Search results for: health data
23583 Study and GIS Development of Geothermal Potential in South Algeria (Adrar Region)
Authors: A. Benatiallah, D. Benatiallah, F. Abaidi, B. Nasri, A. Harrouz, S. Mansouri
Abstract:
The region of Adrar is located in the south-western Algeria and covers a total area of 443.782 km², occupied by a population of 432,193 inhabitants. The main activity of population is agriculture, mainly based on the date palm cultivation occupies a total area of 23,532 ha. Adrar region climate is a continental desert characterized by a high variation in temperature between months (July, August) it exceeds 48°C and coldest months (December, January) with 16°C. Rainfall is very limited in frequency and volume with an aridity index of 4.6 to 5 which corresponds to a type of arid climate. Geologically Adrar region is located on the edge North West and is characterized by a Precambrian basement cover stolen sedimentary deposit of Phanerozoic age transgressive. The depression is filled by Touat site Paleozoic deposits (Cambrian to Namurian) of a vast sedimentary basin extending secondary age of the Saharan Atlas to the north hamada Tinhirt Tademaït and the plateau of south and Touat Gourara west to Gulf of Gabes in the Northeast. In this work we have study geothermal potential of Adrar region from the borehole data eatable in various sites across the area of 400,000 square kilometres; from these data we developed a GIS (Adrar_GIS) that plots data on the various points and boreholes in the region specifying information on available geothermal potential has variable depths.Keywords: sig, geothermal, potenteil, temperature
Procedia PDF Downloads 46723582 An Overview of the Wind and Wave Climate in the Romanian Nearshore
Authors: Liliana Rusu
Abstract:
The goal of the proposed work is to provide a more comprehensive picture of the wind and wave climate in the Romanian nearshore, using the results provided by numerical models. The Romanian coastal environment is located in the western side of the Black Sea, the more energetic part of the sea, an area with heavy maritime traffic and various offshore operations. Information about the wind and wave climate in the Romanian waters is mainly based on observations at Gloria drilling platform (70 km from the coast). As regards the waves, the measurements of the wave characteristics are not so accurate due to the method used, being also available for a limited period. For this reason, the wave simulations that cover large temporal and spatial scales represent an option to describe better the wave climate. To assess the wind climate in the target area spanning 1992–2016, data provided by the NCEP-CFSR (U.S. National Centers for Environmental Prediction - Climate Forecast System Reanalysis) and consisting in wind fields at 10m above the sea level are used. The high spatial and temporal resolution of the wind fields is good enough to represent the wind variability over the area. For the same 25-year period, as considered for the wind climate, this study characterizes the wave climate from a wave hindcast data set that uses NCEP-CFSR winds as input for a model system SWAN (Simulating WAves Nearshore) based. The wave simulation results with a two-level modelling scale have been validated against both in situ measurements and remotely sensed data. The second level of the system, with a higher resolution in the geographical space (0.02°×0.02°), is focused on the Romanian coastal environment. The main wave parameters simulated at this level are used to analyse the wave climate. The spatial distributions of the wind speed, wind direction and the mean significant wave height have been computed as the average of the total data. As resulted from the amount of data, the target area presents a generally moderate wave climate that is affected by the storm events developed in the Black Sea basin. Both wind and wave climate presents high seasonal variability. All the results are computed as maps that help to find the more dangerous areas. A local analysis has been also employed in some key locations corresponding to highly sensitive areas, as for example the main Romanian harbors.Keywords: numerical simulations, Romanian nearshore, waves, wind
Procedia PDF Downloads 34623581 Impact of Geomagnetic Storm on Ionosphere
Authors: Affan Ahmed
Abstract:
This research investigates the impact of the geomagnetic storm occurring from April 22 to April 26, 2023, on the Earth’s ionosphere, with a focus on analyzing specific ionospheric parameters to understand the storm's effects on ionospheric stability and GNSS signal propagation. Geomagnetic storms, caused by intensified solar wind-magnetosphere interactions, can significantly disturb ionospheric conditions, impacting electron density, Total Electron Content (TEC), and thermospheric composition. Such disturbances are particularly relevant to satellite-based navigation and communication systems, as fluctuations in ionospheric parameters can degrade signal integrity and reliability. In this study, data were obtained from multiple sources, including OMNIWeb for parameters like Dst, Kp, Bz, Electric Field, and solar wind pressure, GUVI for O/N₂ ratio maps, and TEC data from low-, mid-, and high-latitude stations available on the IONOLAB website. Additional Equatorial Electrojet (EEJ) and geomagnetic data were acquired from INTERMAGNET. The methodology involved comparing storm-affected data from April 22 to April 26 with quiet days in April 2023, using statistical and wavelet analysis to assess variations in parameters like TEC, O/N₂ ratio, and geomagnetic indices. The results show pronounced fluctuations in TEC and other ionospheric parameters during the main phase of the storm, with spatial variations observed across latitudes, highlighting the global response of the ionosphere to geomagnetic disturbances. The findings underline the storm’s significant impact on ionospheric composition, particularly in mid- and high-latitude regions, which correlates with increased GNSS signal interference in these areas. This study contributes to understanding the ionosphere’s response to geomagnetic activity, emphasizing the need for robust models to predict and mitigate space weather effects on GNSS-dependent technologies.Keywords: geomagnetic storms, ionospheric disturbances, space weather effects, magnetosphere-ionosphere coupling
Procedia PDF Downloads 1523580 Real-Time Water Quality Monitoring and Control System for Fish Farms Based on IoT
Authors: Nadia Yaghoobi, Seyed Majid Esmaeilzadeh
Abstract:
Due to advancements in wireless communication, new sensor capabilities have been created. In addition to the automation industry, the Internet of Things (IoT) has been used in environmental issues and has provided the possibility of communication between different devices for data collection and exchange. Water quality depends on many factors which are essential for maintaining the minimum sustainability of water. Regarding the great dependence of fishes on the quality of the aquatic environment, water quality can directly affect their activity. Therefore, monitoring water quality is an important issue to consider, especially in the fish farming industry. The conventional method of water quality testing is to collect water samples manually and send them to a laboratory for testing and analysis. This time-consuming method is a waste of manpower and is not cost-effective. The water quality measurement system implemented in this project monitors water quality in real-time through various sensors (parameters: water temperature, water level, dissolved oxygen, humidity and ambient temperature, water turbidity, PH). The Wi-Fi module, ESP8266, transmits data collected by sensors wirelessly to ThingSpeak and the smartphone app. Also, with the help of these instantaneous data, water temperature and water level can be controlled by using a heater and a water pump, respectively. This system can have a detailed study of the pollution and condition of water resources and can provide an environment for safe fish farming.Keywords: dissolved oxygen, IoT, monitoring, ThingSpeak, water level, water quality, WiFi module
Procedia PDF Downloads 19923579 Stroke Prevention in Patients with Atrial Fibrillation and Co-Morbid Physical and Mental Health Problems
Authors: Dina Farran, Mark Ashworth, Fiona Gaughran
Abstract:
Atrial fibrillation (AF), the most prevalent cardiac arrhythmia, is associated with an increased risk of stroke, contributing to heart failure and death. In this project, we aim to improve patient safety by screening for stroke risk among people with AF and co-morbid mental illness. To do so, we started by conducting a systematic review and meta-analysis on prevalence, management, and outcomes of AF in people with Serious Mental Illness (SMI) versus the general population. We then evaluated oral anticoagulation (OAC) prescription trends in people with AF and co-morbid SMI in King’s College Hospital. We also evaluated the association between mental illness severity and OAC prescription in eligible patients in South London and Maudsley (SLaM) NHS Foundation Trust. Next, we implemented an electronic clinical decision support system (eCDSS) consisting of a visual prompt on patient electronic Personal Health Records to screen for AF-related stroke risk in three Mental Health of Older Adults wards at SLaM. Finally, we assessed the feasibility and acceptability of the eCDSS by qualitatively investigating clinicians’ perspectives of the potential usefulness of the eCDSS (pre-intervention) and their experiences and their views regarding its impact on clinicians and patients (post-intervention). The systematic review showed that people with SMI had low reported rates of AF. AF patients with SMI were less likely to receive OAC than the general population. When receiving warfarin, people with SMI, particularly bipolar disorder, experienced poor anticoagulation control compared to the general population. Meta-analysis showed that SMI was not significantly associated with an increased risk of stroke or major bleeding when adjusting for underlying risk factors. The main findings of the first observational study were that among AF patients having a high stroke risk, those with co-morbid SMI were less likely than non-SMI to be prescribed any OAC, particularly warfarin. After 2019, there was no significant difference between the two groups. In the second observational study, patients with AF and co-morbid SMI were less likely to be prescribed any OAC compared to those with dementia, substance use disorders, or common mental disorders, adjusting for age, sex, stroke, and bleeding risk scores. Among AF patients with co-morbid SMI, warfarin was less likely to be prescribed to those having alcohol or substance dependency, serious self-injury, hallucinations or delusions, and activities of daily living impairment. In the intervention, clinicians were asked to confirm the presence of AF, clinically assess stroke and bleeding risks, record risk scores in clinical notes, and refer patients at high risk of stroke to OAC clinics. Clinicians reported many potential benefits for the eCDSS, including improving clinical effectiveness, better identification of patients at risk, safer and more comprehensive care, consistency in decision making and saving time. Identified potential risks included rigidity in decision-making, overreliance, reduced critical thinking, false positive recommendations, annoyance, and increased workload. This study presents a unique opportunity to quantify AF patients with mental illness who are at high risk of severe outcomes using electronic health records. This has the potential to improve health outcomes and, therefore patients' quality of life.Keywords: atrial fibrillation, stroke, mental health conditions, electronic clinical decision support systems
Procedia PDF Downloads 5323578 Exploring Factors Associated with Substance Use among Pregnant Women in a Cape Town Community
Authors: Mutshinye Manguvhewa, Maria Florence, Mansoo Yu, Elize Koch, Kamal Kamaloodien
Abstract:
Substance use among pregnant women is a perennial problem in the Western Cape Province of South Africa. There are many influential factors are associated with substance use among women of childbearing age. The study explored factors associated with substance use among pregnant women using a qualitative research design and the bio-ecological theoretical framework to explore and guide the researcher throughout the study. Participants were selected using purposive sampling. Only participants accessed from the Department of Social Development meeting the inclusion criteria of the study were interviewed using semi structured interviews. Immediate referral for psychological intervention during the interview was available for participants who needed it. Braun and Clarke's six phases of thematic analysis were utilised to analyse the data. The study adheres to ethical guidelines for the participants' protection. Participants were informed about the study before the initiation of the interviews and the details of their voluntary participation were explained. The key findings from this study illustrate that socio-cultural factors, personal factors, emotional response and intimate relationships are the major contributing factors to substance use among pregnant women in this sample. The results outline the preventative measures that pregnant women implement. Lastly, the study reveals the positive and negative perceptions of substance use programmes that participants share. Some of the study findings are similar to the existing literature and some of the findings differed. Recommendations emanating from the study include that the stakeholders, rehabilitation centres, Department of Health and future researchers should act proactively against substance use during pregnancy.Keywords: substance addiction, antenatal care, pregnancy, substance use
Procedia PDF Downloads 12423577 Evaluating Classification with Efficacy Metrics
Authors: Guofan Shao, Lina Tang, Hao Zhang
Abstract:
The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty
Procedia PDF Downloads 21823576 The Studies of Client Requirements in Home Stay: A Case Study of Thailand
Authors: Kanamon Suwantada
Abstract:
The purpose of this research is to understand customer’s expectations towards homestays and to establish the precise strategies to increase numbers of tourists for homestay business in Amphawa district, Samutsongkram, Thailand. The researcher aims to ensure that each host provides experiences to travelers who are looking for and determining new targets for homestay business in Amphawa as well as creating sustainable homestay using marketing strategies to increase customers. The methods allow interview and questionnaire to gain both overview data from the tourists and qualitative data from the homestay owner’s perspective to create a GAP analysis. The data was collected from 200 tourists, during 15th May - 30th July, 2011 from homestay in Amphawa Community. The questionnaires were divided into three sections: the demographic profile, customer information and influencing on purchasing position, and customer expectation towards homestay. The analysis, in fact, will be divided into two methods which are percentage and correlation analyses. The result of this research revealed that homestay had already provided customers with reasonable prices in good locations. Antithetically, activities that they offered still could not have met the customer’s requirements. Homestay providers should prepare additional activities such as village tour, local attraction tour, village daily life experiences, local ceremony participation, and interactive conversation with local people. Moreover, the results indicated that a price was the most important factor for choosing homestay.Keywords: ecotourism, homestay, marketing, sufficiency economic philosophy
Procedia PDF Downloads 31323575 A Markov Model for the Elderly Disability Transition and Related Factors in China
Authors: Huimin Liu, Li Xiang, Yue Liu, Jing Wang
Abstract:
Background: As one of typical case for the developing countries who are stepping into the aging times globally, more and more older people in China might face the problem of which they could not maintain normal life due to the functional disability. While the government take efforts to build long-term care system and further carry out related policies for the core concept, there is still lack of strong evidence to evaluating the profile of disability states in the elderly population and its transition rate. It has been proved that disability is a dynamic condition of the person rather than irreversible so it means possible to intervene timely on them who might be in a risk of severe disability. Objective: The aim of this study was to depict the picture of the disability transferring status of the older people in China, and then find out individual characteristics that change the state of disability to provide theory basis for disability prevention and early intervention among elderly people. Methods: Data for this study came from the 2011 baseline survey and the 2013 follow-up survey of the China Health and Retirement Longitudinal Study (CHARLS). Normal ADL function, 1~2 ADLs disability,3 or above ADLs disability and death were defined from state 1 to state 4. Multi-state Markov model was applied and the four-state homogeneous model with discrete states and discrete times from two visits follow-up data was constructed to explore factors for various progressive stages. We modeled the effect of explanatory variables on the rates of transition by using a proportional intensities model with covariate, such as gender. Result: In the total sample, state 2 constituent ratio is nearly about 17.0%, while state 3 proportion is blow the former, accounting for 8.5%. Moreover, ADL disability statistics difference is not obvious between two years. About half of the state 2 in 2011 improved to become normal in 2013 even though they get elder. However, state 3 transferred into the proportion of death increased obviously, closed to the proportion back to state 2 or normal functions. From the estimated intensities, we see the older people are eleven times as likely to develop at 1~2 ADLs disability than dying. After disability onset (state 2), progression to state 3 is 30% more likely than recovery. Once in state 3, a mean of 0.76 years is spent before death or recovery. In this model, a typical person in state 2 has a probability of 0.5 of disability-free one year from now while the moderate disabled or above has a probability of 0.14 being dead. Conclusion: On the long-term care cost considerations, preventive programs for delay the disability progression of the elderly could be adopted based on the current disabled state and main factors of each stage. And in general terms, those focusing elderly individuals who are moderate or above disabled should go first.Keywords: Markov model, elderly people, disability, transition intensity
Procedia PDF Downloads 29423574 Effects of Sports Participation on Academics Performance of Students at Yaa Asantewaa Girls’ Senior High School
Authors: Alhassan Dramani Yakubu
Abstract:
The primary purpose of this study was to analyze effects that participating in sporting activities has on academic performance among students at Yaa Asantewaa Girls’ Senior High School. To dig out the main objective of the study, descriptive survey design was employed. The study used 45 respondents comprising of 25 student – athletes and 20 non-student – athletes. The purposive sampling and stratified random sampling technique were used to sample population of 455 students involved. The academic performance of sports participants is compared with those of non – participants in terms of their outcomes in the form of grades from mathematics. Data was obtained from the sample by the use of questionnaire which was self - administered. The questionnaire sought information on level of student’s participation in sports and importance of sports participation to students. Results revealed that participation in sporting activities is associated with higher grades among students. The analysis reinforces the idea that apart from their health benefits for participants, sporting activities lead to the attainment of the performance goals to which higher institutions aspire. The findings also implies that, mathematics teachers and other subject teachers should not fend off students from participating in sporting activities with the trepidation that participating in sports inflame academic performance. This study recommend that, educational programs about sports should be provided for students’ through the educational system to bring about positive academic performance.Keywords: physical activity, physical education, intra mural, extra mural
Procedia PDF Downloads 6823573 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.Keywords: palm oil, fatty acid, NIRS, regression
Procedia PDF Downloads 51023572 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: computational social science, movie preference, machine learning, SVM
Procedia PDF Downloads 26323571 Performance Evaluation and Planning for Road Safety Measures Using Data Envelopment Analysis and Fuzzy Decision Making
Authors: Hamid Reza Behnood, Esmaeel Ayati, Tom Brijs, Mohammadali Pirayesh Neghab
Abstract:
Investment projects in road safety planning can benefit from an effectiveness evaluation regarding their expected safety outcomes. The objective of this study is to develop a decision support system (DSS) to support policymakers in taking the right choice in road safety planning based on the efficiency of previously implemented safety measures in a set of regions in Iran. The measures considered for each region in the study include performance indicators about (1) police operations, (2) treated black spots, (3) freeway and highway facility supplies, (4) speed control cameras, (5) emergency medical services, and (6) road lighting projects. To this end, inefficiency measure is calculated, defined by the proportion of fatality rates in relation to the combined measure of road safety performance indicators (i.e., road safety measures) which should be minimized. The relative inefficiency for each region is modeled by the Data Envelopment Analysis (DEA) technique. In a next step, a fuzzy decision-making system is constructed to convert the information obtained from the DEA analysis into a rule-based system that can be used by policy makers to evaluate the expected outcomes of certain alternative investment strategies in road safety.Keywords: performance indicators, road safety, decision support system, data envelopment analysis, fuzzy reasoning
Procedia PDF Downloads 35723570 Sustainable Rehabilitation of Concrete Buildings in Iran: Harnessing Sunlight and Navigating Limited Water Resources
Authors: Amin Khamoosh, Hamed Faramarzifar
Abstract:
In the capital of Iran, Tehran, numerous buildings constructed when extreme climates were not prevalent now face the need for rehabilitation, typically within their first decade. Our data delves into the performance metrics and economic advantages of sustainable rehabilitation practices compared to traditional methods. With a focus on the scarcity of water resources, we specifically scrutinize water-efficient techniques throughout construction, rehabilitation, and usage. Examining design elements that optimize natural light while efficiently managing heat transmission is crucial, given the reliance on water for cooling devices in this region. The data aims to present a comprehensive strategy, addressing immediate structural concerns while harmonizing with Iran's unique environmental conditions.Keywords: sustainable rehabilitation, concrete buildings, iran, solar energy, water-efficient techniques
Procedia PDF Downloads 5923569 Semantic-Based Collaborative Filtering to Improve Visitor Cold Start in Recommender Systems
Authors: Baba Mbaye
Abstract:
In collaborative filtering recommendation systems, a user receives suggested items based on the opinions and evaluations of a community of users. This type of recommendation system uses only the information (notes in numerical values) contained in a usage matrix as input data. This matrix can be constructed based on users' behaviors or by offering users to declare their opinions on the items they know. The cold start problem leads to very poor performance for new users. It is a phenomenon that occurs at the beginning of use, in the situation where the system lacks data to make recommendations. There are three types of cold start problems: cold start for a new item, a new system, and a new user. We are interested in this article at the cold start for a new user. When the system welcomes a new user, the profile exists but does not have enough data, and its communities with other users profiles are still unknown. This leads to recommendations not adapted to the profile of the new user. In this paper, we propose an approach that improves cold start by using the notions of similarity and semantic proximity between users profiles during cold start. We will use the cold-metadata available (metadata extracted from the new user's data) useful in positioning the new user within a community. The aim is to look for similarities and semantic proximities with the old and current user profiles of the system. Proximity is represented by close concepts considered to belong to the same group, while similarity groups together elements that appear similar. Similarity and proximity are two close but not similar concepts. This similarity leads us to the construction of similarity which is based on: a) the concepts (properties, terms, instances) independent of ontology structure and, b) the simultaneous representation of the two concepts (relations, presence of terms in a document, simultaneous presence of the authorities). We propose an ontology, OIVCSRS (Ontology of Improvement Visitor Cold Start in Recommender Systems), in order to structure the terms and concepts representing the meaning of an information field, whether by the metadata of a namespace, or the elements of a knowledge domain. This approach allows us to automatically attach the new user to a user community, partially compensate for the data that was not initially provided and ultimately to associate a better first profile with the cold start. Thus, the aim of this paper is to propose an approach to improving cold start using semantic technologies.Keywords: visitor cold start, recommender systems, collaborative filtering, semantic filtering
Procedia PDF Downloads 22223568 Enhancing Children’s English Vocabulary Acquisition through Digital Storytelling at Happy Kids Kindergarten, Palembang, Indonesia
Authors: Gaya Tridinanti
Abstract:
Enhanching English vocabulary in early childhood is the main problem often faced by teachers. Thus, the purpose of this study was to determine the enhancement of children’s English vocabulary acquisition by using digital storytelling. This type of research was an action research. It consisted of a series of four activities done in repeated cycles: planning, implementation, observation, and reflection. The subject of the study consisted of 30 students of B group (5-6 years old) attending Happy Kids Kindergarten Palembang, Indonesia. This research was conducted in three cycles. The methods used for data collection were observation and documentation. Descriptive qualitative and quantitative methods were also used to analyse the data. The research showed that the digital storytelling learning activities could enhance the children’s English vocabulary acquisition. It is based on the data in which the enhancement in pre-cycle was 37% and 51% in Cycle I. In Cycle II it was 71% and in Cycle III it was 89.3%. The results showed an enhancement of about 14% from the pre-cycle to Cycle I, 20% from Cycle I to Cycle II, and enhancement of about 18.3% from Cycle II to Cycle III. The conclusion of this study suggests that digital storytelling learning method could enhance the English vocabulary acquisition of B group children at the Happy Kids Kindergarten Palembang. Therefore, digital storytelling can be considered as an alternative to improve English language learning in the classroom.Keywords: acquisition, enhancing, digital storytelling, English vocabulary
Procedia PDF Downloads 26223567 The Association between Acupuncture Treatment and a Decreased Risk of Irritable Bowel Syndrome in Patients with Depression
Authors: Greg Zimmerman
Abstract:
Background: Major depression is a common illness that affects millions of people globally. It is the leading cause of disability and is projected to become the number one cause of the global burden of disease by 2030. Many of those who suffer from depression also suffer from Irritable Bowel Syndrome (IBS). Acupuncture has been shown to help depression. The aim of this study was to investigate the effectiveness of acupuncture in reducing the risk of IBS in patients with depression. Methods: We enrolled patients diagnosed with depression through the Taiwanese National Health Insurance Research Database (NHIRD). Propensity score matching was used to match equal numbers (n=32971) of the acupuncture cohort and no-acupuncture cohort based on characteristics including sex, age, baseline comorbidity, and medication. The Cox regression model was used to compare the hazard ratios (HRs) of IBS in the two cohorts. Results: The basic characteristics of the two groups were similar. The cumulative incidence of IBS was significantly lower in the acupuncture cohort than in the no-acupuncture cohort (Log-rank test, p<0.001). Conclusion: The results provided real-world evidence that acupuncture may have a beneficial effect on IBS risk reduction in patients with depression.Keywords: acupuncture, depression, irritable bowel syndrome, national health insurance research database, real-world evidence
Procedia PDF Downloads 10923566 Analysis of the Relations between Obsessive Compulsive Symptoms and Anxiety Sensitivity in Adolescents: Structural Equation Modeling
Authors: Ismail Seçer
Abstract:
The purpose of this study is to analyze the predictive effect of anxiety sensitivity on obsessive compulsive symptoms. The sample of the study consists of 542 students selected with appropriate sampling method from the secondary and high schools in Erzurum city center. Obsessive Compulsive Inventory and Anxiety Sensitivity Index were used in the study to collect data. The data obtained through the study was analyzed with structural equation modeling. As a result of the study, it was determined that there is a significant relationship between obsessive Compulsive Disorder (OCD) and anxiety sensitivity. Anxiety sensitivity has direct and indirect meaningful effects on the latent variable of OCD in the sub-dimensions of doubting-checking, obsessing, hoarding, washing, ordering, and mental neutralizing, and also anxiety sensitivity is a significant predictor of obsessive compulsive symptoms.Keywords: obsession, compulsion, structural equation, anxiety sensitivity
Procedia PDF Downloads 54323565 Geological Structure as the Main Factor in Landslide Deployment in Purworejo District Central Java Province Indonesia
Authors: Hilman Agil Satria, Rezky Naufan Hendrawan
Abstract:
Indonesia is vulnerable to geological hazard because of its location in subduction zone and have tropical climate. Landslide is one of the most happened geological hazard in Indonesia, based on Indonesia Geospasial data, at least 194 landslides recorded in 2013. In fact, research location is placed as the third city that most happened landslide in Indonesia. Landslide caused damage of many houses and wrecked the road. The purpose of this research is to make a landslide zone therefore can be used as one of mitigation consideration. The location is in Bruno, Porworejo district Central Java Province Indonesia at 109.903 – 109.99 and -7.59 – -7.50 with 10 Km x 10 Km wide. Based on geological mapping result, the research location consist of Late Miocene sandstone and claystone, and Pleistocene volcanic breccia and tuff. Those landslide happened in the lithology that close with fault zone. This location has so many geological structures: joints, faults and folds. There are 3 thrust faults, 1 normal faults, 4 strike slip faults and 6 folds. This geological structure movement is interpreted as the main factor that has triggered landslide in this location. This research use field data as well as samples of rock, joint, slicken side and landslide location which is combined with DEM SRTM to analyze geomorphology. As the final result of combined data will be presented as geological map, geological structure map and landslide zone map. From this research we can assume that there is correlation between geological structure and landslide locations.Keywords: geological structure, landslide, Porworejo, Indonesia
Procedia PDF Downloads 28923564 Newborn Hearing Screening: Experience from a Center in South part of Iran
Authors: Marzieh Amiri, Zahra Iranpour Mobarakeh, Fatemeh Mehrbakhsh, Mehran Amiri
Abstract:
Introduction: Early diagnosis and intervention of congenital hearing loss is necessary to minimize the adverse effects of hearing loss. The aim of the present study was to report the results of newborn hearing screening in a centerin the south part of Iran, Fasa. Material and methods: In this study, the data related to 6,144 newbornsduring September 2018 up to September2021, was analyzed. Hearing screening was performed using transient evoked otoacoustic emissions (TEOAEs) and automated auditory brainstem response (AABR) tests. Results: From all 6144 newborns,3752 and 2392referred to the center from urban and rural part of Fasa, respectively. There were 2958 female and 3186 male in this study. Of 6144 newborns, 6098 ones passed the screening tests, and 46 neonates were referred to a diagnostic audiology clinic. Finally, nine neonates were diagnosed with congenital hearing loss (seven with sensorineural hearing loss and two with conductive hearing loss). The severity of all the hearing impaired neonates was moderate and above. The most important risk factors were family history of hearing loss, low gestational age, NICU hospitalization, and hyperbilirubinemia. Conclusion: Our results showed that the prevalence of hearing loss was 1.46 per 1000 infants. Boosting public knowledge by providing families with proper education appears to be helpful in preventing the negative effects of delayed implementation of health screening programs.Keywords: newborn hearing screening, hearing loss, risk factor, prevalence
Procedia PDF Downloads 16823563 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia
Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju
Abstract:
Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization
Procedia PDF Downloads 9123562 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning
Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu
Abstract:
This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning
Procedia PDF Downloads 8223561 Climate Change Vulnerability and Agrarian Communities: Insights from the Composite Vulnerability Index of Indian States of Andhra Pradesh and Karnataka
Authors: G. Sridevi, Amalendu Jyotishi, Sushanta Mahapatra, G. Jagadeesh, Satyasiba Bedamatta
Abstract:
Climate change is a main challenge for agriculture, food security and rural livelihoods for millions of people in India. Agriculture is the sector most vulnerable to climate change due to its high dependence on climate and weather conditions. Among India’s population of more than one billion people, about 68% are directly or indirectly involved in the agricultural sector. This sector is particularly vulnerable to present-day climate variability. In this contest this paper examines the Socio-economic and climate analytical study of the vulnerability index in Indian states of Andhra Pradesh and Karnataka. Using secondary data; it examines the vulnerability through five different sub-indicator of socio-demographic, agriculture, occupational, common property resource (CPR), and climate in respective states among different districts. Data used in this paper has taken from different sources, like census in India 2011, Directorate of Economics and Statistics of respective states governments. Rainfall data was collected from the India Meteorological Department (IMD). In order to capture the vulnerability from two different states the composite vulnerability index (CVI) was developed and used. This indicates the vulnerability situation of different districts under two states. The study finds that Adilabad district in Andhra Pradesh and Chamarajanagar in Karnataka had highest level of vulnerability while Hyderabad and Bangalore in respective states have least level of vulnerability.Keywords: vulnerability, agriculture, climate change, global warming
Procedia PDF Downloads 46123560 Barriers to Job Localization Policy in Private Sector: Case Study from Oman
Authors: Yahya Al Nahdi
Abstract:
Even though efforts to increase the participation of nationals in the workforce have been in place for more than a decade in the Sultanate of Oman, the results are not impressive. Citizens’ workforce participation – it is argued in the literature – is hindered by institutional, as well as attitudinal concerns. The purpose of this study was to determine barriers to Omanization (employment of Omani nationals) in the private sector as perceived by the senior managers in government and private sector. Data were collected predominantly through in-depth, semi-structured interviews with managers who directly deal with Omanization policies from both the public and private sector. Results from the data analysis have shown that the majority of participants acknowledged a work preference in the movement (public sector). The private sector employees' compensation and benefits package was perceived to be less attractive than that offered in the government (public sector). The negative perceptions (stereotypes) shared by expatriates regarding work attitudes and competencies of citizens in the local labour market was also overwhelmingly perceived as a major hindrance. Furthermore, institutional issues such as, ineffectiveness of rules and regulation regarding Omanization, inappropriate quota system and lack of public awareness towards private sector’s jobs, are also perceived problematic to successful Omanization. Finally, results from the data analysis were used in recommending strategies for potential consideration in the pursuit of a successful Omanization programme.Keywords: localization, job security, labour force structure, Omanization, private sector, public sector
Procedia PDF Downloads 40123559 Towards an Effective Approach for Modelling near Surface Air Temperature Combining Weather and Satellite Data
Authors: Nicola Colaninno, Eugenio Morello
Abstract:
The urban environment affects local-to-global climate and, in turn, suffers global warming phenomena, with worrying impacts on human well-being, health, social and economic activities. Physic-morphological features of the built-up space affect urban air temperature, locally, causing the urban environment to be warmer compared to surrounding rural. This occurrence, typically known as the Urban Heat Island (UHI), is normally assessed by means of air temperature from fixed weather stations and/or traverse observations or based on remotely sensed Land Surface Temperatures (LST). The information provided by ground weather stations is key for assessing local air temperature. However, the spatial coverage is normally limited due to low density and uneven distribution of the stations. Although different interpolation techniques such as Inverse Distance Weighting (IDW), Ordinary Kriging (OK), or Multiple Linear Regression (MLR) are used to estimate air temperature from observed points, such an approach may not effectively reflect the real climatic conditions of an interpolated point. Quantifying local UHI for extensive areas based on weather stations’ observations only is not practicable. Alternatively, the use of thermal remote sensing has been widely investigated based on LST. Data from Landsat, ASTER, or MODIS have been extensively used. Indeed, LST has an indirect but significant influence on air temperatures. However, high-resolution near-surface air temperature (NSAT) is currently difficult to retrieve. Here we have experimented Geographically Weighted Regression (GWR) as an effective approach to enable NSAT estimation by accounting for spatial non-stationarity of the phenomenon. The model combines on-site measurements of air temperature, from fixed weather stations and satellite-derived LST. The approach is structured upon two main steps. First, a GWR model has been set to estimate NSAT at low resolution, by combining air temperature from discrete observations retrieved by weather stations (dependent variable) and the LST from satellite observations (predictor). At this step, MODIS data, from Terra satellite, at 1 kilometer of spatial resolution have been employed. Two time periods are considered according to satellite revisit period, i.e. 10:30 am and 9:30 pm. Afterward, the results have been downscaled at 30 meters of spatial resolution by setting a GWR model between the previously retrieved near-surface air temperature (dependent variable), the multispectral information as provided by the Landsat mission, in particular the albedo, and Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM), both at 30 meters. Albedo and DEM are now the predictors. The area under investigation is the Metropolitan City of Milan, which covers an area of approximately 1,575 km2 and encompasses a population of over 3 million inhabitants. Both models, low- (1 km) and high-resolution (30 meters), have been validated according to a cross-validation that relies on indicators such as R2, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). All the employed indicators give evidence of highly efficient models. In addition, an alternative network of weather stations, available for the City of Milano only, has been employed for testing the accuracy of the predicted temperatures, giving and RMSE of 0.6 and 0.7 for daytime and night-time, respectively.Keywords: urban climate, urban heat island, geographically weighted regression, remote sensing
Procedia PDF Downloads 20023558 Perception of Quality of Life and Self-Assessed Health in Patients Undergoing Haemodialysis
Authors: Magdalena Barbara Kaziuk, Waldemar Kosiba
Abstract:
Introduction: Despite the development of technologies and improvements in the interior of dialysis stations, dialysis remains an unpleasant procedure, difficult to accept by the patients (who undergo it 2 to 3 times a week, a single treatment lasting several hours). Haemodialysis is one of the renal replacement therapies, in Poland most commonly used in patients with chronic or acute kidney failure. Purpose: An attempt was made to evaluate the quality of life in haemodialysed patients using the WHOQOL-BREF questionnaire. Material and methods: The study covered 422 patients (200 women and 222 men, aged 60.5 ± 12.9 years) undergoing dialysis at three selected stations in Poland. The patients were divided into 2 groups, depending on the duration of their dialysis treatment. The evaluation was conducted with the WHOQOL-BREF questionnaire containing 26 questions analysing 4 areas of life, as well as the perception of the quality of life and health self-assessment. A 5-point scale is used to answer them. The maximum score in each area is 20 points. The results in individual areas have a positive direction. Results: In patients undergoing dialysis for more than 3 years, a reduction in the quality of life was found in the physical area and in their environment versus a group of patients undergoing dialysis for less than 3 years, where a reduced quality of life was found in the areas of social relations and mental well-being (p < 0.05). A significant correlation (p < 0.01) between the two groups was found in self-perceived general health, while no significant differences were observed in the general perception of the quality of life (p > 0.05). Conclusions: The study confirmed that in patients undergoing dialysis for more than three years, the quality of life is especially reduced in their environment (access to and quality of healthcare, financial resources, and mental and physical safety). The assessment of the quality of life should form a part of the therapeutic process, in which the role of the patient in chronic renal care should be emphasised, reflected in the quality of services provided by dialysis stations.Keywords: haemodialysis, perception of quality of life, quality of services provided, dialysis station
Procedia PDF Downloads 26923557 Clinical Response of Nuberol Forte® (Paracetamol 650 MG+Orphenadrine 50 MG) For Pain Management with Musculoskeletal Conditions in Routine Pakistani Practice (NFORTE-EFFECT)
Authors: Shahid Noor, Kazim Najjad, Muhammad Nasir, Irshad Bhutto, Abdul Samad Memon, Khurram Anwar, Tehseen Riaz, Mian Muhammad Hanif, Nauman A. Mallik, Saeed Ahmed, Israr Ahmed, Ali Yasir
Abstract:
Background: Musculoskeletal pain is the most common complaint presented to the health practitioner. It is well known that untreated or under-treated pain can have a significant negative impact on an individual’s quality of life (QoL). Objectives: This study was conducted across 10 sites in six (6) major cities of Pakistan to evaluate the tolerability, safety, and the clinical response of Nuberol Forte® (Paracetamol 650 mg + Orphenadrine 50 mg) to musculoskeletal pain in routine Pakistani practice and its impact on improving the patient’s QoL. Design & Methods: This NFORT-EFFECT observational, prospective multicenter study was conducted in compliance with Good Clinical Practice guidelines and local regulatory requirements. The study sponsor was "The Searle Company Limited, Pakistan. To maintain the GCP compliances, the sponsor assigned the CRO for the site and data management. Ethical approval was obtained from an independent ethics committee. The IEC reviewed the progress of the study. Written informed consent was obtained from the study participants, and their confidentiality was maintained throughout the study. A total of 399 patients with known prescreened musculoskeletal conditions and pain who attended the study sites were recruited, as per the inclusion/exclusion criteria (clinicaltrials.gov ID# NCT04765787). The recruited patients were then prescribed Paracetamol (650 mg) and Orphenadrine (50 mg) combination (Nuberol Forte®) for 7 to 14 days as per the investigator's discretion based on the pain intensity. After the initial screening (visit 1), a follow-up visit was conducted after 1-2 weeks of the treatment (visit 2). Study Endpoints: The primary objective was to assess the pain management response of Nuberol Forte treatment and the overall safety of the drug. The Visual Analogue Scale (VAS) scale was used to measure pain severity. Secondary to pain, the patients' health-related quality of life (HRQoL) was also assessed using the Muscle, Joint Measure (MJM) scale. The safety was monitored on the first dose by the patients. These assessments were done on each study visit. Results: Out of 399 enrolled patients, 49.4% were males, and 50.6% were females with a mean age of 47.24 ± 14.20 years. Most patients were presented with Knee Osteoarthritis (OA), i.e., 148(38%), followed by backache 70(18.2%). A significant reduction in the mean pain score was observed after the treatment with the combination of Paracetamol and Orphenadrine (p<0.05). Furthermore, an overall improvement in the patient’s QoL was also observed. During the study, only ten patients reported mild adverse events (AEs). Conclusion: The combination of Paracetamol and Orphenadrine (Nuberol Forte®) exhibited effective pain management among patients with musculoskeletal conditions and also improved their QoL.Keywords: musculoskeletal pain, orphenadrine/paracetamol combination, pain management, quality of life, Pakistani population
Procedia PDF Downloads 17423556 Empirical Analysis of Forensic Accounting Practices for Tackling Persistent Fraud and Financial Irregularities in the Nigerian Public Sector
Authors: Sani AbdulRahman Bala
Abstract:
This empirical study delves into the realm of forensic accounting practices within the Nigerian Public Sector, seeking to quantitatively analyze their efficacy in addressing the persistent challenges of fraud and financial irregularities. With a focus on empirical data, this research employs a robust methodology to assess the current state of fraud in the Nigerian Public Sector and evaluate the performance of existing forensic accounting measures. Through quantitative analyses, including statistical models and data-driven insights, the study aims to identify patterns, trends, and correlations associated with fraudulent activities. The research objectives include scrutinizing documented fraud cases, examining the effectiveness of established forensic accounting practices, and proposing data-driven strategies for enhancing fraud detection and prevention. Leveraging quantitative methodologies, the study seeks to measure the impact of technological advancements on forensic accounting accuracy and efficiency. Additionally, the research explores collaborative mechanisms among government agencies, regulatory bodies, and the private sector by quantifying the effects of information sharing on fraud prevention. The empirical findings from this study are expected to provide a nuanced understanding of the challenges and opportunities in combating fraud within the Nigerian Public Sector. The quantitative insights derived from real-world data will contribute to the refinement of forensic accounting strategies, ensuring their effectiveness in addressing the unique complexities of financial irregularities in the public sector. The study's outcomes aim to inform policymakers, practitioners, and stakeholders, fostering evidence-based decision-making and proactive measures for a more resilient and fraud-resistant financial governance system in Nigeria.Keywords: fraud, financial irregularities, nigerian public sector, quantitative investigation
Procedia PDF Downloads 6823555 MigrationR: An R Package for Analyzing Bird Migration Data Based on Satellite Tracking
Authors: Xinhai Li, Huidong Tian, Yumin Guo
Abstract:
Bird migration is fantastic natural phenomenon. In recent years, the use of GPS transmitters has generated a vast amount of data, and the Movebank platform has made these data publicly accessible. For researchers, what they need are data analysis tools. Although there are approximately 90 R packages dedicated to animal movement analysis, the capacity for comprehensive processing of bird migration data remains limited. Hence, we introduce a novel package called migrationR. This package enables the calculation of movement speed, direction, changes in direction, flight duration, daily and annual movement distances. Furthermore, it can pinpoint the starting and ending dates of migration, estimate nest site locations and stopovers, and visualize movement trajectories at various time scales. migrationR distinguishes individuals through NMDS (non-metric multidimensional scaling) coordinates based on movement variables such as speed, flight duration, path tortuosity, and migration timing. A distinctive aspect of the package is the development of a hetero-occurrences species distribution model that takes into account the daily rhythm of individual birds across different landcover types. Habitat use for foraging and roosting differs significantly for many waterbirds. For example, White-naped Cranes at Poyang Lake in China typically forage in croplands and roost in shallow water areas. Both of these occurrence types are of equal importance. Optimal habitats consist of a combination of crop lands and shallow waters, whereas suboptimal habitats lack both, which necessitates birds to fly extensively. With migrationR, we conduct species distribution modeling for foraging and roosting separately and utilize the moving distance between crop lands and shallow water areas as an index of overall habitat suitability. This approach offers a more nuanced understanding of the habitat requirements for migratory birds and enhances our ability to analyze and interpret their movement patterns effectively. The functions of migrationR are demonstrated using our own tracking data of 78 White-naped Crane individuals from 2014 to 2023, comprising over one million valid locations in total. migrationR can be installed from a GitHub repository by executing the following command: remotes::install_github("Xinhai-Li/migrationR").Keywords: bird migration, hetero-occurrences species distribution model, migrationR, R package, satellite telemetry
Procedia PDF Downloads 7423554 Current Practices of Permitted Daily Exposure (PDE) Calculation and Selection
Authors: Annie Ramanbhai Mecwan
Abstract:
Cleaning validation in a pharmaceutical manufacturing facility is documented evidence that a cleaning process has effectively removed contaminants, residues from previous drug products and cleaning agents below a pre-defined threshold from the reusable tools and parts of equipment. In shared manufacturing facilities more than one drug product is prepared. After cleaning of reusable tools and parts of equipment after one drug product manufacturing, there are chances that some residues of drug substance from previously manufactured drug products may be retained on the equipment and can carried forward to the next drug product and thus cause cross-contamination. Health-based limits through the derivation of a safe threshold value called permitted daily exposure (PDE) for the residues of drug substances should be employed to identify the risks posed at these manufacturing facilities. The PDE represents a substance-specific dose that is unlikely to cause an adverse effect if an individual is exposed to or below this dose every day for a lifetime. There are different practices to calculate PDE. Data for all APIs in the public domain are considered to calculate PDE value though, company to company may vary the final PDE value based on different toxicologist’s perspective or their subjective evaluation. Hence, Regulatory agencies should take responsibility for publishing PDE values for all APIs as it is done for elemental PDEs. This will harmonize the PDE values all over the world and prevent the unnecessary load on manufacturers for cleaning validationKeywords: active pharmaceutical ingredient, good manufacturing practice, NOAEL, no observed adverse effect level, permitted daily exposure
Procedia PDF Downloads 95