycotoxins, Inhibition, process failure

Procedia PDF Downloads 115
3943 Effect of Boric Acid Content on the Structural and Optical Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

Authors: Mustafa Öztas, Metin Bedir, Yahya Özdemir

Abstract:

Boron doped of In2O3 films were prepared by spray pyrolysis technique at 350 °C substrate temperature, which is a low cost and large area technique to be well-suited for the manufacture of solar cells, using boric acid (H3BO3) as dopant source, and their properties were investigated as a function of doping concentration. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal structure and have preferred orientation in (220) direction. The changes observed in the energy band gap and structural properties of the films related to the boric acid concentration are discussed in detail.

Keywords: spray pyrolysis, In2O3, boron, optical properties, boric acid

Procedia PDF Downloads 575
3942 A 1T1R Nonvolatile Memory with Al/TiO₂/Au and Sol-Gel Processed Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor

Authors: Ke-Jing Lee, Cheng-Jung Lee, Yu-Chi Chang, Li-Wen Wang, Yeong-Her Wang

Abstract:

To avoid the cross-talk issue of only resistive random access memory (RRAM) cell, one transistor and one resistor (1T1R) architecture with a TiO₂-based RRAM cell connected with solution barium zirconate nickelate (BZN) organic thin film transistor (OTFT) device is successfully demonstrated. The OTFT were fabricated on a glass substrate. Aluminum (Al) as the gate electrode was deposited via a radio-frequency (RF) magnetron sputtering system. The barium acetate, zirconium n-propoxide, and nickel II acetylacetone were synthesized by using the sol-gel method. After the BZN solution was completely prepared using the sol-gel process, it was spin-coated onto the Al/glass substrate as the gate dielectric. The BZN layer was baked at 100 °C for 10 minutes under ambient air conditions. The pentacene thin film was thermally evaporated on the BZN layer at a deposition rate of 0.08 to 0.15 nm/s. Finally, gold (Au) electrode was deposited using an RF magnetron sputtering system and defined through shadow masks as both the source and drain. The channel length and width of the transistors were 150 and 1500 μm, respectively. As for the manufacture of 1T1R configuration, the RRAM device was fabricated directly on drain electrodes of TFT device. A simple metal/insulator/metal structure, which consisting of Al/TiO₂/Au structures, was fabricated. First, Au was deposited to be a bottom electrode of RRAM device by RF magnetron sputtering system. Then, the TiO₂ layer was deposited on Au electrode by sputtering. Finally, Al was deposited as the top electrode. The electrical performance of the BZN OTFT was studied, showing superior transfer characteristics with the low threshold voltage of −1.1 V, good saturation mobility of 5 cm²/V s, and low subthreshold swing of 400 mV/decade. The integration of the BZN OTFT and TiO₂ RRAM devices was finally completed to form 1T1R configuration with low power consumption of 1.3 μW, the low operation current of 0.5 μA, and reliable data retention. Based on the I-V characteristics, the different polarities of bipolar switching are found to be determined by the compliance current with the different distribution of the internal oxygen vacancies used in the RRAM and 1T1R devices. Also, this phenomenon can be well explained by the proposed mechanism model. It is promising to make the 1T1R possible for practical applications of low-power active matrix flat-panel displays.

Keywords: one transistor and one resistor (1T1R), organic thin-film transistor (OTFT), resistive random access memory (RRAM), sol-gel

Procedia PDF Downloads 343
3941 Optimal Design of Polymer Based Piezoelectric Actuator with Varying Thickness and Length Ratios

Authors: Vineet Tiwari, R. K. Dwivedi, Geetika Srivastava

Abstract:

Piezoelectric cantilevers are exploited for their use in sensors and actuators. In this study, a unimorph cantilever beam is considered as a study element with a piezoelectric polymer Polyvinylidene fluoride (PVDF) layer bonded to a substrate layer. The different substrates like polysilicon, stainless steel and silicon nitride are tried for the study. An effort has been made to optimize and study the effect of the various parameters of the device in order to achieve maximum tip deflection. The variation of the tip displacement of the cantilever with respect to the length ratio of the nonpiezoelectric layer to the piezoelectric layer has been studied. The electric response of this unimorph cantilever beam is simulated with the help of finite element analysis software COMSOL Multiphysics.

Keywords: actuators, cantilever, piezoelectric, sensors, PVDF

Procedia PDF Downloads 421
3940 Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform

Authors: Srinivas Bathini, Duraichelvan Raju, Simona Badilescu, Muthukumaran Packirisamy

Abstract:

A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.

Keywords: exosomes, gold nano-islands, microfluidics, plasmonic biosensing

Procedia PDF Downloads 162
3939 Effects of Grape Seed Oil on Postharvest Life and Quality of Some Grape Cultivars

Authors: Zeki Kara, Kevser Yazar

Abstract:

Table grapes (Vitis vinifera L.) are an important crop worldwide. Postharvest problems like berry shattering, decay and stem dehydration are some of the important factors that limit the marketing of table grapes. Edible coatings are an alternative for increasing shelf-life of fruits, protecting fruits from humidity and oxygen effects, thus retarding their deterioration. This study aimed to compare different grape seed oil applications (GSO, 0.5 g L-1, 1 g L-1, 2 g L-1) and SO2 generating pads effects (SO2-1, SO2-2). Treated grapes with GSO and generating pads were packaged into polyethylene trays and stored at 0 ± 1°C and 85-95% moisture. Effects of the applications were investigated by some quality and sensory evaluations with intervals of 15 days. SO2 applications were determined the most effective treatments for minimizing weight loss and changes in TA, pH, color and appearance value. Grape seed oil applications were determined as a good alternative for grape preservation, improving weight losses and °Brix, TA, the color values and sensory analysis. Commercially, ‘Alphonse Lavallée’ clusters were stored for 75 days and ‘Antep Karası’ clusters for 60 days. The data obtained from GSO indicated that it had a similar quality result to SO2 for up to 40 days storage.

Keywords: postharvest, quality, sensory analyses, Vitis vinifera L.

Procedia PDF Downloads 160
3938 A Study of Social Media Users’ Switching Behavior

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.

Keywords: social media, switching, social media fatigue, alternative attractiveness

Procedia PDF Downloads 129
3937 Children in Conflict: Institutionalization as a Rehabilitative Mechanism in Jammu and Kashmir

Authors: Moksha Singh

Abstract:

The proponents of deinstitutionalization, including Goffman and others, in their works, have regarded institutions (orphanages to be specific) as regulated social arrangements that negatively impinge upon a resident’s development. They, therefore, propose alternative forms of care. However, even after five decades of this critique institutionalization remains the only hope for children with social, physical and mental disabilities in larger parts of the developing world such as the conflict affected state of Jammu and Kashmir in India. This paper is based on the experiences of children who lost their parents to insurgency and counter-insurgency operations and the rehabilitation process. This study is qualitative in nature and adopts descriptive-cum-exploratory research design. Using theoretical sampling, six orphanages and thirty one child residents who lost their parent(s) in the course of the armed conflict in the state of Jammu and Kashmir in India were studied in the year 2009-2010. It included interviews, observation, life histories and introspective accounts of the orphans and the management. The results were drawn through the qualitative examination, understanding, and interpretation of the primary and secondary data. The findings suggested that rehabilitation of these conflict-affected children is taking place mainly through residential child care facilities run by non-governmental bodies. Alternative forms of rehabilitation are not functional in the state because of various geopolitical and socio-cultural complexities. Even after five years of arriving at these conclusions and more, the state of Jammu and Kashmir still lacks a comprehensive rehabilitation plan for these children. This has further encouraged a mushroomed growth of legal and illegal institutions. Some of these institutions compromise the standard norms of functioning and yet remain the only hope for thousands rendered orphan. These institutions, therefore, are there to stay as other alternative forms of care are not available in the state. A comprehensive intervention policy is needed based on the cultural specifics of the state and incorporation of views of institutions offering aid, the state and the children. The paper introduces Small Group Residential Care Model through which it is expected that the restoration process can be made smooth and effective.

Keywords: armed conflict, children's rights, institutionalization, orphanages, rehabilitation

Procedia PDF Downloads 229
3936 (Re)Processing of ND-Fe-B Permanent Magnets Using Electrochemical and Physical Approaches

Authors: Kristina Zuzek, Xuan Xu, Awais Ikram, Richard Sheridan, Allan Walton, Saso Sturm

Abstract:

Recycling of end-of-life REEs based Nd-Fe-B magnets is an important strategy for reducing the environmental dangers associated with rare-earth mining and overcoming the well-documented supply risks related to the REEs. However, challenges on their reprocessing still remain. We report on the possibility of direct electrochemical recycling and reprocessing of Nd-Fe(B)-based magnets. In this investigation, we were able first to electrochemically leach the end-of-life NdFeB magnet and to electrodeposit Nd–Fe using a 1-ethyl-3-methyl imidazolium dicyanamide ([EMIM][DCA]) ionic liquid-based electrolyte. We observed that Nd(III) could not be reduced independently. However, it can be co-deposited on a substrate with the addition of Fe(II). Using advanced TEM techniques of electron-energy-loss spectroscopy (EELS) it was shown that Nd(III) is reduced to Nd(0) during the electrodeposition process. This gave a new insight into determining the Nd oxidation state, as X-ray photoelectron spectroscopy (XPS) has certain limitations. This is because the binding energies of metallic Nd (Nd0) and neodymium oxide (Nd₂O₃) are very close, i. e., 980.5-981.5 eV and 981.7-982.3 eV, respectively, making it almost impossible to differentiate between the two states. These new insights into the electrodeposition process represent an important step closer to efficient recycling of rare piles of earth in metallic form at mild temperatures, thus providing an alternative to high-temperature molten-salt electrolysis and a step closer to deposit Nd-Fe-based magnetic materials. Further, we propose a new concept of recycling the sintered Nd-Fe-B magnets by direct recovering the 2:14:1 matrix phase. Via an electrochemical etching method, we are able to recover pure individual 2:14:1 grains that can be re-used for new types of magnet production. In the frame of physical reprocessing, we have successfully synthesized new magnets out of hydrogen (HDDR)-recycled stocks with a contemporary technique of pulsed electric current sintering (PECS). The optimal PECS conditions yielded fully dense Nd-Fe-B magnets with the coercivity Hc = 1060 kA/m, which was boosted to 1160 kA/m after the post-PECS thermal treatment. The Br and Hc were tackled further and increased applied pressures of 100 – 150 MPa resulted in Br = 1.01 T. We showed that with a fine tune of the PECS and post-annealing it is possible to revitalize the Nd-Fe-B end-of-life magnets. By applying advanced TEM, i.e. atomic-scale Z-contrast STEM combined with EDXS and EELS, the resulting magnetic properties were critically assessed against various types of structural and compositional discontinuities down to atomic-scale, which we believe control the microstructure evolution during the PECS processing route.

Keywords: electrochemistry, Nd-Fe-B, pulsed electric current sintering, recycling, reprocessing

Procedia PDF Downloads 145
3935 Effect of Pre-bonding Storage Period on Laser-treated Al Surfaces

Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig

Abstract:

In recent years, the use of aluminium has further expanded and is expected to replace steel in the future as vehicles become lighter and more recyclable in order to reduce greenhouse gas (GHG) emissions and improve fuel economy. In line with this, structures and components are becoming increasingly multi-material, with different materials, including aluminium, being used in combination to improve mechanical utility and performance. A common method of assembling dissimilar materials is mechanical fastening, but it has several drawbacks, such as increased manufacturing processes and the influence of substrate-specific mechanical properties. Adhesive bonding and fusion bonding are methods that overcome the above disadvantages. In these two joining methods, surface pre-treatment of the substrate is always necessary to ensure the strength and durability of the joint. Previous studies have shown that laser surface treatment improves the strength and durability of the joint. Yan et al. showed that laser surface treatment of aluminium alloys changes α-Al2O3 in the oxide layer to γ-Al2O3. As γ-Al2O3 has a large specific surface area, is very porous and chemically active, laser-treated aluminium surfaces are expected to undergo physico-chemical changes over time and adsorb moisture and organic substances from the air or storage atmosphere. The impurities accumulated on the laser-treated surface may be released at the adhesive and bonding interface by the heat input to the bonding system during the joining phase, affecting the strength and durability of the joint. However, only a few studies have discussed the effect of such storage periods on laser-treated surfaces. This paper, therefore, investigates the ageing of laser-treated aluminium alloy surfaces through thermal analysis, electrochemical analysis and microstructural observations.AlMg3 of 0.5 mm and 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fibre laser at 1060 nm wavelength, 70 W maximum power and 55 kHz repetition frequency. The aluminium surface was then analysed using SEM, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry (CV) after storage in air for various periods ranging from one day to several months TGA and FTIR analysed impurities adsorbed on the aluminium surface, while CV revealed changes in the true electrochemically active surface area. SEM also revealed visual changes on the treated surface. In summary, the changes in the laser-treated aluminium surface with storage time were investigated, and the final results were used to determine the appropriate storage period.

Keywords: laser surface treatment, pre-treatment, adhesion, bonding, corrosion, durability, dissimilar material interface, automotive, aluminium alloys

Procedia PDF Downloads 71
3934 Oxidative Stability of Corn Oil Supplemented with Natural Antioxidants from Cypriot Salvia fruticosa Extracts

Authors: Zoi Konsoula

Abstract:

Vegetable oils, which are rich in polyunsaturated fatty acids, are susceptible to oxidative deterioration. The lipid oxidation of oils results in the production of rancid odors and unpleasant flavors as well as the reduction of their nutritional quality and safety. Traditionally, synthetic antioxidants are employed for their retardation or prevention of oxidative deterioration of oils. However, these compounds are suspected to pose health hazards. Consequently, recently there has been a growing interest in the use of natural antioxidants of plant origin for improving the oxidative stability of vegetable oils. The genus Salvia (sage) is well known for its antioxidant activity. In the Cypriot flora Salvia fruticosa is the most distributed indigenous Salvia species. In the present study, extracts were prepared from S. fruticosa aerial parts using various solvents and their antioxidant activity was evaluated by the 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging and Ferric Reducing Antioxidant Power (FRAP) method. Moreover, the antioxidant efficacy of all extracts was assessed using corn oil as the oxidation substrate, which was subjected to accelerated aging (60 °C, 30 days). The progress of lipid oxidation was monitored by the determination of the peroxide, p-aniside, conjugated dienes and trienes value according to the official AOCS methods. Synthetic antioxidants (butylated hydroxytoluene-BHT and butylated hydroxyanisole-BHA) were employed at their legal limit (200 ppm) as reference. Finally, the total phenolic (TPC) and flavonoid content (TFC) of the prepared extracts was measured by the Folin-Ciocalteu and aluminum-flavonoid complex method, respectively. The results of the present study revealed that although all sage extracts prepared from S. fruticosa exhibited antioxidant activity, the highest antioxidant capacity was recorded in the methanolic extract, followed by the non-toxic, food grade ethanol. Furthermore, a positive correlation between the antioxidant potency and the TPC of extracts was observed in all cases. Interestingly, sage extracts prevented lipid oxidation in corn oil at all concentrations tested, however, the magnitude of stabilization was dose dependent. More specifically, results from the different oxidation parameters were in agreement with each other and indicated that the protection offered by the various extracts depended on their TPC. Among the extracts, the methanolic extract was more potent in inhibiting oxidative deterioration. Finally, both methanolic and ethanolic sage extracts at a concentration of 1000 ppm exerted a stabilizing effect comparable to that of the reference synthetic antioxidants. Based on the results of the present study, sage extracts could be used for minimizing or preventing lipid oxidation in oils and, thus, prolonging their shelf-life. In particular, given that the use of dietary alcohol, such as ethanol, is preferable than methanol in food applications, the ethanolic extract prepared from S. fruticosa could be used as an alternative natural antioxidant.

Keywords: antioxidant activity, corn oil, oxidative deterioration, sage

Procedia PDF Downloads 185
3933 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell

Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman

Abstract:

Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However, the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol-gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.

Keywords: microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve

Procedia PDF Downloads 544
3932 Landfill Leachate: A Promising Substrate for Microbial Fuel Cells

Authors: Jayesh M. Sonawane, Prakash C. Ghosh

Abstract:

Landfill leachate emerges as a promising feedstock for microbial fuel cells (MFCs). In the present investigation, direct air-breathing cathode-based MFCs are fabricated to investigate the potential of landfill leachate. Three MFCs that have different cathode areas are fabricated and investigated for 17 days under open circuit conditions. The maximum open circuit voltage (OCV) is observed to be as high as 1.29 V. The maximum cathode area specific power density achieved in the reactor is 1513 mW m-2. Further studies are under progress to understand the origin of high OCV obtained from landfill leachate-based MFCs.

Keywords: microbial fuel cells, landfill leachate, air-breathing cathode, performance study

Procedia PDF Downloads 299
3931 Electrodeposition of Silicon Nanoparticles Using Ionic Liquid for Energy Storage Application

Authors: Anjali Vanpariya, Priyanka Marathey, Sakshum Khanna, Roma Patel, Indrajit Mukhopadhyay

Abstract:

Silicon (Si) is a promising negative electrode material for lithium-ion batteries (LiBs) due to its low cost, non-toxicity, and a high theoretical capacity of 4200 mAhg⁻¹. The primary challenge of the application of Si-based LiBs is large volume expansion (~ 300%) during the charge-discharge process. Incorporation of graphene, carbon nanotubes (CNTs), morphological control, and nanoparticles was utilized as effective strategies to tackle volume expansion issues. However, molten salt methods can resolve the issue, but high-temperature requirement limits its application. For sustainable and practical approach, room temperature (RT) based methods are essentially required. Use of ionic liquids (ILs) for electrodeposition of Si nanostructures can possibly resolve the issue of temperature as well as greener media. In this work, electrodeposition of Si nanoparticles on gold substrate was successfully carried out in the presence of ILs media, 1-butyl-3-methylimidazolium-bis (trifluoromethyl sulfonyl) imide (BMImTf₂N) at room temperature. Cyclic voltammetry (CV) suggests the sequential reduction of Si⁴⁺ to Si²⁺ and then Si nanoparticles (SiNs). The structure and morphology of the electrodeposited SiNs were investigated by FE-SEM and observed interconnected Si nanoparticles of average particle size ⁓100-200 nm. XRD and XPS data confirm the deposition of Si on Au (111). The first discharge-charge capacity of Si anode material has been found to be 1857 and 422 mAhg⁻¹, respectively, at current density 7.8 Ag⁻¹. The irreversible capacity of the first discharge-charge process can be attributed to the solid electrolyte interface (SEI) formation via electrolyte decomposition, and trapped Li⁺ inserted into the inner pores of Si. Pulverization of SiNs results in the creation of a new active site, which facilitates the formation of new SEI in the subsequent cycles leading to fading in a specific capacity. After 20 cycles, charge-discharge profiles have been stabilized, and a reversible capacity of 150 mAhg⁻¹ is retained. Electrochemical impedance spectroscopy (EIS) data shows the decrease in Rct value from 94.7 to 47.6 kΩ after 50 cycles of charge-discharge, which demonstrates the improvements of the interfacial charge transfer kinetics. The decrease in the Warburg impedance after 50 cycles of charge-discharge measurements indicates facile diffusion in fragmented and smaller Si nanoparticles. In summary, Si nanoparticles deposited on gold substrate using ILs as media and characterized well with different analytical techniques. Synthesized material was successfully utilized for LiBs application, which is well supported by CV and EIS data.

Keywords: silicon nanoparticles, ionic liquid, electrodeposition, cyclic voltammetry, Li-ion battery

Procedia PDF Downloads 118
3930 Life Cycle Analysis of Using Brick Waste in Road Technology

Authors: Mezhoud Samy, Toumi Youcef, Boukendekdji Otmane

Abstract:

Nowadays, industrial by-products and waste are increasing along with public needs increase. The engineering sector has turned to sustainable development by emphasizing the aspects of environmental and life cycle assessment as an important objective. Among this waste, the remains of the red bricks (DBR) may be an alternative worth checking out, given their availability and abundance at the construction sites. In this context, this work aims to valorize DBR in the concrete road (BR). The incorporation of DBR is carried out by the substitution of the granular fractions of mixtures from noble quarry materials. The experimental plan aims to determine the physico-mechanical performance and environmental performance of manufactured BRs from DBR with a cement content (6.5%) and compared with a control BR without DBR. The studied characteristics are proctor, resistance to compression, resistance to flexural tensile at 7 and 28 days, modulus of elasticity, and total shrinkage. The results of this experimental study showed that the characteristics of recycled aggregates (DBR) are lower than those of natural aggregates but remain acceptable with respect to regulations. Results demonstrate the mechanical performance of BR made from less DBR than the control BR without DBR but remains appreciable and encourage their jobs in the road sector. Recycled aggregates can constitute an interesting economic and ecological alternative but require elementary precautions before any use.

Keywords: life cycle assessment, brick waste, road concrete, performance

Procedia PDF Downloads 84
3929 The Transient Reactive Power Regulation Capability of SVC for Large Scale WECS Connected to Distribution Networks

Authors: Y. Ates, A. R. Boynuegri, M. Uzunoglu, A. Karakas

Abstract:

The recent interest in alternative and renewable energy systems results in increased installed capacity ratio of such systems in total energy production of the world. Specifically, wind energy conversion systems (WECS) draw significant attention among possible alternative energy options, recently. On the contrary of the positive points of penetrating WECS in all over the world in terms of environment protection, energy independence of the countries, etc., there are significant problems to be solved for the grid connection of large scale WECS. The reactive power regulation, voltage variation suppression, etc. can be presented as major issues to be considered in this regard. Thus, this paper evaluates the application of a Static VAr Compensator (SVC) unit for the reactive power regulation and operation continuity of WECS during a fault condition. The system is modeled employing the IEEE 13 node test system. Thus, it is possible to evaluate the system performance with an overall grid simulation model close to real grid systems. The overall simulation model is developed in MATLAB/Simulink/SimPowerSystems® environments and the obtained results effectively match the target of the provided study.

Keywords: IEEE 13 bus distribution system, reactive power regulation, static VAr compensator, wind energy conversion system

Procedia PDF Downloads 725
3928 Assessing the Role of Failed-ADR in Civil Litigation

Authors: Masood Ahmed

Abstract:

There is a plethora of literature (including judicial and extra-judicial comments) concerning the virtues of alternative dispute resolution processes within the English civil justice system. Lord Woolf in his Access to Justice Report ushered in a new pro-ADR philosophy and this was reinforced by Sir Rupert Jackson in his review of civil litigation costs. More recently, Briggs LJ, in his review of the Chancery Court, reiterated the significant role played by ADR and the need for better integration of ADR processes within the Chancery Court. His Lordship also noted that ADR which had failed to produce a settlement (i.e. a failed-ADR) continued to play a significant role in contributing to a ‘substantial narrowing of the issues or increased focus on the key issues’ which were ‘capable of assisting both the parties and the court in the economical determination of the dispute at trial.’ With the assistance of empirical data, this paper investigates the nature of failed-ADR and, in particular, assesses the effectiveness of failed-ADR processes as a tool in: (a) narrowing the legal and/or factual issues which may assist the courts in more effective and efficient case management of the dispute; (b) assisting the parties in the future settlement of the matter. This paper will also measure the effectiveness of failed-ADR by considering the views and experiences of legal practitioners who have engaged in failed-ADR.

Keywords: English civil justice system, alternative dispute resolution processes, civil court process, empirical data from legal profession regarding failed ADR

Procedia PDF Downloads 451
3927 Use of Alternative Water Sources Based on a Rainwater in the Multi-Dwelling Urban Building 2030

Authors: Monika Lipska

Abstract:

Drinking water is water with a very high quality, and as such represents only 2.5% of the total quantity of all water in the world. For many years we have observed continuous increase in its consumption as a result of many factors such as: Growing world population (7 billion in 2011r.), increase of human lives comfort and – above all – the economic growth. Due to the rocketing consumption and growing costs of production of water with such high-quality parameters, we experience accelerating interest in alternative sources of obtaining potable water. One of the ways of saving this valuable material is using rainwater in the Urban Building. With an exponentially growing demand, the acquisition of additional sources of water is necessary to maintain the proper balance of all ecosystems. The first part of the paper describes what rainwater is and what are its potential sources and means of use, while the main part of the article focuses on the description of the methods of obtaining water from rain on the example of new urban building in Poland. It describes the method and installations of rainwater in the new urban building (“MBJ2030”). The paper addresses also the issue of monitoring of the whole recycling systems as well as the particular quality indicators important because of identification of the potential risks to human health. The third part describes the legal arrangements concerning the recycling of rainwater existing in different European Union countries with particular reference to Poland on example the new urban building in Warsaw.

Keywords: rainwater, potable water, non-potable water, Poland

Procedia PDF Downloads 404
3926 The Design of Broadband 8x2 Phased Array 5G Antenna MIMO 28 GHz for Base Station

Authors: Muhammad Saiful Fadhil Reyhan, Yusnita Rahayu, Fadhel Muhammadsyah

Abstract:

This paper proposed a design of 16 elements, 8x2 linear fed patch antenna array with 16 ports, for 28 GHz, mm-wave band 5G for base station. The phased array covers along the azimuth plane to provide the coverage to the users in omnidirectional. The proposed antenna is designed RT Duroid 5880 substrate with the overall size of 85x35.6x0.787 mm3. The array is operating from 27.43 GHz to 28.34 GHz with a 910 MHz impedance bandwidth. The gain of the array is 18.3 dB, while the suppression of the side lobes is -1.0 dB. The main lobe direction of the array is 15 deg. The array shows a high array gain throughout the impedance bandwidth with overall of VSWR is below 1.12. The design will be proposed in single element and 16 elements antenna.

Keywords: 5G antenna, 28 GHz, MIMO, omnidirectional, phased array, base station, broadband

Procedia PDF Downloads 240
3925 Ni-W alloy Coatings: A Promising Electrode Material

Authors: Mr. Liju Elias, A. Chitharanjan Hegde

Abstract:

Ni-W alloy coatings have been developed galvanostatically on copper substrate from tri-sodium citrate bath, using glycerol as the additive. The deposition conditions for production of Ni-W coatings have been optimized for peak performance of their electrocatalytic activity, namely hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The corrosion behavior of the coatings were tested under working conditions of electrocatalysis (1M KOH). Electrocatalytic behaviours were tested by cyclic voltammetry and chrono-potentiometry techniques. Experimental results demonstrated that Ni-W coatings at low and high current densities (c. d.) showing superior performance for OER and HER respectively. The increased electrocatalytic activity for HER with increase of deposition c. d. was attributed to the phase structure, surface morphology and chemical composition of the coatings, confirmed by XRD, SEM and EDX analysis, respectively. The dependency of hardness and thickness of the coatings on HER and OER were examined, and results were discussed.

Keywords: electrocatalytic behavior, HER, Ni-W alloy, OER

Procedia PDF Downloads 400
3924 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach

Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa

Abstract:

Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.

Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product

Procedia PDF Downloads 131
3923 Discrete Choice Modeling in Education: Evaluating Early Childhood Educators’ Practices

Authors: Michalis Linardakis, Vasilis Grammatikopoulos, Athanasios Gregoriadis, Kalliopi Trouli

Abstract:

Discrete choice models belong to the family of Conjoint analysis that are applied on the preferences of the respondents towards a set of scenarios that describe alternative choices. The scenarios have been pre-designed to cover all the attributes of the alternatives that may affect the choices. In this study, we examine how preschool educators integrate physical activities into their everyday teaching practices through the use of discrete choice models. One of the advantages of discrete choice models compared to other more traditional data collection methods (e.g. questionnaires and interviews that use ratings) is that the respondent is called to select among competitive and realistic alternatives, rather than objectively rate each attribute that the alternatives may have. We present the effort to construct and choose representative attributes that would cover all possible choices of the respondents, and the scenarios that have arisen. For the purposes of the study, we used a sample of 50 preschool educators in Greece that responded to 4 scenarios (from the total of 16 scenarios that the orthogonal design resulted), with each scenario having three alternative teaching practices. Seven attributes of the alternatives were used in the scenarios. For the analysis of the data, we used multinomial logit model with random effects, multinomial probit model and generalized mixed logit model. The conclusions drawn from the estimated parameters of the models are discussed.

Keywords: conjoint analysis, discrete choice models, educational data, multivariate statistical analysis

Procedia PDF Downloads 452
3922 Thermal Cracking Approach Investigation to Improve Biodiesel Properties

Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli

Abstract:

Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number.

Keywords: biodiesel, castor oil, fuel properties, thermal cracking

Procedia PDF Downloads 248
3921 Separation of Water/Organic Mixtures Using Micro- and Nanostructured Membranes of Special Type of Wettability

Authors: F. R. Sultanov Ch. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A. Zhurintaeva, R. I. Gadilshina, A. B. Dugali

Abstract:

Both hydrophilic-oleophobic and hydrophobic-oleophilic membranes were obtained by coating of the substrate of membranes, presented by stainless steel meshes with various dimensions of their openings, with a composition that forms the special type of their surface wettability via spray-coating method. The surface morphology of resulting membranes was studied using SEM, the type of their wettability was identified by measuring the contact angle between the surface of membrane and a drop of studied liquid (water or organic liquid) and efficiency of continuous separation of water and organic liquid was studied on self-assembled setup.

Keywords: membrane, stainless steel mesh, oleophobicity, hydrophobicity, separation, water, organic liquids

Procedia PDF Downloads 155
3920 Evolution of Microstructure through Phase Separation via Spinodal Decomposition in Spinel Ferrite Thin Films

Authors: Nipa Debnath, Harinarayan Das, Takahiko Kawaguchi, Naonori Sakamoto, Kazuo Shinozaki, Hisao Suzuki, Naoki Wakiya

Abstract:

Nowadays spinel ferrite magnetic thin films have drawn considerable attention due to their interesting magnetic and electrical properties with enhanced chemical and thermal stability. Spinel ferrite magnetic films can be implemented in magnetic data storage, sensors, and spin filters or microwave devices. It is well established that the structural, magnetic and transport properties of the magnetic thin films are dependent on microstructure. Spinodal decomposition (SD) is a phase separation process, whereby a material system is spontaneously separated into two phases with distinct compositions. The periodic microstructure is the characteristic feature of SD. Thus, SD can be exploited to control the microstructure at the nanoscale level. In bulk spinel ferrites having general formula, MₓFe₃₋ₓ O₄ (M= Co, Mn, Ni, Zn), phase separation via SD has been reported only for cobalt ferrite (CFO); however, long time post-annealing is required to occur the spinodal decomposition. We have found that SD occurs in CoF thin film without using any post-deposition annealing process if we apply magnetic field during thin film growth. Dynamic Aurora pulsed laser deposition (PLD) is a specially designed PLD system through which in-situ magnetic field (up to 2000 G) can be applied during thin film growth. The in-situ magnetic field suppresses the recombination of ions in the plume. In addition, the peak’s intensity of the ions in the spectra of the plume also increases when magnetic field is applied to the plume. As a result, ions with high kinetic energy strike into the substrate. Thus, ion-impingement occurred under magnetic field during thin film growth. The driving force of SD is the ion-impingement towards the substrates that is induced by in-situ magnetic field. In this study, we report about the occurrence of phase separation through SD and evolution of microstructure after phase separation in spinel ferrite thin films. The surface morphology of the phase separated films show checkerboard like domain structure. The cross-sectional microstructure of the phase separated films reveal columnar type phase separation. Herein, the decomposition wave propagates in lateral direction which has been confirmed from the lateral composition modulations in spinodally decomposed films. Large magnetic anisotropy has been found in spinodally decomposed nickel ferrite (NFO) thin films. This approach approves that magnetic field is also an important thermodynamic parameter to induce phase separation by the enhancement of up-hill diffusion in thin films. This thin film deposition technique could be a more efficient alternative for the fabrication of self-organized phase separated thin films and employed in controlling of the microstructure at nanoscale level.

Keywords: Dynamic Aurora PLD, magnetic anisotropy, spinodal decomposition, spinel ferrite thin film

Procedia PDF Downloads 354
3919 Decision Tree Based Scheduling for Flexible Job Shops with Multiple Process Plans

Authors: H.-H. Doh, J.-M. Yu, Y.-J. Kwon, J.-H. Shin, H.-W. Kim, S.-H. Nam, D.-H. Lee

Abstract:

This paper suggests a decision tree based approach for flexible job shop scheduling with multiple process plans, i. e. each job can be processed through alternative operations, each of which can be processed on alternative machines. The main decision variables are: (a) selecting operation/machine pair; and (b) sequencing the jobs assigned to each machine. As an extension of the priority scheduling approach that selects the best priority rule combination after many simulation runs, this study suggests a decision tree based approach in which a decision tree is used to select a priority rule combination adequate for a specific system state and hence the burdens required for developing simulation models and carrying out simulation runs can be eliminated. The decision tree based scheduling approach consists of construction and scheduling modules. In the construction module, a decision tree is constructed using a four-stage algorithm, and in the scheduling module, a priority rule combination is selected using the decision tree. To show the performance of the decision tree based approach suggested in this study, a case study was done on a flexible job shop with reconfigurable manufacturing cells and a conventional job shop, and the results are reported by comparing it with individual priority rule combinations for the objectives of minimizing total flow time and total tardiness.

Keywords: flexible job shop scheduling, decision tree, priority rules, case study

Procedia PDF Downloads 345
3918 Engagement Resources Use by Expert and Novice EFL Academic Writers

Authors: Moharram Sharifi

Abstract:

The purpose of this study was to show how expert and novice writers take positions and stances in Research Articles and Master of Art theses Introductions, so Engagement resources were investigated in 30 Research Articles and 30 Master of Art theses written by Iranian non-native speakers. Through paired samples t-test analysis, we found out that the mean occurrences of heteroglossic items in both RA and Master thesis Introductions were larger than those of monoglossic items, indicating the awareness of both groups of writers to ‘engage’ alternative positions in Introduction sections. The results also revealed that expansive choices were preferred over contractive options in both corpora, implying both groups of writers respect alternative voices cautiously by welcoming rather than closing down the possibility of different perspectives and stances. Furthermore, unlike novice academic writers who used more Attribute features than Entertainment ones in their MATs introduction sections, expert academic writers employed a balanced number of Entertainment and Attribute in their RA introduction sections. The balanced deployment of entertaining and Attribute features in RA Introductions by expert writers might be characteristics of the writers’ demonstration of politeness, which is commonly accepted as an essential feature in academic writing discourse. Finally, through qualitative analysis, it was demonstrated that MAT writers, as novice academic writers, suffered from lacking appropriate evaluative stances and authorial voices toward propositions.

Keywords: novice, expert, engagement, RA Introductions, MA Thesis

Procedia PDF Downloads 28
3917 Enhancement in the Absorption Efficiency of Gaas/Inas Nanowire Solar Cells through a Decrease in Light Reflection

Authors: Latef M. Ali, Farah A. Abed

Abstract:

In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV.

Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, fdtd simulation

Procedia PDF Downloads 63
3916 Continuous Plug Flow and Discrete Particle Phase Coupling Using Triangular Parcels

Authors: Anders Schou Simonsen, Thomas Condra, Kim Sørensen

Abstract:

Various processes are modelled using a discrete phase, where particles are seeded from a source. Such particles can represent liquid water droplets, which are affecting the continuous phase by exchanging thermal energy, momentum, species etc. Discrete phases are typically modelled using parcel, which represents a collection of particles, which share properties such as temperature, velocity etc. When coupling the phases, the exchange rates are integrated over the cell, in which the parcel is located. This can cause spikes and fluctuating exchange rates. This paper presents an alternative method of coupling a discrete and a continuous plug flow phase. This is done using triangular parcels, which span between nodes following the dynamics of single droplets. Thus, the triangular parcels are propagated using the corner nodes. At each time step, the exchange rates are spatially integrated over the surface of the triangular parcels, which yields a smooth continuous exchange rate to the continuous phase. The results shows that the method is more stable, converges slightly faster and yields smooth exchange rates compared with the steam tube approach. However, the computational requirements are about five times greater, so the applicability of the alternative method should be limited to processes, where the exchange rates are important. The overall balances of the exchanged properties did not change significantly using the new approach.

Keywords: CFD, coupling, discrete phase, parcel

Procedia PDF Downloads 255
3915 Assessing the Competitiveness of Green Charcoal Energy as an Alternative Source of Cooking Fuel in Uganda

Authors: Judith Awacorach, Quentin Gausset

Abstract:

Wood charcoal and firewood are the primary sources of energy for cooking fuel in most Sub-Saharan African countries, including Uganda. This leads to unsustainable forest use and to rapid deforestation. Green charcoal (made out of agricultural residues that are carbonized, reduced in char powder, and glued in briquettes, using a binder such as sugar molasse, cassava flour or clay) is a promising and sustainable alternative to wood charcoal and firewood. It is considered as renewable energy because the carbon emissions released by the combustion of green charcoal are immediately captured again in the next agricultural cycle. If practiced on a large scale, this has the potential to replace wood charcoal and stop deforestation. However, the uptake of green charcoal for cooking remains low in Uganda despite the introduction of the technology 15 years ago. The present paper reviews the barriers to the production and commercialization of green charcoal. The paper is based on the study of 13 production sites, recording the raw materials used, the production techniques, the quantity produced, the frequency of production, and the business model. Observations were made on each site, and interviews were conducted with the managers of the facilities and with one or two employees in the larger facilities. We also interviewed project administrators from four funding agencies interested in financing green charcoal production. The results of our research identify the main barriers as follows: 1) The price of green charcoal is not competitive (it is more labor and capital-intensive than wood charcoal). 2) There is a problem with quality control and labeling (one finds a wide variety of green charcoal with very different performances). 3) The carbonization of agricultural crop residues is a major bottleneck in green char production. Most briquettes are produced with wood charcoal dust or powder, which is a by-product of wood charcoal. As such, they increase the efficiency of wood charcoal but do not yet replace it. 4) There is almost no marketing chain for the product (most green charcoal is sold directly from producer to consumer without any middleman). 5) The financing institutions are reluctant to lend money for this kind of activity. 6) Storage can be challenging since briquettes can dissolve due to moisture. In conclusion, a number of important barriers need to be overcome before green charcoal can become a serious alternative to wood charcoal.

Keywords: briquettes, competitiveness, deforestation, green charcoal, renewable energy

Procedia PDF Downloads 34