Search results for: Konya second organized industrial region
Commenced in January 2007
Frequency: Monthly
Edition: International

Search results for: Konya second organized industrial region

Large-Area Film Fabrication for Perovskite Solar Cell via Scalable Thermal-Assisted and Meniscus-Guided Bar Coating

Authors: Gizachew Belay Adugna

Abstract:

Scalable and cost-effective device fabrication techniques are urgent to commercialize the perovskite solar cells (PSCs) for the next photovoltaic (PV) technology. Herein, large-area films of perovskite and hole-transporting materials (HTMs) were developed via a rapid and scalable thermal-assisting bar-coating process in the open air. High-quality and large crystalline grains of MAPbI₃ with homogenous morphology and thickness were obtained on a large-area (10 cm×10 cm) solution-sheared mp-TiO₂/c-TiO₂/FTO substrate. Encouraging photovoltaic performance of 19.02% was achieved for devices fabricated from the bar-coated perovskite film compared to that from the small-scale spin-coated film (17.27%) with 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) as an HTM whereas a higher power conversion efficiency of 19.89% with improved device stability was achieved by capping a fluorinated (HYC-2) HTM as an alternative to the traditional spiro-OMeTAD. The fluorinated exhibited better molecular packing in the HTM film and deeper HOMO level compared to the nonfluorinated counterpart; thus, improved hole mobility and overall charge extraction in the device were demonstrated. Furthermore, excellent film processability and an impressive PCE of 18.52% were achieved in the large area bar-coated HYC-2 prepared sequentially on the perovskite underlayer in the open atmosphere, compared to the bar-coated spiro-OMeTAD/perovskite (17.51%). This all-solution approach demonstrated the feasibility of high-quality films on a large-area substrate for PSCs, which is a vital step toward industrial-scale PV production.

Keywords: perovskite solar cells, hole transporting materials, up-scaling process, power conversion efficiency

Procedia PDF Downloads 75
A Compact Via-less Ultra-Wideband Microstrip Filter by Utilizing Open-Circuit Quarter Wavelength Stubs

Authors: Muhammad Yasir Wadood, Fatemeh Babaeian

Abstract:

By developing ultra-wideband (UWB) systems, there is a high demand for UWB filters with low insertion loss, wide bandwidth, and having a planar structure which is compatible with other components of the UWB system. A microstrip interdigital filter is a great option for designing UWB filters. However, the presence of via holes in this structure creates difficulties in the fabrication procedure of the filter. Especially in the higher frequency band, any misalignment of the drilled via hole with the Microstrip stubs causes large errors in the measurement results compared to the desired results. Moreover, in this case (high-frequency designs), the line width of the stubs are very narrow, so highly precise small via holes are required to be implemented, which increases the cost of fabrication significantly. Also, in this case, there is a risk of having fabrication errors. To combat this issue, in this paper, a via-less UWB microstrip filter is proposed which is designed based on a modification of a conventional inter-digital bandpass filter. The novel approaches in this filter design are 1) replacement of each via hole with a quarter-wavelength open circuit stub to avoid the complexity of manufacturing, 2) using a bend structure to reduce the unwanted coupling effects and 3) minimising the size. Using the proposed structure, a UWB filter operating in the frequency band of 3.9-6.6 GHz (1-dB bandwidth) is designed and fabricated. The promising results of the simulation and measurement are presented in this paper. The selected substrate for these designs was Rogers RO4003 with a thickness of 20 mils. This is a common substrate in most of the industrial projects. The compact size of the proposed filter is highly beneficial for applications which require a very miniature size of hardware.

Keywords: band-pass filters, inter-digital filter, microstrip, via-less

Procedia PDF Downloads 161
Interactions of Socioeconomic Status, Age at Menarche, Body Composition and Bone Mineral Density in Healthy Turkish Female University Students

Authors: Betül Ersoy, Deniz Özalp Kizilay, Gül Gümüşer, Fatma Taneli

Abstract:

Introduction: Peak bone mass is reached in late adolescence in females. Age at menarche influences estrogen exposure, which plays a vital role in bone metabolism. The relationship between age at menarche and bone mineral density (BMD) is still controversial. In this study, we investigated the relationship between age at menarche, BMD, socioeconomic status (SES) and body composition in female university student. Participant and methods: A total of 138 healthy girls at late adolescence period (mean age 20.13±0.93 years, range 18-22) were included in this university school-based cross-sectional study in the urban area western region of Turkey. Participants have been randomly selected to reflect the university students studying in all faculties. We asked relevant questions about socioeconomic status and age at menarche to female university students. Students were grouped into three SES as lower, middle and higher according to the educational and occupational levels of their parents using Hollingshead index. Height and weight were measured. Body Mass Index (BMI) (kg/m2 ) was calculated. Dual energy X-ray absorptiometry (DXA) was performed using the Lunar DPX series, and BMD and body composition were evaluated. Results: The mean age of menarche of female university student included in the study was 13.09.±1.3 years. There was no significant difference between the three socioeconomic groups in terms of height, body weight, age at menarche, BMD [BMD (gr/cm2 ) (L2-L4) and BMD (gr/cm2 ) (total body)], and body composition (lean tissue, fat tissue, total fat, and body fat) (p>0.05). While no correlation was found between the age at menarche and any parameter (p>0.05), a positive significant correlation was found between lean tissue and BMD L2-L4 (r=0.286, p=0.01). When the relationships were evaluated separately according to socioeconomic status, there was a significant correlation between BMDL2-L4 (r: 0.431, p=0.005) and lean tissue in females with low SES, while this relationship disappeared in females with middle and high SES. Conclusion: Age at menarche did not change according to socioeconomic status, nor did BMD and body composition in female at late adolescents. No relationship was found between age at menarche and BMD and body composition determined by DEXA in female university student who were close to reaching peak bone mass. The results suggested that especially BMDL2-L4 might increase as lean tissue increases.

Keywords: bone, osteoposis, menarche, dexa

Procedia PDF Downloads 80
Comparative Correlation Investigation of Polynuclear Aromatic Hydrocarbons (PAHs) in Soils of Different Land Uses: Sources Evaluation Perspective

Authors: O. Onoriode Emoyan, E. Eyitemi Akporhonor, Charles Otobrise

Abstract:

Polycyclic Aromatic Hydrocarbons (PAHs) are formed mainly as a result of incomplete combustion of organic materials during industrial, domestic activities or natural occurrence. Their toxicity and contamination of terrestrial and aquatic ecosystem have been established. Though with limited validity index, previous research has focused on PAHs isomer pair ratios of variable physicochemical properties in source identification. The objective of this investigation was to determine the empirical validity of Pearson correlation coefficient (PCC) and cluster analysis (CA) in PAHs source identification along soil samples of different land uses. Therefore, 16 PAHs grouped as endocrine disruption substances (EDSs) were determined in 10 sample stations in top and sub soils seasonally. PAHs was determined the use of Varian 300 gas chromatograph interfaced with flame ionization detector. Instruments and reagents used are of standard and chromatographic grades respectively. PCC and CA results showed that the classification of PAHs along kinetically and thermodyanamically-favoured and those derived directly from plants product through biologically mediated processes used in source signature is about the predominance PAHs are likely to be. Therefore the observed PAHs in the studied stations have trace quantities of the vast majority of the sixteen un-substituted PAHs which may ultimately inhabit the actual source signature authentication. Type and extent of bacterial metabolism, transformation products/substrates, and environmental factors such as: salinity, pH, oxygen concentration, nutrients, light intensity, temperature, co-substrates and environmental medium are hereby recommended as factors to be considered when evaluating possible sources of PAHs.

Keywords: comparative correlation, kinetically and thermodynamically-favored PAHs, pearson correlation coefficient, cluster analysis, sources evaluation

Procedia PDF Downloads 424
The Liminal Performances of Female-Led (Sufi) Rituals: An Anthropological in Pakistan

Authors: Sana Iqbal

Abstract:

The female voice in Sufi poetry has been studied as a symbol of humility and devotion. Throughout the centuries, the Sufi shrines have also sheltered women and have served as a source of emotional strength in times of difficulty. Although women have been central to Sufi Islam, female-led rituals and performances (of veneration) are rarely studied as acts of empowerment and symbols of healing. This is especially true for rituals performed in informal spaces, which require going beyond the shrine practices. The rituals and meanings associated with Khizr Khwaja (or Sindhi Hindu god Jhelelal) among women in Punjab can serve as a useful case study to unpack some of these meanings. The paper aims to shed light on female-led rituals among women from Punjab associated with the folkloric traditions associated with Khizar Khwaja, Zinda Pir, Jhulelal or river god in the South Asian region to protect mariners from possible risks (since trade was primarily dependent on water channels) or for inducing timely rain date back to the 10th century in Sindh. However, these meanings and associations have evolved and the paper thus aims to establish a relationship between this figure and the women in Punjab by analysing the findings from an ethnographic study. It traces the historical meanings and significance attached to the divine figure and the wells (informal spaces) associated with him since the rituals performed by women is now infused solely with seeking fertility or to be blessed with a successful pregnancy, as opposed to him being celebrated for other reasons in older times. These associations beg the question of what women gain out of these rituals and making offerings to the mysterious figure of Khizr. Anecdotal evidence in the form of interviews conducted in Bhakar and Talwandi (Punjab) during the summer of 2015 helped to explore the stories related to this legend while also allowing us to witness some of the female-led ritual practices. It can be said that the symbols adopted in the ritual practices invoke liminality for women, which is a blend of opposites. The paper argues that this liminality/journey has been used as a vehicle to transcend all worldly structures of power and it symbolically emphasises the richness of feminine love/devotion and grants healing to female devotees.

Keywords: transgression, gender, liminality, ritual

Procedia PDF Downloads 131
Women’s Empowerment on Modern Contraceptive Use in Poor-Rich Segment of Population: Evidence From South Asian Countries

Authors: Muhammad Asim, Mehvish Amjad

Abstract:

Background: Less than half of women in South Asia (SA) use any modern contraceptive method which leads to a huge burden of unintended pregnancies, unsafe abortions, maternal deaths, and socioeconomic loss. Women empowerment plays a pivotal role in improving various health seeking behaviours, including contraceptive use. The objective of this study to explore the association between women's empowerment and modern contraceptive, among rich and poor segment of population in SA. Methods: We used the most recent, large-scale, demographic health survey data of five South Asian countries, namely Afghanistan, Pakistan, Bangladesh, India, and Nepal. The outcome variable was the current use of modern contraceptive methods. The main exposure variable was a combination (interaction) of socio-economic status (SES) and women’s level of empowerment (low, medium, and high), where SES was bifurcated into poor and rich; and women empowerment was divided into three categories: decision making, attitude to violence and social independence. Moreover, overall women empowerment indicator was also created by using three dimensions of women empowerment. We applied both descriptive statistics and multivariable logistic regression techniques for data analyses. Results: Most of the women possessed ‘medium’ level of empowerment across South Asian Countries. The lowest attitude to violence empowerment was found in Afghanistan, and the lowest social independence empowerment was observed in Bangladesh across SA. However, Pakistani women have the lowest decision-making empowerment in the region. The lowest modern contraceptive use (22.1%) was found in Afghanistan and the highest (53.2%) in Bangladesh. The multivariate results depict that the overall measure of women empowerment does not affect modern contraceptive use among poor and rich women in most of South Asian countries. However, the decision-making empowerment plays a significant role among both poor and rich women to use modern contraceptive methods across South Asian countries. Conclusions: The effect of women’s empowerment on modern contraceptive use is not consistent across countries, and among poor and rich segment of population. Of the three dimensions of women’s empowerment, the autonomy of decision making in household affairs emerged as a stronger determinant of mCPR as compared with social independence and attitude towards violence against women.

Keywords: women empowerment, modern contraceptive use, South Asia, socio economic status

Procedia PDF Downloads 84
Application of DSSAT-CSM Model for Estimating Rain-Water Productivity of Maize (Zea Mays L.) Under Changing Climate of Central Rift Valley, Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Pressing demands for agricultural products and its associated pressure on water availability in the semi-arid areas demanded information for strategic decision-making in the changing climate conditions of Ethiopia. Availing such information through traditional agronomic research methods is not sufficient unless supported through the application of decision-support tools. The CERES (Crop Environmental Resource Synthesis) model in DSSAT-CSM was evaluated for estimating yield and water productivity of maize under two soil types (Andosol and Luvisol) of the Central Rift Valley of Ethiopia. A six-year data (2010 – 2017) obtained from national fertilizer determination experiments were used for model evaluation. Pertinent statistical indices were employed to evaluate model performance. Following model evaluation, yield and rain-water productivity of maize was assessed for the baseline (1981-2010) and future climate (2050’s and 2080’s) scenario. The model performed well in predicting phenology, growth, and yield of maize for the different seasons and phosphorous rates. A good agreement between simulated and observed grain yield was indicated by low values of the RMSE (0.15 - 0.37 Mg/ha) and other indices for the two soil types. The evaluated model predicted a decline in the potential (23.8 to 26.7% at Melkassa and from 21.7 to 26.1% at Ziway under RCP4.5 and RCP8.5 climate change scenarios, respectively) and water-limited yield (15 to 18.3% at Melkassa and by 6.5 to 10.5% at Ziway) in the mid-century due to climate change. Consequently, a decline in water productivity was projected in the future periods that necessitate availing options to improve water productivity in the region. In conclusion, the DSSAT-CERES-maize model can be used to simulate maize (Melkassa-2) phenology, growth and grain yield, as well as simulate water productivity under different management scenarios that can help to identify options to improve water productivity in the changing climate of the semi-arid central Rift valley of Ethiopia.

Keywords: andosol, CERES-maize, luvisol, model evaluation, water productivity

Procedia PDF Downloads 79
National Plans for Recovery and Resilience between National Recovery and EU Cohesion Objectives: Insights from European Countries

Authors: Arbolino Roberta, Boffardi Raffaele

Abstract:

Achieving the highest effectiveness for the National Plans for Recovery and Resilience (NPRR) while strengthening the objectives of cohesion and reduction of intra-EU unbalances is only possible by means of strategic, coordinated, and coherent policy planning. Therefore, the present research aims at assessing and quantifying the potential impact of NPRRs across the twenty-seven European Member States in terms of economic convergence, considering disaggregated data on industrial, construction, and service sectors. The first step of the research involves a performance analysis of the main macroeconomic indicators describing the trends of twenty-seven EU economies before the pandemic outbreak. Subsequently, in order to define the potential effect of the resources allocated, we perform an impact analysis of previous similar EU investment policies, estimating national-level sectoral elasticity associated with the expenditure of the 2007-2013 and 2014-2020 Cohesion programmes funds. These coefficients are then exploited to construct adjustment scenarios. Finally, convergence analysis is performed on the data used for constructing scenarios in order to understand whether the expenditure of funds might be useful to foster economic convergence besides driving recovery. The results of our analysis show that the allocation of resources largely mirrors the aims of the policy framework underlying the NPRR, thus reporting the largest investments in both those sectors most affected by the economic shock (services) and those considered fundamental for the digital and green transition. Notwithstanding an overall positive effect, large differences exist among European countries, while no convergence process seems to be activated or fostered by these interventions.

Keywords: NPRR, policy evaluation, cohesion policy, scenario Nalsysi

Procedia PDF Downloads 86
A Study of Smartphone Engagement Patterns of Millennial in India

Authors: Divyani Redhu, Manisha Rathaur

Abstract:

India has emerged as a very lucrative market for the smartphones in a very short span of time. The number of smartphone users here is growing massively with each passing day. Also, the expansion of internet services to far corners of the nation has also given a push to the smartphone revolution in India. Millennial, also known as Generation Y or the Net Generation is the generation born between the early 1980s and mid-1990s (some definitions extending further to early 2000s). Spanning roughly over 15 years, different social classes, cultures, and continents; it is irrational to imagine that millennial have a unified identity. But still, it cannot be denied that the growing millennial population is not only young but is highly tech-savvy too. It is not just the appearance of the device that today; we call it ‘smart’. Rather, it is the numerous tasks and functions that it can perform which has led its name to evolve as that of a ‘smartphone’. From usual tasks that were earlier performed by a simple mobile phone like making calls, sending messages, clicking photographs, recording videos etc.; today, the time has come where most of our day – to – day tasks are being taken care of by our all-time companion, i.e. smartphones. From being our alarm clock to being our note-maker, from our watch to our radio, our book-reader to our reminder, smartphones are present everywhere. Smartphone has now become an essential device for particularly the millennial to communicate not only with their friends but also with their family, colleagues, and teachers. The study by the researchers would be quantitative in nature. For the same, a survey would be conducted in particularly the capital of India, i.e. Delhi and the National Capital Region (NCR), which is the metropolitan area covering the entire National Capital Territory of Delhi and urban areas covering states of Haryana, Uttarakhand, Uttar Pradesh and Rajasthan. The tool of the survey would be a questionnaire and the number of respondents would be 200. The results derived from the study would primarily focus on the increasing reach of smartphones in India, smartphones as technological innovation and convergent tools, smartphone usage pattern of millennial in India, most used applications by the millennial, the average time spent by them, the impact of smartphones on the personal interactions of millennial etc. Thus, talking about the smartphone technology and the millennial in India, it would not be wrong to say that the growth, as well as the potential of the smartphones in India, is still immense. Also, very few technologies have made it possible to give a global exposure to the users and smartphone, if not the only one is certainly an immensely effective one that comes to the mind in this case.

Keywords: Delhi – NCR, India, millennial, smartphone

Procedia PDF Downloads 144
Development and Validation of First Derivative Method and Artificial Neural Network for Simultaneous Spectrophotometric Determination of Two Closely Related Antioxidant Nutraceuticals in Their Binary Mixture”

Authors: Mohamed Korany, Azza Gazy, Essam Khamis, Marwa Adel, Miranda Fawzy

Abstract:

Background: Two new, simple and specific methods; First, a Zero-crossing first-derivative technique and second, a chemometric-assisted spectrophotometric artificial neural network (ANN) were developed and validated in accordance with ICH guidelines. Both methods were used for the simultaneous estimation of the two closely related antioxidant nutraceuticals ; Coenzyme Q10 (Q) ; also known as Ubidecarenone or Ubiquinone-10, and Vitamin E (E); alpha-tocopherol acetate, in their pharmaceutical binary mixture. Results: For first method: By applying the first derivative, both Q and E were alternatively determined; each at the zero-crossing of the other. The D1 amplitudes of Q and E, at 285 nm and 235 nm respectively, were recorded and correlated to their concentrations. The calibration curve is linear over the concentration range of 10-60 and 5.6-70 μg mL-1 for Q and E, respectively. For second method: ANN (as a multivariate calibration method) was developed and applied for the simultaneous determination of both analytes. A training set (or a concentration set) of 90 different synthetic mixtures containing Q and E, in wide concentration ranges between 0-100 µg/mL and 0-556 µg/mL respectively, were prepared in ethanol. The absorption spectra of the training sets were recorded in the spectral region of 230–300 nm. A Gradient Descend Back Propagation ANN chemometric calibration was computed by relating the concentration sets (x-block) to their corresponding absorption data (y-block). Another set of 45 synthetic mixtures of the two drugs, in defined range, was used to validate the proposed network. Neither chemical separation, preparation stage nor mathematical graphical treatment were required. Conclusions: The proposed methods were successfully applied for the assay of Q and E in laboratory prepared mixtures and combined pharmaceutical tablet with excellent recoveries. The ANN method was superior over the derivative technique as the former determined both drugs in the non-linear experimental conditions. It also offers rapidity, high accuracy, effort and money saving. Moreover, no need for an analyst for its application. Although the ANN technique needed a large training set, it is the method of choice in the routine analysis of Q and E tablet. No interference was observed from common pharmaceutical additives. The results of the two methods were compared together

Keywords: coenzyme Q10, vitamin E, chemometry, quantitative analysis, first derivative spectrophotometry, artificial neural network

Procedia PDF Downloads 451
Yield Level, Variability and Yield Gap of Maize (Zea Mays L.) Under Variable Climate Condition of the Semi-arid Central Rift Valley of Ethiopia

Authors: Fitih Ademe, Kibebew Kibret, Sheleme Beyene, Mezgebu Getnet, Gashaw Meteke

Abstract:

Soil moisture and nutrient availability are the two key edaphic factors that affect crop yields and are directly or indirectly affected by climate variability and change. The study examined climate-induced yield level, yield variability and gap of maize during 1981-2010 main growing season in the Central Rift Valley (CRV) of Ethiopia. Pearson correlation test was employed to see the relationship between climate variables and yield. The coefficient of variation (CV) was used to analyze annual yield variability. Decision Support System for Agro-technology Transfer cropping system model (DSSAT-CSM) was used to simulate the growth and yield of maize for the study period. The result indicated that maize grain yield was strongly (P<0.01) and positively correlated with seasonal rainfall (r=0.67 at Melkassa and r = 0.69 at Ziway) in the CRV while day temperature affected grain yield negatively (r= -0.44) at Ziway (P<0.05) during the simulation period. Variations in total seasonal rainfall at Melkassa and Ziway explained 44.9 and 48.5% of the variation in yield, respectively, under optimum nutrition. Following variation in rainfall, high yield variability (CV=23.5%, Melkassa and CV=25.3%, Ziway) was observed for optimum nutrient simulation than the corresponding nutrient limited simulation (CV=16%, Melkassa and 24.1%, Ziway) in the study period. The observed farmers’ yield was 72, 52 and 43% of the researcher-managed, water-limited and potential yield of the crop, respectively, indicating a wide maize yield gap in the region. The study revealed rainfed crop production in the CRV is prone to yield variabilities due to its high dependence on seasonal rainfall and nutrient level. Moreover, the high coefficient of variation in the yield gap for the 30-year period also foretells the need for dependable water supply at both locations. Given the wide yield gap especially during lower rainfall years across the simulation periods, it signifies the requirement for a more dependable application of irrigation water and a potential shift to irrigated agriculture; hence, adopting options that can improve water availability and nutrient use efficiency would be crucial for crop production in the area.

Keywords: climate variability, crop model, water availability, yield gap, yield variability

Procedia PDF Downloads 76
Effects of Oil Pollution on Euryglossa orientalis and Psettodes erumei in the Persian Gulf

Authors: Majid Afkhami, Maryam Ehsanpour, Reza Khoshnood, Zahra Khoshnood, Rastin Afkhami

Abstract:

Marine pollution is a global environmental problem. Different human activities on land, in the water and in the air contribute to the contamination of seawater, sediments and organisms with potentially toxic substances. Contaminants can be natural substances or artificially produced compounds. After discharge into the sea, contaminants can stay in the water in dissolved form or they can be removed from the water column through sedimentation to the bottom sediments. Histopathological alterations can be used as indicators for the effects of various anthropogenic pollutants on organisms and are a reflection of the overall health of the entire population in the ecosystem. These histo pathological biomarkers are closely related to other biomarkers of stress since many pollutants have to undergo metabolic activation in order to be able to provoke cellular change in the affected organism. In order to make evaluation of the effects of oil pollution, some heavy metals bioaccumulation and explore their histopathological effects on hepatocytes of Oriental sole (Euryglossa orientalis) and Deep flounder (Psettodes erumei), fishes caught from two areas of north coast of the Persian Gulf: Bandar Abbass and Bandar Lengeh. Concentrations of Ni and V in liver of both species in two sampling regions were in following order: Bandar abbass Bandar lengeh; also between two species, these quantities were higher in P. erumei than E. orientalis in both sampling regions. Histopathology of the liver shows some cellular alterations including: degeneration, necrosis and tissue disruption, and histopathological effects were severe in P. erumei than E. orientalis. Results showed that Bandar Abbass region was more polluted than Bandar Lengeh, and because Ni and V were oil pollution indicators, and two flat fishes were benthic, they can receive considerable amount of oil pollution through their biological activities like feeding. Also higher amounts of heavy metal concentrations and major histopathological effects in E. orientalis showed strong relationship between benthic habitat of the fish and amounts of received pollutants from water and sediments, because E. orientalis is more related to the bottom than P. erumei.

Keywords: heavy metals, flatfishes, Persian Gulf, oil pollution

Procedia PDF Downloads 349
INNPT Nano Particles Material Technology as Enhancement Technology for Biological WWTP Performance and Capacity

Authors: Medhat Gad

Abstract:

Wastewater treatment became a big issue in this decade due to shortage of water resources, growth of population and modern live requirements. Reuse of treated wastewater in industrial and agriculture sectors has a big demand to substitute the shortage of clean water supply as well as to save the eco system from dangerous pollutants in insufficient treated wastewater In last decades, most of wastewater treatment plants are built using primary or secondary biological treatment technology which almost does not provide enough treatment and removal of phosphorus and nitrogen. those plants which built ten to 15 years ago also now suffering from overflow which decrease the treatment efficiency of the plant. Discharging treated wastewater which contains phosphorus and nitrogen to water reservoirs and irrigation canals destroy ecosystem and aquatic life. Using chemical material to enhance treatment efficiency for domestic wastewater but it leads to huge amount of sludge which cost a lot of money. To enhance wastewater treatment, we used INNPT nano material which consists of calcium, aluminum and iron oxides and compounds plus silica, sodium and magnesium. INNPT nano material used with a dose of 100 mg/l to upgrade SBR treatment plant in Cairo Egypt -which has three treatment tanks each with a capacity of 2500 cubic meters per day - to tertiary treatment level by removing Phosphorus, Nitrogen and increase dissolved oxygen in final effluent. The results showed that the treatment retention time decreased from 9 hours in SBR system to one hour using INNPT nano material with improvement in effluent quality while increasing plant capacity to 20 k cubic meters per day. Nitrogen removal efficiency achieved 77%, while phosphorus removal efficiency achieved 90% and COD removal efficiency was 93% which all comply with tertiary treatment limits according to Egyptian law.

Keywords: INNPT technology, nanomaterial, tertiary wastewater treatment, capacity extending

Procedia PDF Downloads 170
Experimental Evaluation of Electrocoagulation for Hardness Removal of Bore Well Water

Authors: Pooja Kumbhare

Abstract:

Water is an important resource for the survival of life. The inadequate availability of surface water makes people depend on ground water for fulfilling their needs. However, ground water is generally too hard to satisfy the requirements for domestic as well as industrial applications. Removal of hardness involves various techniques such as lime soda process, ion exchange, reverse osmosis, nano-filtration, distillation, and, evaporation, etc. These techniques have individual problems such as high annual operating cost, sediment formation on membrane, sludge disposal problem, etc. Electrocoagulation (EC) is being explored as modern and cost-effective technology to cope up with the growing demand of high water quality at the consumer end. In general, earlier studies on electrocoagulation for hardness removal are found to deploy batch processes. As batch processes are always inappropriate to deal with large volume of water to be treated, it is essential to develop continuous flow EC process. So, in the present study, an attempt is made to investigate continuous flow EC process for decreasing excessive hardness of bore-well water. The experimental study has been conducted using 12 aluminum electrodes (25cm*10cm, 1cm thick) provided in EC reactor with volume of 8 L. Bore well water sample, collected from a local bore-well (i.e. at – Vishrambag, Sangli; Maharashtra) having average initial hardness of 680 mg/l (Range: 650 – 700 mg/l), was used for the study. Continuous flow electrocoagulation experiments were carried out by varying operating parameters specifically reaction time (Range: 10 – 60 min), voltage (Range: 5 – 20 V), current (Range: 1 – 5A). Based on the experimental study, it is found that hardness removal to the desired extent could be achieved even for continuous flow EC reactor, so the use of it is found promising.

Keywords: hardness, continuous flow EC process, aluminum electrode, optimal operating parameters

Procedia PDF Downloads 182
Traditional and New Residential Architecture in the Approach of Sustainability in the Countryside after the Earthquake

Authors: Zeynep Tanriverdi̇

Abstract:

Sustainable architecture is a design approach that provides healthy, comfortable, safe, clean space production as well as utilizes minimum resources for efficient and economical use of natural resources and energy. Traditional houses located in rural areas are sustainable structures built at the design and implementation stage in accordance with the climatic environmental data of the region and also effectively using natural energy resources. The fact that these structures are located in an earthquake geography like Türkiye brings their earthquake resistance to the agenda. Since the construction of these structures, which contain the architectural and technological cultural knowledge of the past, is shaped according to the characteristics of the regions where they are located, their resistance to earthquakes also differs. Analyses in rural areas after the earthquake show that there are light-damaged structures that can survive, severely damaged structures, and completely destroyed structures. In this regard, experts can implement repair, consolidation, and reconstruction applications, respectively. While simple repair interventions are carried out in accordance with the original data in traditional houses that have shown great resistance to earthquakes, reinforcement work blended with new technologies can be applied in damaged structures. In reconstruction work, a wide variety of applications can be seen with the possibilities of modern technologies. In rural areas experiencing earthquakes around the world, there are experimental new housing applications that are renewable, environmentally friendly, and sustainable with modern construction techniques in the light of scientific data. With these new residences, it is aimed to create earthquake-resistant, economical, healthy, and pain-relieving therapy spaces for people whose daily lives have been interrupted by disasters. In this study, the preservation of high earthquake-prone rural areas will be discussed through the knowledge transfer of traditional architecture and also permanent housing practices using new sustainable technologies to improve the area. In this way, it will be possible to keep losses to a minimum with sustainable, reliable applications prepared for the worst aspects of the disaster situation and to establish a link between the knowledge of the past and the new technologies of the future.

Keywords: sustainability, conservation, traditional construction systems and materials, new technologies, earthquake resistance

Procedia PDF Downloads 69
Hydrometallurgical Processing of a Nigerian Chalcopyrite Ore

Authors: Alafara A. Baba, Kuranga I. Ayinla, Folahan A. Adekola, Rafiu B. Bale

Abstract:

Due to increasing demands and diverse applications of copper oxide as pigment in ceramics, cuprammonium hydroxide solution for rayon, p-type semi-conductor, dry cell batteries production and as safety disposal of hazardous materials, a study on the hydrometallurgical operations involving leaching, solvent extraction and precipitation for the recovery of copper for producing high grade copper oxide from a Nigerian chalcopyrite ore in chloride media has been examined. At a particular set of experimental parameter with respect to acid concentration, reaction temperature and particle size, the leaching investigation showed that the ore dissolution increases with increasing acid concentration, temperature and decreasing particle diameter at a moderate stirring. The kinetics data has been analyzed and was found to follow diffusion control mechanism. At optimal conditions, the extent of ore dissolution reached 94.3%. The recovery of the total copper from the hydrochloric acid-leached chalcopyrite ore was undertaken by solvent extraction and precipitation techniques, prior to the beneficiation of the purified solution as copper oxide. The purification of the leach liquor was firstly done by precipitation of total iron and manganese using Ca(OH)2 and H2O2 as oxidizer at pH 3.5 and 4.25, respectively. An extraction efficiency of 97.3% total copper was obtained by 0.2 mol/L Dithizone in kerosene at 25±2ºC within 40 minutes, from which ≈98% Cu from loaded organic phase was successfully stripped by 0.1 mol/L HCl solution. The beneficiation of the recovered pure copper solution was carried out by crystallization through alkali addition followed by calcination at 600ºC to obtain high grade copper oxide (Tenorite, CuO: 05-0661). Finally, a simple hydrometallurgical scheme for the operational extraction procedure amenable for industrial utilization and economic sustainability was provided.

Keywords: chalcopyrite ore, Nigeria, copper, copper oxide, solvent extraction

Procedia PDF Downloads 398
Simultaneous Adsorption and Characterization of NOx and SOx Emissions from Power Generation Plant on Sliced Porous Activated Carbon Prepared by Physical Activation

Authors: Muhammad Shoaib, Hassan M. Al-Swaidan

Abstract:

Air pollution has been a major challenge for the scientists today, due to the release of toxic emissions from various industries like power plants, desalination plants, industrial processes and transportation vehicles. Harmful emissions into the air represent an environmental pressure that reflects negatively on human health and productivity, thus leading to a real loss in the national economy. Variety of air pollutants in the form of carbon oxides, hydrocarbons, nitrogen oxides, sulfur oxides, suspended particulate material etc. are present in air due to the combustion of different types of fuels like crude oil, diesel oil and natural gas. Among various pollutants, NOx and SOx emissions are considered as highly toxic due to its carcinogenicity and its relation with various health disorders. In Kingdom of Saudi Arabia electricity is generated by burning of crude, diesel or natural gas in the turbines of electricity stations. Out of these three, crude oil is used extensively for electricity generation. Due to the burning of the crude oil there are heavy contents of gaseous pollutants like sulfur dioxides (SOx) and nitrogen oxides (NOx), gases which are ultimately discharged in to the environment and is a serious environmental threat. The breakthrough point in case of lab studies using 1 gm of sliced activated carbon adsorbant comes after 20 and 30 minutes for NOx and SOx, respectively, whereas in case of PP8 plant breakthrough point comes in seconds. The saturation point in case of lab studies comes after 100 and 120 minutes and for actual PP8 plant it comes after 60 and 90 minutes for NOx and SOx adsorption, respectively. Surface characterization of NOx and SOx adsorption on SAC confirms the presence of peaks in the FT-IR spectrum. CHNS study verifies that the SAC is suitable for NOx and SOx along with some other C and H containing compounds coming out from stack emission stream from the turbines of a power plant.

Keywords: activated carbon, flue gases, NOx and SOx adsorption, physical activation, power plants

Procedia PDF Downloads 348
Harmonizing Cities: Integrating Land Use Diversity and Multimodal Transit for Social Equity

Authors: Zi-Yan Chao

Abstract:

With the rapid development of urbanization and increasing demand for efficient transportation systems, the interaction between land use diversity and transportation resource allocation has become a critical issue in urban planning. Achieving a balance of land use types, such as residential, commercial, and industrial areas, is crucial role in ensuring social equity and sustainable urban development. Simultaneously, optimizing multimodal transportation networks, including bus, subway, and car routes, is essential for minimizing total travel time and costs, while ensuring fairness for all social groups, particularly in meeting the transportation needs of low-income populations. This study develops a bilevel programming model to address these challenges, with land use diversity as the foundation for measuring equity. The upper-level model maximizes land use diversity for balanced land distribution across regions. The lower-level model optimizes multimodal transportation networks to minimize travel time and costs while maintaining user equilibrium. The model also incorporates constraints to ensure fair resource allocation, such as balancing transportation accessibility and cost differences across various social groups. A solution approach is developed to solve the bilevel optimization problem, ensuring efficient exploration of the solution space for land use and transportation resource allocation. This study maximizes social equity by maximizing land use diversity and achieving user equilibrium with optimal transportation resource distribution. The proposed method provides a robust framework for addressing urban planning challenges, contributing to sustainable and equitable urban development.

Keywords: bilevel programming model, genetic algorithms, land use diversity, multimodal transportation optimization, social equity

Procedia PDF Downloads 31
Estimation of Carbon Losses in Rice: Wheat Cropping System of Punjab, Pakistan

Authors: Saeed Qaisrani

Abstract:

The study was conducted to observe carbon and nutrient loss by burning of rice residues on rice-wheat cropping system The rice crop was harvested to conduct the experiment in a randomized complete block design (RCBD) with factors and 4 replications with a net plot size of 10 m x 20 m. Rice stubbles were managed by two methods i.e. Incorporation & burning of rice residues. Soil samples were taken to a depth of 30 cm before sowing & after harvesting of wheat. Wheat was sown after harvesting of rice by three practices i.e. Conventional tillage, Minimum tillage and Zero tillage to observe best tillage practices. Laboratory and field experiments were conducted on wheat to assess best tillage practice and residues management method with estimation of carbon losses. Data on the following parameters; establishment count, plant height, spike length, number of grains per spike, biological yield, fat content, carbohydrate content, protein content, and harvest index were recorded to check wheat quality & ensuring food security in the region. Soil physico-chemical analysis i.e. pH, electrical conductivity, organic matter, nitrogen, phosphorus, potassium, and carbon were done in soil fertility laboratory. Substantial results were found on growth, yield and related parameters of wheat crop. The collected data were examined statistically with economic analysis to estimate the cost-benefit ratio of using different tillage techniques and residue management practices. Obtained results depicted that Zero tillage method have positive impacts on growth, yield and quality of wheat, Moreover, it is cost effective methodology. Similarly, Incorporation is suitable and beneficial method for soil due to more nutrients provision and reduce the need of fertilizers. Burning of rice stubbles has negative impact including air pollution, nutrient loss, microbes died and carbon loss. Recommended the zero tillage technology to reduce carbon losses along with food security in Pakistan.

Keywords: agricultural agronomy, food security, carbon sequestration, rice-wheat cropping system

Procedia PDF Downloads 280
Effects of Sn and Al on Phase Stability and Mechanical Properties of Metastable Beta Ti Alloys

Authors: Yonosuke Murayama

Abstract:

We have developed and studied a metastable beta Ti alloy, which shows super-elasticity and low Young’s modulus according to the phase stability of its beta phase. The super-elasticity and low Young’s modulus are required in a wide range of applications in various industrial fields. For example, the metallic implant with low Young’s modulus and non-toxicity is desirable because the large difference of Young’s modulus between the human bone and the implant material may cause a stress-shielding phenomenon. We have investigated the role of Sn and Al in metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys. The metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys form during quenching from the beta field at high temperature. While Cr and V act as beta stabilizers, Sn and Al are considered as elements to suppress the athermal omega phase produced during quenching. The athermal omega phase degrades the properties of super-elasticity and Young’s modulus. Although Al and Sn as single elements are considered as an alpha stabilizer and neutral, respectively, Sn and Al acted also as beta stabilizers when added simultaneously with beta stabilized element of Cr or V in this experiment. The quenched microstructure of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys shifts from martensitic structure to beta single-phase structure with increasing Cr or V. The Young’s modulus of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys decreased and then increased with increasing Cr or V, each showing its own minimum value of Young's modulus respectively. The composition of the alloy with the minimum Young’s modulus is a near border composition where the quenched microstructure shifts from martensite to beta. The border composition of Ti-Cr-Sn and Ti-V-Sn alloys required only less amount of each beta stabilizer, Cr or V, than Ti-Cr-Al and Ti-V-Al alloys. This indicates that the effect of Sn as a beta stabilizer is stronger than Al. Sn and Al influenced the competitive relation between stress-induced martensitic transformation and slip deformation. Thus, super-elastic properties of metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys varied depending on the alloyed element, Sn or Al.

Keywords: metastable beta Ti alloy, super-elasticity, low Young’s modulus, stress-induced martensitic transformation, beta stabilized element

Procedia PDF Downloads 149
Metabolic Manipulation as a Strategy for Optimization of Biomass Productivity and Oil Content in the Microalgae Desmodesmus Sp.

Authors: Ivan A. Sandoval Salazar, Silvia F. Valderrama

Abstract:

The microalgae oil emerges as a promising source of raw material for many industrial applications. Thus, this study had as a main focus on the cultivation of the microalgae species Desmodesmus sp. in laboratory scale with a view to maximizing biomass production and triglyceride content in the lipid fraction. Initially, culture conditions were selected to optimize biomass production, which was subsequently subjected to nutritional stress by varying nitrate and phosphate concentrations in order to increase the content and productivity of fatty acids. The culture medium BOLD 3N, nitrate and phosphate, light intensity 250,500 and 1000 μmol photons.m².s⁻¹, photoperiod of 12:12 were evaluated. Under the best conditions of the tests, a maximum cell division of 1.13 div.dia⁻¹ was obtained on the sixth day of culture, beginning of the exponential phase, and a maximum concentration of 8.42x107 cell.mL⁻¹ and dry biomass of 3.49 gL⁻¹ on the 20th day, in the stationary phase. The lipid content in the first stage of culture was approximately 8% after 12 days and at the end of the culture in the stationary phase ranged from 12% to 16% (20 days). In the microalgae grown at 250 μmol fotons.m2.s-1 the fatty acid profile was mostly polyunsaturated (52%). The total of unsaturated fatty acids, identified in this species of microalga, reached values between 70 and 75%, being qualified for use in the food and pharmaceutical industry. In addition, this study showed that the cultivation conditions influenced mainly the production of polyunsaturated fatty acids, with the predominance of γ-linolenic acid. However, in the cultures submitted to the highest the intensity of light (1000 μmol photons.m².s⁻¹) and low concentrations of nitrate and phosphate, saturated and monounsaturated fatty acids, which present greater oxidative stability, were identified mainly (60 to 70 %) being qualified for the production of biodiesel and for oleochemistry.

Keywords: microalgae, Desmodesmus sp, fatty acids, biodiesel

Procedia PDF Downloads 154
Design of a Technology Transfer Scheme for the Aeronautical Sector in Alentejo-Andalusia

Authors: J. Munuzuri, L. Onieva, J. Guadix, P. Cortes

Abstract:

The aeronautical sector represents the main source of industrial development in the South of the Iberian Peninsula, with the establishment of key players like Embraer in Alentejo or Airbus in Andalusia. Subsequently, the economic promotion policies implemented in both neighbouring regions seek to consolidate a trans-border aeronautical cluster to gain critical mass and seek synergies between companies and research centres. The first step of the proposed scheme entails the identification of common interests shared by companies, technological centres and university research groups in both regions. This involves determining the specific type of activities carried out at the different companies established in the two regions (ranging from OEMs to SMEs) and also building a catalogue of available infrastructures and skills on the side of research centres and universities. The results of this first step reveal potential one-to-one partnerships, and also highlight the aggregate strengths and needs of the two regions within the aeronautical sector, taking into account both the current scenario and its expected evolution. The second step of the scheme focuses on the particularly relevant companies identified in the first step, and consists of the completion of in-depth technological audits liable to suggest potential development actions or R&D projects in those companies, counting when possible on the capabilities shown by other members of the cluster. These technological audits follow a three-round process aimed at identifying specific needs, validating those identifications and suggesting possible actions to be taken. The final objective of this methodology is to enhance the economic activity in the aeronautical sector in both regions, always with an innovative perspective. The success of the scheme should be measured in terms of partnerships created, R&D projects initiated, and spin-off companies generated.

Keywords: aeronautical sector, technological audits, technology transfer, trans-border cluster

Procedia PDF Downloads 139
Microfacies and Sedimentary Environment of Potentially Hydrocarbon-Bearing Ordovician and Silurian Deposits of Selected Boreholes in the Baltic Syneclise (NE Poland)

Authors: Katarzyna Sobczak

Abstract:

Over the last few years extensive research on the Lower Palaeozic of the Baltic region has been carried out, associated with growing interest in the unconventional hydrocarbon resources of the area. The present study contributes to this investigation by providing relevant microfacies analysis of Ordovician and Silurian carbonate and clastic deposits of the Polish part of the Baltic Syneclise, using data from the Kętrzyn IG-1, Henrykowo 1 and Babiak 1 boreholes. The analytical data, encompassing sedimentological, palaeontological, and petrographic indicators enables the interpretation of the sedimentary environments and their control factors. The main microfacies types distinguished within the studied interval are: bioclastic wackestone, bioclastic packstone, carbonate-rich mudstone, marlstone, nodular limestone and bituminous claystone. The Ordovician is represented by redeposited carbonate rocks formed in a relatively high-energy environment (middle shelf setting). The Upper Ordovician-Lower Silurian rocks of the studied basin represent sedimentary succession formed during a distinctive marine transgression. Considering the sedimentological and petrological data from the Silurian, a low-energy sedimentary environment (offshore setting) with intermittent high-energy events (tempestites) can be inferred for the sedimentary basin of NE Poland. Slow sedimentation of carbonate ooze and fine-grained siliciclastic rocks, formed under oxygen-deficient conditions of the seabed, favoured organic matter preservation. The presence of the storm beds suggests an episodic nature of seabed oxygenation. A significant part of the analysed depositional successions shows characteristics indicative of deposition from gravity flows, but lacks evidence of its turbidity origins. There is, however, evidence for storms acting as a mechanism of flow activation. The discussed Ordovician-Silurian transition of depositional environments in the Baltic area fits well to the global environmental changes encompassing the Upper Ordovician and the Lower Silurian.

Keywords: Baltic Syneclise, microfacies analysis, Ordovician, Silurian, unconventional hydrocarbons

Procedia PDF Downloads 437
Core-Shell Nanofibers for Prevention of Postsurgical Adhesion

Authors: Jyh-Ping Chen, Chia-Lin Sheu

Abstract:

In this study, we propose to use electrospinning to fabricate porous nanofibrous membranes as postsurgical anti-adhesion barriers and to improve the properties of current post-surgical anti-adhesion products. We propose to combine FDA-approved biomaterials with anti-adhesion properties, polycaprolactone (PCL), polyethylene glycol (PEG), hyaluronic acid (HA) with silver nanoparticles (Ag) and ibuprofen (IBU), to produce anti-adhesion barrier nanofibrous membranes. For this purpose, PEG/PCL/Ag/HA/IBU core-shell nanofibers were prepared. The shell layer contains PEG + PCL to provide mechanical supports and Ag was added to the outer PEG-PCL shell layer during electrospinning to endow the nanofibrous membrane with anti-bacterial properties. The core contains HA to exert anti-adhesion and IBU to exert anti-inflammation effects, respectively. The nanofibrous structure of the membranes can reduce cell penetration while allowing nutrient and waste transports to prevent postsurgical adhesion. Nanofibers with different core/shell thickness ratio were prepared. The nanofibrous membranes were first characterized for their physico-chemical properties in detail, followed by in vitro cell culture studies for cell attachment and proliferation. The HA released from the core region showed extended release up to 21 days for prolonged anti-adhesion effects. The attachment of adhesion-forming fibroblasts is reduced using the nanofibrous membrane from DNA assays and confocal microscopic observation of adhesion protein vinculin expression. The Ag released from the shell showed burst release to prevent E Coli and S. aureus infection immediately and prevent bacterial resistance to Ag. Minimum cytotoxicity was observed from Ag and IBU when fibroblasts were culture with the extraction medium of the nanofibrous membranes. The peritendinous anti-adhesion model in rabbits and the peritoneal anti-adhesion model in rats were used to test the efficacy of the anti-adhesion barriers as determined by gross observation, histology, and biomechanical tests. Within all membranes, the PEG/PCL/Ag/HA/IBU core-shell nanofibers showed the best reduction in cell attachment and proliferation when tested with fibroblasts in vitro. The PEG/PCL/Ag/HA/IBU nanofibrous membranes also showed significant improvement in preventing both peritendinous and peritoneal adhesions when compared with other groups and a commercial adhesion barrier film.

Keywords: anti-adhesion, electrospinning, hyaluronic acid, ibuprofen, nanofibers

Procedia PDF Downloads 186
Genomic Characterisation of Equine Sarcoid-derived Bovine Papillomavirus Type 1 and 2 Using Nanopore-Based Sequencing

Authors: Lien Gysens, Bert Vanmechelen, Maarten Haspeslagh, Piet Maes, Ann Martens

Abstract:

Bovine papillomavirus (BPV) types 1 and 2 play a central role in the etiology of the most common neoplasm in horses, the equine sarcoid. The unknown mechanism behind the unique variety in a clinical presentation on the one hand and the host-dependent clinical outcome of BPV-1 infection, on the other hand, indicate the involvement of additional factors. Earlier studies have reported the potential functional significance of intratypic sequence variants, along with the existence of sarcoid-sourced BPV variants. Therefore, intratypic sequence variation seems to be an important emerging viral factor. This study aimed to give a broad insight in sarcoid-sourced BPV variation and explore its potential association with disease presentation. In order to do this, a nanopore sequencing approach was successfully optimized for screening a wide spectrum of clinical samples. Specimens of each tumour were initially screened for BPV-1/-2 by quantitative real-time PCR. A custom-designed primer set was used on BPV-positive samples to amplify the complete viral genome in two multiplex PCR reactions, resulting in a set of overlapping amplicons. For phylogenetic analysis, separate alignments were made of all available complete genome sequences for BPV-1/-2. The resulting alignments were used to infer Bayesian phylogenetic trees. We found substantial genetic variation among sarcoid-derived BPV-1, although this variation could not be linked to disease severity. Several of the BPV-1 genomes had multiple major deletions. Remarkably, the majority of the cluster within the region coding for late viral genes. Together with the extensiveness (up to 603 nucleotides) of the described deletions, this suggests an altered function of L1/L2 in disease pathogenesis. By generating a significant amount of complete-length BPV genomes, we succeeded in introducing next-generation sequencing into veterinary research focusing on the equine sarcoid, thus facilitating the first report of both nanopore-based sequencing of complete sarcoid-sourced BPV-1/-2 and the simultaneous nanopore sequencing of multiple complete genomes originating from a single clinical sample.

Keywords: Bovine papillomavirus, equine sarcoid, horse, nanopore sequencing, phylogenetic analysis

Procedia PDF Downloads 182
The Spatial Classification of China near Sea for Marine Biodiversity Conservation Based on Bio-Geographical Factors

Authors: Huang Hao, Li Weiwen

Abstract:

Global biodiversity continues to decline as a result of global climate change and various human activities, such as habitat destruction, pollution, introduction of alien species and overfishing. Although there are connections between global marine organisms more or less, it is better to have clear geographical boundaries in order to facilitate the assessment and management of different biogeographical zones. And so area based management tools (ABMT) are considered as the most effective means for the conservation and sustainable use of marine biodiversity. On a large scale, the geographical gap (or barrier) is the main factor to influence the connectivity, diffusion, ecological and evolutionary process of marine organisms, which results in different distribution patterns. On a small scale, these factors include geographical location, geology, and geomorphology, water depth, current, temperature, salinity, etc. Therefore, the analysis on geographic and environmental factors is of great significance in the study of biodiversity characteristics. This paper summarizes the marine spatial classification and ABMTs used in coastal area, open oceans and deep sea. And analysis principles and methods of marine spatial classification based on biogeographic related factors, and take China Near Sea (CNS) area as case study, and select key biogeographic related factors, carry out marine spatial classification at biological region scale, ecological regionals scale and biogeographical scale. The research shows that CNS is divided into 5 biological regions by climate and geographical differences, the Yellow Sea, the Bohai Sea, the East China Sea, the Taiwan Straits, and the South China Sea. And the bioregions are then divided into 12 ecological regions according to the typical ecological and administrative factors, and finally the eco-regions are divided into 98 biogeographical units according to the benthic substrate types, depth, coastal types, water temperature, and salinity, given the integrity of biological and ecological process, the area of the biogeographical units is not less than 1,000 km². This research is of great use to the coastal management and biodiversity conservation for local and central government, and provide important scientific support for future spatial planning and management of coastal waters and sustainable use of marine biodiversity.

Keywords: spatial classification, marine biodiversity, bio-geographical, conservation

Procedia PDF Downloads 156
The Effects of Native Forests Conservation and Preservation Scenarios on Two Chilean Basins Water Cycle, under Climate Change Conditions

Authors: Hernández Marieta, Aguayo Mauricio, Pedreros María, Llompart Ovidio

Abstract:

The hydrological cycle is influenced by multiple factors, including climate change, land use changes, and anthropogenic activities, all of which threaten water availability and quality worldwide. In recent decades, numerous investigations have used landscape metrics and hydrological modeling to demonstrate the influence of landscape patterns on the hydrological cycle components' natural dynamics. Many of these investigations have determined the repercussions on the quality and availability of water, sedimentation, and erosion regime, mainly in Asian basins. In fact, there is progress in this branch of science, but there are still unanswered questions for our region. This study examines the hydrological response in Chilean basins under various land use change scenarios (LUCC) and the influence of climate change. The components of the water cycle were modeled using a physically distributed type hydrological and hydraulic simulation model based on and oriented to mountain basins TETIS model. Future climate data were derived from Chilean regional simulations using the WRF-MIROC5 model, forced with the RCP 8.5 scenario, at a 25 km resolution for the periods 2030-2060 and 2061-2091. LUCC scenarios were designed based on nature-based solutions, landscape pattern influences, current national and international water conservation legislation, and extreme scenarios of non-preservation and conservation of native forests. The scenarios that demonstrate greater water availability, even under climate change, are those promoting the restoration of native forests in over 30% of the basins, even alongside agricultural activities. Current legislation promoting the restoration of native forests only in riparian zones (30-60 m or 200 m in steeper areas) will not be resilient enough to address future water shortages. Evapotranspiration, direct runoff, and water availability at basin outlets showed the greatest variations due to LUCC. The relationship between hydrological modeling and landscape configuration is an effective tool for establishing future territorial planning that prioritizes water resource protection.

Keywords: TETIS, landscape pattern, hydrological process, water availability, Chilean basins

Procedia PDF Downloads 42
Knowledge Co-Production on Future Climate-Change-Induced Mass-Movement Risks in Alpine Regions

Authors: Elisabeth Maidl

Abstract:

The interdependence of climate change and natural hazard goes along with large uncertainties regarding future risks. Regional stakeholders, experts in natural hazards management and scientists have specific knowledge, resp. mental models on such risks. This diversity of views makes it difficult to find common and broadly accepted prevention measures. If the specific knowledge of these types of actors is shared in an interactive knowledge production process, this enables a broader and common understanding of complex risks and allows to agree on long-term solution strategies. Previous studies on mental models confirm that actors with specific vulnerabilities perceive different aspects of a topic and accordingly prefer different measures. In bringing these perspectives together, there is the potential to reduce uncertainty and to close blind spots in solution finding. However, studies that examine the mental models of regional actors on future concrete mass movement risks are lacking so far. The project tests and evaluates the feasibility of knowledge co-creation for the anticipatory prevention of climate change-induced mass movement risks in the Alps. As a key element, mental models of the three included groups of actors are compared. Being integrated into the research program Climate Change Impacts on Alpine Mass Movements (CCAMM2), this project is carried out in two Swiss mountain regions. The project is structured in four phases: 1) the preparatory phase, in which the participants are identified, 2) the baseline phase, in which qualitative interviews and a quantitative pre-survey are conducted with actors 3) the knowledge-co-creation phase, in which actors have a moderated exchange meeting, and a participatory modelling workshop on specific risks in the region, and 4) finally a public information event. Results show that participants' mental models are based on the place of origin, profession, believes, values, which results in narratives on climate change and hazard risks. Further, the more intensively participants interact with each other, the more likely is that they change their views. This provides empirical evidence on how changes in opinions and mindsets can be induced and fostered.

Keywords: climate change, knowledge-co-creation, participatory process, natural hazard risks

Procedia PDF Downloads 74
Rental Housing May Address Affordable Housing Deficiency in India

Authors: Meha Singla, Shankhadeep Chaudhuri, Yadunandan Batchu

Abstract:

Rental Housing is a more cost effective and flexible housing solution for the low income families than home-ownership. While India is undergoing a new industrial metamorphosis with multiple government initiatives that emphasise on the growth of manufacturing sector through policy frameworks and corridor development proposals, there is going to be a huge influx of low-income working population to the upcoming urban centres. As per stats, about 70 per cent of the housing demand at these centres fall into the affordable segment. And in the midst of this rapid urbanisation and huge immigration of young population, there is a lack of proper rental housing framework in the country. A large number of immigrants will be unable to support home-ownership thereby leading to proliferation of slums in urban centres. As a result, there is a dire need for immediate articulation of a comprehensive rental housing policy and affordable housing initiatives. In this paper, CommonFloor attempts to analyse successful rental housing case studies of the world followed by establishing a correlation between the gap in urban rental housing stock and the per capita income statistics to devise rental housing affordability specific to major Indian cities (Delhi, Mumbai, Bangalore, Chennai). Further, with the corroboration of market price trends, it will try to locate feasible micro-markets for immediate rental housing action. Final research findings will provide key data points thereby helping to design the approach for efficient utilisation of unsold residential inventory in the country in order to compensate the rental housing deficiency. This data set is believed to express viable model(s) of the rental housing approach for the government and private participants.

Keywords: housing prices, migration of population, real estate, rental housing, rental markets, residential property market, urbanisation

Procedia PDF Downloads 315
The Conflict Between the Current International Copyright Regime and the Islamic Social Justice Theory

Authors: Abdelrahman Mohamed

Abstract:

Copyright law is a branch of the Intellectual Property Law that gives authors exclusive rights to copy, display, perform, and distribute copyrightable works. In theory, copyright law aims to promote the welfare of society by granting exclusive rights to the creators in exchange for the works that these creators produce for society. Thus, there are two different types of rights that a just regime should balance between them which are owners' rights and users' rights. The paper argues that there is a conflict between the current international copyright regime and the Islamic Social Justice Theory. This regime is unjust from the Islamic Social Justice Theory's perspective regarding access to educational materials because this regime was unjustly established by the colonizers to protect their interests, starting from the Berne Convention for the Protection of Literary and Artistic Works 1886 and reaching to the Trade-Related Aspects of Intellectual Property Rights 1994. Consequently, the injustice of this regime was reflected in the regulations of these agreements and led to an imbalance between the owners' rights and the users' rights in favor of the former at the expense of the latter. As a result, copyright has become a barrier to access to knowledge and educational materials. The paper starts by illustrating the concept of justice in Islamic sources such as the Quran, Sunnah, and El-Maslha-Elmorsalah. Then, social justice is discussed by focusing on the importance of access to knowledge and the right to education. The theory assumes that the right to education and access to educational materials are necessities; thus, to achieve justice in this regime, the users' rights should be granted regardless of their region, color, and financial situation. Then, the paper discusses the history of authorship protection under the Islamic Sharia and to what extent this right was recognized even before the existence of copyright law. According to this theory, the authors' rights should be protected, however, this protection should not be at the expense of the human's rights to education and the right to access to educational materials. Moreover, the Islamic Social Justice Theory prohibits the concentration of wealth among a few numbers of people, 'the minority'. Thus, if knowledge is considered an asset or a good, the concentration of knowledge is prohibited from the Islamic perspective, which is the current situation of the copyright regime where a few countries control knowledge production and distribution. Finally, recommendations will be discussed to mitigate the injustice of the current international copyright regime and to fill the gap between the current international copyright regime and the Islamic Social Justice Theory.

Keywords: colonization, copyright, intellectual property, Islamic sharia, social justice

Procedia PDF Downloads 30