Search results for: FRAP (Fluorescence Recovery After Photobleaching)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2389

Search results for: FRAP (Fluorescence Recovery After Photobleaching)

1699 Study on Compressive Strength and Setting Time of Fly Ash Concrete after Slump Recovery Using Superplasticizer

Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert

Abstract:

Fresh concrete that is on bound to be rejected due to belated use either from delay construction process or unflavored traffic cause delay on concrete delivering can recover the slump and use once again by introduce second dose of superplasticizer(naphthalene based type F) into system. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting time and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting time of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash is increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.

Keywords: compressive strength, fly ash concrete, second dose of superplasticizer, setting times

Procedia PDF Downloads 281
1698 Influence of Power Flow Controller on Energy Transaction Charges in Restructured Power System

Authors: Manisha Dubey, Gaurav Gupta, Anoop Arya

Abstract:

The demand for power supply increases day by day in developing countries like India henceforth demand of reactive power support in the form of ancillary services provider also has been increased. The multi-line and multi-type Flexible alternating current transmission system (FACTS) controllers are playing a vital role to regulate power flow through the transmission line. Unified power flow controller and interline power flow controller can be utilized to control reactive power flow through the transmission line. In a restructured power system, the demand of such controller is being popular due to their inherent capability. The transmission pricing by using reactive power cost allocation through modified matrix methodology has been proposed. The FACTS technologies have quite costly assembly, so it is very useful to apportion the expenses throughout the restructured electricity industry. Therefore, in this work, after embedding the FACTS devices into load flow, the impact on the costs allocated to users in fraction to the transmission framework utilization has been analyzed. From the obtained results, it is clear that the total cost recovery is enhanced towards the Reactive Power flow through the different transmission line for 5 bus test system. The fair pricing policy towards reactive power can be achieved by the proposed method incorporating FACTS controller towards cost recovery of the transmission network.

Keywords: interline power flow controller, transmission pricing, unified power flow controller, cost allocation

Procedia PDF Downloads 148
1697 Analytical Tools for Multi-Residue Analysis of Some Oxygenated Metabolites of PAHs (Hydroxylated, Quinones) in Sediments

Authors: I. Berger, N. Machour, F. Portet-Koltalo

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are toxic and carcinogenic pollutants produced in majority by incomplete combustion processes in industrialized and urbanized areas. After being emitted in atmosphere, these persistent contaminants are deposited to soils or sediments. Even if persistent, some can be partially degraded (photodegradation, biodegradation, chemical oxidation) and they lead to oxygenated metabolites (oxy-PAHs) which can be more toxic than their parent PAH. Oxy-PAHs are less measured than PAHs in sediments and this study aims to compare different analytical tools in order to extract and quantify a mixture of four hydroxylated PAHs (OH-PAHs) and four carbonyl PAHs (quinones) in sediments. Methodologies: Two analytical systems – HPLC with on-line UV and fluorescence detectors (HPLC-UV-FLD) and GC coupled to a mass spectrometer (GC-MS) – were compared to separate and quantify oxy-PAHs. Microwave assisted extraction (MAE) was optimized to extract oxy-PAHs from sediments. Results: First OH-PAHs and quinones were analyzed in HPLC with on-line UV and fluorimetric detectors. OH-PAHs were detected with the sensitive FLD, but the non-fluorescent quinones were detected with UV. The limits of detection (LOD)s obtained were in the range (2-3)×10-4 mg/L for OH-PAHs and (2-3)×10-3 mg/L for quinones. Second, even if GC-MS is not well adapted to the analysis of the thermodegradable OH-PAHs and quinones without any derivatization step, it was used because of the advantages of the detector in terms of identification and of GC in terms of efficiency. Without derivatization, only two of the four quinones were detected in the range 1-10 mg/L (LODs=0.3-1.2 mg/L) and LODs were neither very satisfying for the four OH-PAHs (0.18-0.6 mg/L). So two derivatization processes were optimized, comparing to literature: one for silylation of OH-PAHs, one for acetylation of quinones. Silylation using BSTFA/TCMS 99/1 was enhanced using a mixture of catalyst solvents (pyridine/ethyle acetate) and finding the appropriate reaction duration (5-60 minutes). Acetylation was optimized at different steps of the process, including the initial volume of compounds to derivatize, the added amounts of Zn (0.1-0.25 g), the nature of the derivatization product (acetic anhydride, heptafluorobutyric acid…) and the liquid/liquid extraction at the end of the process. After derivatization, LODs were decreased by a factor 3 for OH-PAHs and by a factor 4 for quinones, all the quinones being now detected. Thereafter, quinones and OH-PAHs were extracted from spiked sediments using microwave assisted extraction (MAE) followed by GC-MS analysis. Several mixtures of solvents of different volumes (10-25 mL) and using different extraction temperatures (80-120°C) were tested to obtain the best recovery yields. Satisfactory recoveries could be obtained for quinones (70-96%) and for OH-PAHs (70-104%). Temperature was a critical factor which had to be controlled to avoid oxy-PAHs degradation during the MAE extraction process. Conclusion: Even if MAE-GC-MS was satisfactory to analyze these oxy-PAHs, MAE optimization has to be carried on to obtain a most appropriate extraction solvent mixture, allowing a direct injection in the HPLC-UV-FLD system, which is more sensitive than GC-MS and does not necessitate a previous long derivatization step.

Keywords: derivatizations for GC-MS, microwave assisted extraction, on-line HPLC-UV-FLD, oxygenated PAHs, polluted sediments

Procedia PDF Downloads 287
1696 Effect of Different SE Diets on Blood SE, TAC Levels in Dairy Cattle and Their Newborn Calves

Authors: Moshfeghi Sogand

Abstract:

Free radicals can be produced during the respiratory oxidation of different cells. These free radicals can damage to various macromolecules as protein ,fat, nucleic acids and … are harmful for body. The natural defence system that can prevent the damage of free radicals and nuteralized them , have tittled under the name total antioxidant capacity (TAC ). Se is one main antioxidant part in TAC , because it is one main part in structure of some body antioxidant enzymes such as GPX(glutathione peroxidase). Blood SE ,GPX and TAC probably can change by feeding of different selenium supplement diet in late pregnancy and also may transport from maternal blood to its fetus or by clostrum after calving. In this respect we have determined 100 pregnant dairy cattle (in the same condition of age , race and number of parturient) then devided them to 4 groups feed them in 3 last pregnancy months by different selenium diets. Group1:controle no se supplementation , group2: recived 0/3 ppm of the daily diet Saccharomyces Cervisiae . group3 :recived selenium _ rich yeast(containing200ppm selenium)was mixed with total daily ration fed. Group4: recived se _rich yeast(containing300 ppm selenium)was mixed with total daily ration fed. Then measured blood SE,GPX and TAC levels in them and in 3 days newborn calves after calving. The results were analysed by Tukey Anova test and the highest level of blood SE ,GPX and TAC was shown in cattle that feed fermented SE_yeast diet and in their 3 days newborn calves.

Keywords: SE, TAC, SE DIETS, FRAP

Procedia PDF Downloads 44
1695 Assay for SARS-Cov-2 on Chicken Meat

Authors: R. Mehta, M. Ghogomu, B. Schoel

Abstract:

Reports appeared in 2020 about China detecting SARS-Cov-2 (Covid-19) on frozen meat, shrimp, and food packaging material. In this study, we examined the use of swabs for the detection of Covid-19 on meat samples, and chicken breast (CB) was used as a model. Methods: Heat inactivated SARS-Cov-2 virus (IV) from Microbiologics was loaded onto the CB, swabbing was done, and the recovered inactivated virus was subjected to the Machery & Nagel NucleoSpin RNAVirus kit for RNA isolation according to manufacturer's instructions. For RT-PCR, the IDT 2019-nCoV RUO Covid-19 test kit was used with the Taqman Fast Virus 1-step master mix. The limit of detection (LOD) of viral load recovered from the CB was determined under various conditions: first on frozen CB where the IV was introduced on a defined area, then on frozen CB, with IV spread-out, and finally, on thawed CB. Results: The lowest amount of IV which can be reliably detected on frozen CB was a load of 1,000 - 2,000 IV copies where the IV was loaded on one spot of about 1 square inch. Next, the IV was spread out over a whole frozen CB about 16 square inches. The IV could be recovered at a lowest load of 4,000 to 8,000 copies. Furthermore, the effects of temperature change on viral load recovery was investigated i.e., if raw unfrozen meat became contaminated and remains for 1 hour at 4°C or gets refrozen. The amount of IV recovered successfully from CB kept at 4°C and the refrozen CB was similar to the recovery gotten from loading the IV directly on the frozen CB. In conclusion, an assay using swabs was successfully established for the detection of SARS-Cov-2 on frozen or raw (unfrozen) CB with a minimal load of up to 8,000 copies spread over 16 square inches.

Keywords: assay, COVID-19, meat, SARS-Cov-2

Procedia PDF Downloads 202
1694 Experimental Investigation on Freeze-Concentration Process Desalting for Highly Saline Brines

Authors: H. Al-Jabli

Abstract:

Using the freeze-melting process for the disposing of high saline brines was the aim of the paper by confirming the performance estimation of the treatment system. A laboratory bench scale freezing technique test unit was designed, constructed, and tested at Doha Research Plant (DRP) in Kuwait. The principal unit operations that have been considered for the laboratory study are: ice crystallization, separation, washing, and melting. The applied process is characterized as “the secondary-refrigerant indirect freezing”, which is utilizing normal freezing concept. The high saline brine was used as definite feed water, i.e. average TDS of 250,000 ppm. Kuwait desalination plants were carried out in the experimental study to measure the performance of the proposed treatment system. Experimental analysis shows that the freeze-melting process is capable of dropping the TDS of the feed water from 249,482 ppm to 56,880 ppm of the freeze-melting process in the two-phase’s course, whereas overall recovery results of the salt passage and salt rejection are 31.11%, 19.05%, and 80.95%, correspondingly. Therefore, the freeze-melting process is encouraging for the proposed application, as it shows on the results, which approves the process capability of reducing a major amount of the dissolved salts of the high saline brine with reasonable sensible recovery. This process might be reasonable with other brine disposal processes.

Keywords: high saline brine, freeze-melting process, ice crystallization, brine disposal process

Procedia PDF Downloads 268
1693 Determination of Physicochemical Properties, Bioaccessibility of Phenolics and Antioxidant Capacity of Mineral Enriched Linden Herbal Tea Beverage

Authors: Senem Suna, Canan Ece Tamer, Ömer Utku Çopur

Abstract:

In this research, dried linden (Tilia argentea) leaves and blossoms were used as a raw material for mineral enriched herbal tea beverage production. For this aim, %1 dried linden was infused with boiling water (100 °C) for 5 minutes. After cooling, sucrose, citric acid, ascorbic acid, natural lemon flavor and natural mineral water were added. Beverage samples were plate filtered, filled into 200-mL glass bottles, capped then pasteurized at 98 °C for 15 minutes. Water soluble dry matter, titratable acidity, ascorbic acid, pH, minerals (Fe, Ca, Mg, K, Na), color (L*, a*, b*), turbidity, bioaccessible phenolics and antioxidant capacity were analyzed. Water soluble dry matter, titratable acidity, and ascorbic were determined as 7.66±0.28 g/100 g, 0.13±0.00 g/100 mL, and 19.42±0.62 mg/100 mL, respectively. pH was measured as 3.69. Fe, Ca, Mg, K and Na contents of the beverage were determined as 0.12±0.00, 115.48±0.05, 34.72±0.14, 48.67±0.43 and 85.72±1.01 mg/L, respectively. Color was measured as 13.63±0.05, -4.33±0.05, and 3.06±0.05 for L*, a*, and b* values. Turbidity was determined as 0.69±0.07 NTU. Bioaccessible phenolics were determined as 312.82±5.91 mg GAE/100 mL. Antioxidant capacities of chemical (MetOH:H2O:HCl) and physiological extracts (in vitro digestive enzymatic extraction) with DPPH (27.59±0.53 and 0.17±0.02 μmol trolox/mL), FRAP (21.01±0.97 and 13.27±0.19 μmol trolox/mL) and CUPRAC (44.71±9.42 and 2.80±0.64 μmol trolox/mL) methods were also evaluated. As a result, enrichment with natural mineral water was proposed for the development of functional and nutritional values together with a good potential for commercialization.

Keywords: linden, herbal tea beverage, bioaccessibility, antioxidant capacity

Procedia PDF Downloads 173
1692 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review

Authors: Shubhangi R. Deshmukh, Anupam B. Soni

Abstract:

Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.

Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment

Procedia PDF Downloads 181
1691 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit

Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira

Abstract:

Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.

Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing

Procedia PDF Downloads 143
1690 Tick Induced Facial Nerve Paresis: A Narrative Review

Authors: Jemma Porrett

Abstract:

Background: We present a literature review examining the research surrounding tick paralysis resulting in facial nerve palsy. A case of an intra-aural paralysis tick bite resulting in unilateral facial nerve palsy is also discussed. Methods: A novel case of otoacariasis with associated ipsilateral facial nerve involvement is presented. Additionally, we conducted a review of the literature, and we searched the MEDLINE and EMBASE databases for relevant literature published between 1915 and 2020. Utilising the following keywords; 'Ixodes', 'Facial paralysis', 'Tick bite', and 'Australia', 18 articles were deemed relevant to this study. Results: Eighteen articles included in the review comprised a total of 48 patients. Patients' ages ranged from one year to 84 years of age. Ten studies estimated the possible duration between a tick bite and facial nerve palsy, averaging 8.9 days. Forty-one patients presented with a single tick within the external auditory canal, three had a single tick located on the temple or forehead region, three had post-auricular ticks, and one patient had a remarkable 44 ticks removed from the face, scalp, neck, back, and limbs. A complete ipsilateral facial nerve palsy was present in 45 patients, notably, in 16 patients, this occurred following tick removal. House-Brackmann classification was utilised in 7 patients; four patients with grade 4, one patient with grade three, and two patients with grade 2 facial nerve palsy. Thirty-eight patients had complete recovery of facial palsy. Thirteen studies were analysed for time to recovery, with an average time of 19 days. Six patients had partial recovery at the time of follow-up. One article reported improvement in facial nerve palsy at 24 hours, but no further follow-up was reported. One patient was lost to follow up, and one article failed to mention any resolution of facial nerve palsy. One patient died from respiratory arrest following generalized paralysis. Conclusions: Tick paralysis is a severe but preventable disease. Careful examination of the face, scalp, and external auditory canal should be conducted in patients presenting with otalgia and facial nerve palsy, particularly in tropical areas, to exclude the possibility of tick infestation.

Keywords: facial nerve palsy, tick bite, intra-aural, Australia

Procedia PDF Downloads 113
1689 Improvisation of N₂ Foam with Black Rice Husk Ash in Enhanced Oil Recovery

Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song yan Li, Wang Lei, Zhoujie Wang, Zheng Lei

Abstract:

Because nanoparticles have the potential to improve foam stability, only a small amount of surfactant or polymer is required to control gas mobility in the reservoir. Numerous researches have revealed that this specific application is in use. The goal is to improve foam formation and foam stability. As a result, the foam stability and foam ability of black rice husk ash were investigated. By injecting N₂ gases into a core flood condition, black rice husk ash was used to produce stable foam. The properties of black rice husk ash were investigated using a variety of characterization techniques. The black rice husk ash was mixed with the best-performing anionic foaming surfactants at various concentrations (ppm). Sodium dodecyl benzene sulphonate was the anionic surfactant used (SDBS). In this article, the N₂ gas- black rice husk ash (BRHA) with high Silica content is shown to be beneficial for foam stability and foam ability. For the test, a 30 cm sand pack was prepared. For the experiment, N₂ gas cylinders and SDBS surfactant liquid cylinders were used. Two N₂ gas experiments were carried out: one without a sand pack and one with a sand pack and oil addition. The black rice husk and SDBS surfactant concentration was 0.5 percent. The high silica content of black rice husk ash has the potential to improve foam stability in sand pack conditions, which is beneficial. On N₂ foam, there is an increase in black rice husk ash particles, which may play an important role in oil recovery.

Keywords: black rice husk ash nanoparticle, surfactant, N₂ foam, sand pack

Procedia PDF Downloads 206
1688 The Influence of Neural Synchrony on Auditory Middle Latency and Late Latency Responses and Its Correlation with Audiological Profile in Individuals with Auditory Neuropathy

Authors: P. Renjitha, P. Hari Prakash

Abstract:

Auditory neuropathy spectrum disorder (ANSD) is an auditory disorder with normal cochlear outer hair cell function and disrupted auditory nerve function. It results in unique clinical characteristic with absent auditory brainstem response (ABR), absent acoustic reflex and the presence of otoacoustic emissions (OAE) and cochlear microphonics. The lesion site could be at cochlear inner hair cells, the synapse between the inner hair cells and type I auditory nerve fibers, and/or the auditory nerve itself. But the literatures on synchrony at higher auditory system are sporadic and are less understood. It might be interesting to see if there is a recovery of neural synchrony at higher auditory centers. Also, does the level at which the auditory system recovers with adequate synchrony to the extent of observable evoke response potentials (ERPs) can predict speech perception? In the current study, eight ANSD participants and healthy controls underwent detailed audiological assessment including ABR, auditory middle latency response (AMLR), and auditory late latency response (ALLR). AMLR was recorded for clicks and ALLR was evoked using 500Hz and 2 kHz tone bursts. Analysis revealed that the participant could be categorized into three groups. Group I (2/8) where ALLR was present only for 2kHz tone burst. Group II (4/8), where AMLR was absent and ALLR was seen for both the stimuli. Group III (2/8) consisted individuals with identifiable AMLR and ALLR for all the stimuli. The highest speech identification sore observed in ANSD group was 30% and hence considered having poor speech perception. Overall test result indicates that the site of neural synchrony recovery could be varying across individuals with ANSD. Some individuals show recovery of neural synchrony at the thalamocortical level while others show the same only at the cortical level. Within ALLR itself there could be variation across stimuli again could be related to neural synchrony. Nevertheless, none of these patterns could possible explain the speech perception ability of the individuals. Hence, it could be concluded that neural synchrony as measured by evoked potentials could not be a good clinical predictor speech perception.

Keywords: auditory late latency response, auditory middle latency response, auditory neuropathy spectrum disorder, correlation with speech identification score

Procedia PDF Downloads 149
1687 How Childhood Trauma Changes the Recovery Models

Authors: John Michael Weber

Abstract:

The following research results spanned six months and 175 people addicted to some form of substance, from alcohol to heroin. One question was asked, and the answers were amazing and consistent. The following work is the detailed results of this writer’s answer to his own question and the 175 that followed. A constant pattern took shape throughout the bio-psycho-social assessments, these addicts had “first memories,” the memories were vivid and took place between the ages of three to six years old, to a person those first memories were traumatic. This writer’s personal search into his childhood was not to find an excuse for the way he became, but to explain the reason for becoming an addict. To treat addiction, these memories that have caused Post Traumatic Stress Disorder (PTSD), must be recognized as the catalyst that sparked a predisposition. Cognitive Behavioral Therapy (CBT), integrated with treatment specifically focused on PTSD, gives the addict a better chance at recovery sans relapse. This paper seeks to give the findings of first memories of the addicts assessed and provide the best treatment plan for such an addict, considering, the childhood trauma in congruence with treatment of the Substance Use Disorder (SUD). The question posed was concerning what their first life memory wa It is the hope of this author to take the knowledge that trauma is one of the main catalysts for addiction, will allow therapists to provide better treatment and reduce relapse from abstinence from drugs and alcohol. This research led this author to believe that if treatment of childhood trauma is not a priority, the twelve steps of Alcoholics Anonymous, specifically steps 4 and 5, will not be thoroughly addressed and odds for relapse increase. With this knowledge, parents can be educated on childhood trauma and the effect it has on their children. Parents could be mindful of the fact that the things they perceive as traumatic, do not match what a child, in the developmental years, absorbs as traumatic. It is this author’s belief that what has become the status quo in treatment facilities has not been working for a long time. It is for that reason this author believes things need to change. Relapse has been woven into the fabric of standard operating procedure and that, in this authors view, is not necessary. Childhood Trauma is not being addressed early in recovery and that creates an environment of inevitable relapse. This paper will explore how to break away from the status -quo and rethink the current “evidencebased treatments.” To begin breaking away from status-quo, this ends the Abstract, with hopes an interest has been peaked to read on.

Keywords: childood, trauma, treatment, addiction, change

Procedia PDF Downloads 79
1686 Empowering Through Photovoice and Entrepreneurship: A Lived Experience of Alcohol-Induced Disorder and Recovery in Zambia

Authors: Rabson Banda

Abstract:

This abstract delves into the transformative journey of Rabson Banda, a visionary leader in Zambia who has harnessed the power of photovoice, mental fitness, and entrepreneurship to combat substance use disorders in the face of limited job opportunities in Africa. Rabson's personal battle with alcohol-induced disorder serves as the foundation for his pioneering work in establishing Elevated Initiatives, a grassroots organization dedicated to empowering individuals struggling with addiction through innovative approaches. Through the lens of photovoice, Rabson Banda amplifies the voices of those affected by substance abuse, providing a platform for self-expression and healing. By intertwining mental fitness techniques and entrepreneurial skills, he equips individuals with the tools needed to break free from the cycle of addiction and chart a new path toward holistic wellness and economic independence. Rabson Banda's story embodies resilience, hope, and the unwavering belief in the transformative power of community-driven initiatives. His work not only addresses the immediate challenges of substance use disorders but also addresses the root causes of addiction by advocating for increased job opportunities and economic empowerment in Zambia and across Africa for decent job creation and Entrepreneurship: A Lived Experience of Alcohol-Induced Disorder and Recovery in Zambia.

Keywords: mental fitness, entrepreneurship, photovoice, descent jobs

Procedia PDF Downloads 40
1685 Improvement of Total Phenolic Contents and Anti-oxidative Properties of Ricegrass (Oryza sativa L.) using Selenium Bio-fortification

Authors: Rattanamanee Chomchan, Sunisa Siripongvutikorn, Panupong Puttarak

Abstract:

Ricegrass or young rice sprouts can be introduced as one of functional product since cereal sprouts have been much interested in this era due to their high nutritive values. Bio-fortification of selenium is one strategy to improve plant bioactive compounds. However, the level of selenium used are varied among species of plants, hence, the proper level need to be investigated. In this current study, influence of selenium bio-fortification hydroponically in the form of sodium selenite following the range 0, 10, 20, 30 and 40 mg Se/L on growth characteristics, selenium content, total extractable phenolic content (TPC) accumulation, lipid peroxidation and anti-oxidative properties of ricegrass were investigated. Results revealed that selenium bio-fortified exogenously increased the accumulation of selenium in ricegrass by 5.3 fold at 40 mg Se/L treatment without significant changes in leaves biomass at harvesting day while root part weight were slightly decreased when increased selenium level, respectively. Selenium at low concentration (10 and 20 mg Se/L) can stimulate the production of phenolic compounds and antioxidant activities in young ricegrass as measured by DPPH, ABTS and FRAP assay. Conversely, higher level of selenium fortification reduced the accumulation of phenolics in ricegrass afterward by acting as pro-oxidant. Moreover, highest significant reduction in oxidative stress, measured as malondialdehyde content was also observed at 20 mg Se/L treatment which in correlation to high TPC and antioxidant activities. In conclusion, selenium bio-fortification can be used as a technique to improve precious to ricegrass.

Keywords: antioxidant activities, bio-fortification, ricegrass, selenium

Procedia PDF Downloads 280
1684 The Impact of Multiple Stressors on the Functioning and Resilience of Model Freshwater Ecosystems

Authors: Sajida Saqira, Anthony Chariton, Grant C. Hose

Abstract:

The Anthropocene has seen dramatic environmental changes which are affecting every ecosystem on earth. Freshwater ecosystems are particularly vulnerable as they are at risk from the many activities that go on and contaminants that are released in catchments. They are thus subject to many stressors simultaneously. Freshwater ecosystems respond to stress at all levels of biological organization, from subcellular to community structure and ecosystem functioning. The aim of this study was to examine the resistance and resilience of freshwater ecosystems to multiple stressors. Here we explored the individual and combined effects of copper as a chemical stressor and common carp (Cyprinus carpio) as a biological stressor on the health, functioning, and recovery of outdoor experimental pond ecosystems in a long-term, controlled, factorial experiment. Primary productivity, decomposition, and water and sediment quality were analysed at regular intervals for one year to understand the health and functioning of the ecosystems. Changes to benthic biota were quantified using DNA-based and traditional microscopy-based counts of invertebrates. Carp were added to the ponds to copper contaminated sediments (with controls) to explore the combined effects of copper and carp and removed after six months to explore the resilience and recovery of the system. The outcomes of this study will advance our understanding of the impacts of multiple stressors on freshwater ecosystems, and the resilience of these systems to copper and C. carpio, which are both globally significant stressors in freshwater systems.

Keywords: carp, copper, ecosystem health, freshwater ecosystem, multiple stressors

Procedia PDF Downloads 122
1683 Comparative Study on Hydrothermal Carbonization as Pre- and Post-treatment of Anaerobic Digestion of Dairy Sludge: Focus on Energy Recovery, Resources Transformation and Hydrochar Utilization

Authors: Mahmood Al Ramahi, G. Keszthelyi-Szabo, S. Beszedes

Abstract:

Hydrothermal carbonization (HTC) is a thermochemical reaction that utilizes saturated water and vapor pressure to convert waste biomass to C-rich products This work evaluated the effect of HTC as a pre- and post-treatment technique to anaerobic digestion (AD) of dairy sludge, as information in this field is still in its infancy, with many research and methodological gaps. HTC effect was evaluated based on energy recovery, nutrients transformation, and sludge biodegradability. The first treatment approach was executed by applying hydrothermal carbonization (HTC) under a range of temperatures, prior to mesophilic anaerobic digestion (AD) of dairy sludge. Results suggested an optimal pretreatment temperature at 210 °C for 30 min. HTC pretreatment increased methane yield and chemical oxygen demand removal. The theoretical model based on Boyle’s equation had a very close match with the experimental results. On the other hand, applying HTC subsequent to AD increased total energy production, as additional energy yield was obtained by the solid fuel (hydrochar) beside the produced biogas. Furthermore, hydrothermal carbonization of AD digestate generated liquid products (HTC digestate) with improved chemical characteristics suggesting their use as liquid fertilizers.

Keywords: hydrothermal carbonization, anaerobic digestion, energy balance, sludge biodegradability, biogas

Procedia PDF Downloads 184
1682 Poly (Diphenylamine-4-Sulfonic Acid) Modified Glassy Carbon Electrode for Voltammetric Determination of Gallic Acid in Honey and Peanut Samples

Authors: Zelalem Bitew, Adane Kassa, Beyene Misgan

Abstract:

In this study, a sensitive and selective voltammetric method based on poly(diphenylamine-4-sulfonic acid) modified glassy carbon electrode (poly(DPASA)/GCE) was developed for determination of gallic acid. Appearance of an irreversible oxidative peak at both bare GCE and poly(DPASA)/GCE for gallic acid with about three folds current enhancement and much reduced potential at poly(DPASA)/GCE showed catalytic property of the modifier towards oxidation of gallic acid. Under optimized conditions, Adsorptive stripping square wave voltammetric peak current response of the poly(DPASA)/GCE showed linear dependence with gallic acid concentration in the range 5.00 × 10-7 − 3.00 × 10-4 mol L-1 with limit of detection of 4.35 × 10-9. Spike recovery results between 94.62-99.63, 95.00-99.80 and 97.25-103.20% of gallic acid in honey, raw peanut, and commercial peanut butter samples respectively, interference recovery results with less than 4.11% error in the presence of uric acid and ascorbic acid, lower LOD and relatively wider dynamic range than most of the previously reported methods validated the potential applicability of the method based on poly(DPASA)/GCE for determination of gallic acid real samples including in honey and peanut samples.

Keywords: gallic acid, diphenyl amine sulfonic acid, adsorptive anodic striping square wave voltammetry, honey, peanut

Procedia PDF Downloads 78
1681 Rapid Detection of Cocaine Using Aggregation-Induced Emission and Aptamer Combined Fluorescent Probe

Authors: Jianuo Sun, Jinghan Wang, Sirui Zhang, Chenhan Xu, Hongxia Hao, Hong Zhou

Abstract:

In recent years, the diversification and industrialization of drug-related crimes have posed significant threats to public health and safety globally. The widespread and increasingly younger demographics of drug users and the persistence of drug-impaired driving incidents underscore the urgency of this issue. Drug detection, a specialized forensic activity, is pivotal in identifying and analyzing substances involved in drug crimes. It relies on pharmacological and chemical knowledge and employs analytical chemistry and modern detection techniques. However, current drug detection methods are limited by their inability to perform semi-quantitative, real-time field analyses. They require extensive, complex laboratory-based preprocessing, expensive equipment, and specialized personnel and are hindered by long processing times. This study introduces an alternative approach using nucleic acid aptamers and Aggregation-Induced Emission (AIE) technology. Nucleic acid aptamers, selected artificially for their specific binding to target molecules and stable spatial structures, represent a new generation of biosensors following antibodies. Rapid advancements in AIE technology, particularly in tetraphenyl ethene-based luminous, offer simplicity in synthesis and versatility in modifications, making them ideal for fluorescence analysis. This work successfully synthesized, isolated, and purified an AIE molecule and constructed a probe comprising the AIE molecule, nucleic acid aptamers, and exonuclease for cocaine detection. The probe demonstrated significant relative fluorescence intensity changes and selectivity towards cocaine over other drugs. Using 4-Butoxytriethylammonium Bromide Tetraphenylethene (TPE-TTA) as the fluorescent probe, the aptamer as the recognition unit, and Exo I as an auxiliary, the system achieved rapid detection of cocaine within 5 mins in aqueous and urine, with detection limits of 1.0 and 5.0 µmol/L respectively. The probe-maintained stability and interference resistance in urine, enabling quantitative cocaine detection within a certain concentration range. This fluorescent sensor significantly reduces sample preprocessing time, offers a basis for rapid onsite cocaine detection, and promises potential for miniaturized testing setups.

Keywords: drug detection, aggregation-induced emission (AIE), nucleic acid aptamer, exonuclease, cocaine

Procedia PDF Downloads 61
1680 Effects of Stokes Shift and Purcell Enhancement in Fluorescence Assisted Radiative Cooling

Authors: Xue Ma, Yang Fu, Dangyuan Lei

Abstract:

Passive daytime radiative cooling is an emerging technology which has attracted worldwide attention in recent years due to its huge potential in cooling buildings without the use of electricity. Various coating materials with different optical properties have been developed to improve the daytime radiative cooling performance. However, commercial cooling coatings comprising functional fillers with optical bandgaps within the solar spectral range suffers from severe intrinsic absorption, limiting their cooling performance. Fortunately, it has recently been demonstrated that introducing fluorescent materials into polymeric coatings can covert the absorbed sunlight to fluorescent emissions and hence increase the effective solar reflectance and cooling performance. In this paper, we experimentally investigate the key factors for fluorescence-assisted radiative cooling with TiO2-based white coatings. The surrounding TiO2 nanoparticles, which enable spatial and temporal light confinement through multiple Mie scattering, lead to Purcell enhancement of phosphors in the coating. Photoluminescence lifetimes of two phosphors (BaMgAl10O17:Eu2+ and (Sr, Ba)SiO4:Eu2+) exhibit significant reduction of ~61% and ~23%, indicating Purcell factors of 2.6 and 1.3, respectively. Moreover, smaller Stokes shifts of the phosphors are preferred to further diminish solar absorption. Field test of fluorescent cooling coatings demonstrate an improvement of ~4% solar reflectance for the BaMgAl10O17:Eu2+-based fluorescent cooling coating. However, to maximize solar reflectance, a white appearance is introduced based on multiple Mie scattering by the broad size distribution of fillers, which is visually pressurized and aesthetically bored. Besides, most colored pigments absorb visible light significantly and convert it to non-radiative thermal energy, offsetting the cooling effect. Therefore, current colored cooling coatings are facing the compromise between color saturation and cooling effect. To solve this problem, we introduced colored fluorescent materials into white coating based on SiO2 microspheres as a top layer, covering a white cooling coating based on TiO2. Compared with the colored pigments, fluorescent materials could re-emit the absorbed light, reducing the solar absorption introduced by coloration. Our work investigated the scattering properties of SiO2 dielectric spheres with different diameters and detailly discussed their impact on the PL properties of phosphors, paving the way for colored fluorescent-assisted cooling coting to application and industrialization.

Keywords: solar reflection, infrared emissivity, mie scattering, photoluminescent emission, radiative cooling

Procedia PDF Downloads 86
1679 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water

Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta

Abstract:

The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.

Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute

Procedia PDF Downloads 118
1678 Axillary Evaluation with Targeted Axillary Dissection Using Ultrasound-Visible Clips after Neoadjuvant Chemotherapy for Patients with Node-Positive Breast Cancer

Authors: Naomi Sakamoto, Eisuke Fukuma, Mika Nashimoto, Yoshitomo Koshida

Abstract:

Background: Selective localization of the metastatic lymph node with clip and removal of clipped nodes with sentinel lymph node (SLN), known as targeted axillary dissection (TAD), reduced false-negative rates (FNR) of SLN biopsy (SLNB) after neoadjuvant chemotherapy (NAC). For the patients who achieved nodal pathologic complete response (pCR), accurate staging of axilla by TAD lead to omit axillary lymph node dissection (ALND), decreasing postoperative arm morbidity without a negative effect on overall survival. This study aimed to investigate the ultrasound (US) identification rate and success removal rate of two kinds of ultrasound-visible clips placed in metastatic lymph nodes during TAD procedure. Methods: This prospective study was conducted using patients with clinically T1-3, N1, 2, M0 breast cancer undergoing NAC followed by surgery. A US-visible clip was placed in the suspicious lymph node under US guidance before neoadjuvant chemotherapy. Before surgery, US examination was performed to evaluate the detection rate of clipped node. During the surgery, the clipped node was removed using several localization techniques, including hook-wire localization, dye-injection, or fluorescence technique, followed by a dual-technique SLNB and resection of palpable nodes if present. For the fluorescence technique, after injection of 0.1-0.2 mL of indocyanine green dye (ICG) into the clipped node, ICG fluorescent imaging was performed using the Photodynamic Eye infrared camera (Hamamatsu Photonics k. k., Shizuoka, Japan). For the dye injection method, 0.1-0.2 mL of pyoktanin blue dye was injected into the clipped node. Results: A total of 29 patients were enrolled. Hydromark™ breast biopsy site markers (Hydromark, T3 shape; Devicor Medical Japan, Tokyo, Japan) was used in 15patients, whereas a UltraCor™ Twirl™ breast marker (Twirl; C.R. Bard, Inc, NJ, USA) was placed in 14 patients. US identified the clipped node marked with the UltraCore Twirl in 100% (14/14) and with the Hydromark in 93.3% (14/15, p = ns). Success removal of clipped node marked with the UltraCore Twirl was achieved in 100% (14/14), whereas the node marked with the Hydromark was removed in 80% (12/15) (p = ns). Conclusions: The ultrasound identification rate differed between the two types of ultrasound-visible clips, which also affected the success removal rate of clipped nodes. Labelling the positive node with a US-highly-visible clip allowed successful TAD.

Keywords: breast cancer, neoadjuvant chemotherapy, targeted axillary dissection, breast tissue marker, clip

Procedia PDF Downloads 66
1677 Application of Thermoplastic Microbioreactor to the Single Cell Study of Budding Yeast to Decipher the Effect of 5-Hydroxymethylfurfural on Growth

Authors: Elif Gencturk, Ekin Yurdakul, Ahmet Y. Celik, Senol Mutlu, Kutlu O. Ulgen

Abstract:

Yeast cells are generally used as a model system of eukaryotes due to their complex genetic structure, rapid growth ability in optimum conditions, easy replication and well-defined genetic system properties. Thus, yeast cells increased the knowledge of the principal pathways in humans. During fermentation, carbohydrates (hexoses and pentoses) degrade into some toxic by-products such as 5-hydroxymethylfurfural (5-HMF or HMF) and furfural. HMF influences the ethanol yield, and ethanol productivity; it interferes with microbial growth and is considered as a potent inhibitor of bioethanol production. In this study, yeast single cell behavior under HMF application was monitored by using a continuous flow single phase microfluidic platform. Microfluidic device in operation is fabricated by hot embossing and thermo-compression techniques from cyclo-olefin polymer (COP). COP is biocompatible, transparent and rigid material and it is suitable for observing fluorescence of cells considering its low auto-fluorescence characteristic. The response of yeast cells was recorded through Red Fluorescent Protein (RFP) tagged Nop56 gene product, which is an essential evolutionary-conserved nucleolar protein, and also a member of the box C/D snoRNP complexes. With the application of HMF, yeast cell proliferation continued but HMF slowed down the cell growth, and after HMF treatment the cell proliferation stopped. By the addition of fresh nutrient medium, the yeast cells recovered after 6 hours of HMF exposure. Thus, HMF application suppresses normal functioning of cell cycle but it does not cause cells to die. The monitoring of Nop56 expression phases of the individual cells shed light on the protein and ribosome synthesis cycles along with their link to growth. Further computational study revealed that the mechanisms underlying the inhibitory or inductive effects of HMF on growth are enriched in functional categories of protein degradation, protein processing, DNA repair and multidrug resistance. The present microfluidic device can successfully be used for studying the effects of inhibitory agents on growth by single cell tracking, thus capturing cell to cell variations. By metabolic engineering techniques, engineered strains can be developed, and the metabolic network of the microorganism can thus be manipulated such that chemical overproduction of target metabolite is achieved along with the maximum growth/biomass yield.  

Keywords: COP, HMF, ribosome biogenesis, thermoplastic microbioreactor, yeast

Procedia PDF Downloads 171
1676 Character and Evolution of Electronic Waste: A Technologically Developing Country's Experience

Authors: Karen C. Olufokunbi, Odetunji A. Odejobi

Abstract:

The discourse of this paper is the examination of the generation, accumulation and growth of e-waste in a developing country. Images and other data about computer e-waste were collected using a digital camera, 290 copies of questionnaire and three structured interviews using Obafemi Awolowo University (OAU), Ile-Ife, Nigeria environment as a case study. The numerical data were analysed using R data analysis and process tool. Automata-based techniques and Petri net modeling tool were used to design and simulate a computational model for the recovery of saleable materials from e-waste. The R analysis showed that at a 95 percent confidence level, the computer equipment that will be disposed by 2020 will be 417 units. Compared to the 800 units in circulation in 2014, 50 percent of personal computer components will become e-waste. This indicates that personal computer components were in high demand due to their low costs and will be disposed more rapidly when replaced by new computer equipment Also, 57 percent of the respondents discarded their computer e-waste by throwing it into the garbage bin or by dumping it. The simulated model using Coloured Petri net modelling tool for the process showed that the e-waste dynamics is a forward sequential process in the form of a pipeline meaning that an e-waste recovery of saleable materials process occurs in identifiable discrete stages indicating that e-waste will continue to accumulate and grow in volume with time.

Keywords: Coloured Petri net, computational modelling, electronic waste, electronic waste process dynamics

Procedia PDF Downloads 166
1675 An Overview of Food Waste Management Technologies; The Advantages of Using New Management Methods over the Older Methods to Reduce the Environmental Impacts of Food Waste, Conserve Resources, and Energy Recovery

Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi

Abstract:

Continuous increasing food waste produced on a global as well as national scale may lead to burgeoning environmental and economic problems. Simultaneously, decreasing the use efficiencies of natural resources such as land, water, and energy is occurring. On the other hand, food waste has a high-energy content, which seems ideal to achieve dual benefits in terms of energy recovery and the improvement of resource use efficiencies. Therefore, to decrease the environmental impacts of food waste and resource conservation, the researcher has focused on traditional methods of using food waste as a resource through different approaches such as anaerobic digestion, composting, incineration, and landfill. The adverse environmental effects of growing food waste make it difficult for traditional food waste treatment and management methods to balance social, economic, and environmental benefits. The old technology does not need to develop, but several new technologies such as microbial fuel cells, food waste disposal, and bio-converting food waste technology still need to establish or appropriately considered. It is pointed out that some new technologies can take into account various benefits. Since the information about food waste and its management method is critical for executable policy, a review of the latest information regarding the source of food waste and its management technology in some counties is provided in this study.

Keywords: food waste, management technology, innovative method, bio converting food waste, microbial fuel cell

Procedia PDF Downloads 116
1674 A Ratiometric Inorganic Phosphate Sensor Based on CdSe/ZnS QDs and Rhodamine 6G-Doped Nanofibers

Authors: Hong Dinh Duong, Jong Il Rhee

Abstract:

In this study, a ratiometric inorganic phosphate sensor was fabricated by a double layer of the rhodamine 6G-doped nanofibers and the CdSe/ZnS QDs-captured polymer. In which, CdSe/ZnS QDs with emission wavelengths of 595nm were synthesized and ligands on their surface were exchanged with mercaptopropionic acid (MPA). The synthesized MPA-QDs were combined with the mixture of sol-gel of 3-glycidoxypropyl trimethoxysilane (GPTMS), 3-aminopropyltrimethoxysilane (APTMS) and polyurethane (PU) to build a layer for sensing inorganic phosphate. Another sensing layer was of nanofibers doped R6G which were produced from poly(styrene-co-acrylonitrile) by electrospining. The ratio of fluorescence intensities between rhodamin 6G (R6G) and CdSe/ZnS QDs exposed at different phosphate concentrations was used for calculating a linear phosphate concentration range of 0-10mM.

Keywords: nanofiber, QDs, ratiometric phosphate sensor, rhodamine 6G, sol-gel

Procedia PDF Downloads 409
1673 Selective Solvent Extraction of Co from Ni and Mn through Outer-Sphere Interactions

Authors: Korban Oosthuizen, Robert C. Luckay

Abstract:

Due to the growing popularity of electric vehicles and the importance of cobalt as part of the cathode material for lithium-ion batteries, demand for this metal is on the rise. Recycling of the cathode materials by means of solvent extraction is an attractive means of recovering cobalt and easing the pressure on limited natural resources. In this study, a series of straight chain and macrocyclic diamine ligands were developed for the selective recovery of cobalt from the solution containing nickel and manganese by means of solvent extraction. This combination of metals is the major cathode material used in electric vehicle batteries. The ligands can be protonated and function as ion-pairing ligands targeting the anionic [CoCl₄]²⁻, a species which is not observed for Ni or Mn. Selectivity for Co was found to be good at very high chloride concentrations and low pH. Longer chains or larger macrocycles were found to enhance selectivity, and linear chains on the amide side groups also resulted in greater selectivity over the branched groups. The cation of the chloride salt used for adjusting chloride concentrations seems to play a major role in extraction through salting-out effects. The ligands developed in this study show good selectivity for Co over Ni and Mn but require very high chloride concentrations to function. This research does, however, open the door for further investigations into using diamines as solvent extraction ligands for the recovery of cobalt from spent lithium-ion batteries.

Keywords: hydrometallurgy, solvent extraction, cobalt, lithium-ion batteries

Procedia PDF Downloads 78
1672 Heavy Metal Contamination in Sediments of North East Coast of Tamilnadu by EDXRF Technique

Authors: R. Ravisankar, Tholkappian A. Chandrasekaran, Y. Raghu, K. K. Satapathy, M. V. R. Prasad, K. V. Kanagasabapathy

Abstract:

The coastal areas of Tamilnadu are assuming greater importance owing to increasing human population, urbanization and accelerated industrial activities. sIn the present study, sediment samples are collected along the east coast of Tamilnadu for assessment of heavy metal pollution. The concentration of 13 selected heavy metals such as Mg, Al, Si, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn determined by Energy dispersive X-ray fluorescence (EDXRF) technique. In order to describe the pollution status, Contamination factor and pollution load index are calculated and reported. This result suggests that sources of metal contamination were mainly attributed to natural inputs from surrounding environments.

Keywords: sediments, heavy metals, EDXRF, pollution contamination factors

Procedia PDF Downloads 339
1671 Spent Paint Solvent Recoveries by Ionic Liquids: Potential for Industrial Application

Authors: Mbongeni Mabaso, Kandasamy Moodley, Gan Redhi

Abstract:

The recovery of industrially valuable organic solvents from liquid waste, generated in chemical processes, is economically crucial to countries which need to import organic solvents. In view of this, the main objective of this study was to determine the ability of selected ionic liquids, namely, 1-ethyl-3-methylimidazolium ethylsulphate, [EMIM] [ESO4] and 1-ethyl-3-methylpyridinium ethylsulphate, [EMpy][ESO4] to recover aromatic components from spent paint solvents. Preliminary studies done on the liquid waste, received from a paint manufacturing company, showed that the aromatic components were present in the range 6 - 21 % by volume. The separation of the aromatic components was performed with the ionic liquids listed above. The phases, resulting from the separation of the mixtures, were analysed with a Gas Chromatograph (GC) coupled to a FID detector. Chromatograms illustrate that the chosen ZB-Wax-Plus column gave excellent separation of all components of interest from the mixtures, including the isomers of xylene. The concentrations of aromatics recovered from the spent solvents were found to be the % ranges 13-33 and 23-49 respectively for imidazolium and pyridinium ionic liquids. These results also show that there is a significant correlation between π-character of ionic liquids and the level of extraction. It is therefore concluded that ionic liquids have the potential for macro-scale recovery of re-useable solvents present in liquid waste emanating from paint manufacture.

Keywords: synthesis, ionic liquid, imidazolium, pyridinium, extraction, aromatic solvents, spent paint organic solvents

Procedia PDF Downloads 337
1670 Functional Yoghurt Enriched with Microencapsulated Olive Leaves Extract Powder Using Polycaprolactone via Double Emulsion/Solvent Evaporation Technique

Authors: Tamer El-Messery, Teresa Sanchez-Moya, Ruben Lopez-Nicolas, Gaspar Ros, Esmat Aly

Abstract:

Olive leaves (OLs), the main by-product of the olive oil industry, have a considerable amount of phenolic compounds. The exploitation of these compounds represents the current trend in food processing. In this study, OLs polyphenols were microencapsulated with polycaprolactone (PCL) and utilized in formulating novel functional yoghurt. PCL-microcapsules were characterized by scanning electron microscopy, and Fourier transform infrared spectrometry analysis. Their total phenolic (TPC), total flavonoid (TFC) contents, and antioxidant activities (DPPH, FRAP, ABTS), and polyphenols bioaccessibility were measured after oral, gastric, and intestinal steps of in vitro digestion. The four yoghurt formulations (containing 0, 25, 50, and 75 mg of PCL-microsphere/100g yoghurt) were evaluated for their pH, acidity, syneresis viscosity, and color during storage. In vitro digestion significantly affected the phenolic composition in non-encapsulated extract while had a lower impact on encapsulated phenolics. Higher protection was provided for encapsulated OLs extract, and their higher release was observed at the intestinal phase. Yoghurt with PCL-microsphere had lower viscosity, syneresis, and color parameters, as compared to control yoghurt. Thus, OLs represent a valuable and cheap source of polyphenols which can be successfully applied, in microencapsulated form, to formulate functional yoghurt.

Keywords: yoghurt quality attributes, olive leaves, phenolic and flavonoids compounds, antioxidant activity, polycaprolactone as microencapsulant

Procedia PDF Downloads 142