Search results for: volatile memory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1598

Search results for: volatile memory

938 Evaluation of Shale Gas Resource Potential of the Middle Benue Trough, Nigeria

Authors: Ovye Yohanna Musah

Abstract:

Shale formations of the Middle Benue Trough in North Central Nigeria present a variety of opportunities for the exploration, development and exploitation of unconventional natural gas. Prospective formations range in age from Albian through Coniacian; they include the Asu River Group, Awe, Ezeaku and the Awgu formations, however, the Keana and Lafia formations are thought to be of lesser importance. The Awgu formation presents the best prospect when compared to the Barnett Shales of Fort Worth Basin in Texa, United States with regards to the organic matter maturition, TOC content of formation and shale thicknesses which are key attributes that aid in determining the economic viability of any shale gas play. The vitrinite reflectance value from Rock Eval pyrolysis for Awe and Awgu formations are 0.89—1.34(%) and 0.83—1.13(%) respectively and are good and sufficiently mature to generate gas from the Benue Trough. The TOC value are good for Awgu formation which is 0.83—6.54(%) and closest to that of the Barnett at 1—4.5(%). Asu River and Ezeaku are less viable. Furthermore, the High to Medium Volatile bituminous coals found in the Awgu formation are characterized by high TOC contents which may enhance gas generation and this is good for further examination and possible development.

Keywords: shale gas, resource, unconventional, benue, TOC

Procedia PDF Downloads 384
937 Forensic Detection of Errors Permitted by the Witnesses in Their Testimony

Authors: Lev Bertovsky

Abstract:

The purpose of this study was to determine the reasons for the formation of false testimony from witnesses and make recommendations on the recognition of such cases. During the studies, which were based on the achievements of professionals in the field of psychology, as well as personal investigative practice, the stages of perception of the information were studied, as well as the process of its reclaim from the memory and transmission to the communicator upon request. Based on the principles of the human brain, kinds of conscientious witness mistakes were systematized. Proposals were formulated for the optimization of investigative actions in cases where the witnesses make an honest mistake with respect to the effects previously observed by them.

Keywords: criminology, eyewitness testimony, honest mistake, information, investigator, investigation, questioning

Procedia PDF Downloads 185
936 Eco-Design of Multifunctional System Based on a Shape Memory Polymer and ZnO Nanoparticles for Sportswear

Authors: Inês Boticas, Diana P. Ferreira, Ana Eusébio, Carlos Silva, Pedro Magalhães, Ricardo Silva, Raul Fangueiro

Abstract:

Since the beginning of the 20th century, sportswear has a major contribution to the impact of fashion on our lives. Nowadays, the embracing of sportswear fashion/looks is undoubtedly noticeable, as the modern consumer searches for high comfort and linear aesthetics for its clothes. This compromise lead to the arise of the athleisure trend. Athleisure surges as a new style area that combines both wearability and fashion sense, differentiated from the archetypal sportswear, usually associated to “gym clothes”. Additionally, the possibility to functionalize and implement new technologies have shifted and progressively empowers the connection between the concepts of physical activities practice and well-being, allowing clothing to be more interactive and responsive with its surroundings. In this study, a design inspired in retro and urban lifestyle was envisioned, engineering textile structures that can respond to external stimuli. These structures are enhanced to be responsive to heat, water vapor and humidity, integrating shape memory polymers (SMP) to improve the breathability and heat-responsive behavior of the textiles and zinc oxide nanoparticles (ZnO NPs) to heighten the surface hydrophobic properties. The best results for hydrophobic exhibited superhydrophobic behavior with water contact angle (WAC) of more than 150 degrees. For the breathability and heat-response properties, SMP-coated samples showed an increase in water vapour permeability values of about 50% when compared with non SMP-coated samples. These innovative technological approaches were endorsed to design innovative clothing, in line with circular economy and eco-design principles, by assigning a substantial degree of mutability and versatility to the clothing. The development of a coat and shirt, in which different parts can be purchased separately to create multiple products, aims to combine the technicality of both the fabrics used and the making of the garments. This concept translates itself into a real constructive mechanism through the symbiosis of high-tech functionalities and the timeless design that follows the athleisure aesthetics.

Keywords: breathability, sportswear and casual clothing, sustainable design, superhydrophobicity

Procedia PDF Downloads 135
935 A Multi-criteria Decision Support System for Migrating Legacies into Open Systems

Authors: Nasser Almonawer

Abstract:

Timely reaction to an evolving global business environment and volatile market conditions necessitates system and process flexibility, which in turn demands agile and adaptable architecture and a steady infusion of affordable new technologies. On the contrary, a large number of organizations utilize systems characterized by inflexible and obsolete legacy architectures. To effectively respond to the dynamic contemporary business environments, such architectures must be migrated to robust and modular open architectures. To this end, this paper proposes an integrated decision support system for a seamless migration to open systems. The proposed decision support system (DSS) integrates three well-established quantitative and qualitative decision-making models—namely, the Delphi method, Analytic Hierarchy Process (AHP) and Goal Programming (GP) to (1) assess risks and establish evaluation criteria; (2) formulate migration strategy and rank candidate systems; and (3) allocate resources among the selected systems.

Keywords: decision support systems, open systems architecture, analytic hierarchy process (AHP), goal programming (GP), delphi method

Procedia PDF Downloads 47
934 Batch Biodrying of Pulp and Paper Secondary Sludge: Influence of Initial Moisture Content on the Process

Authors: César Huiliñir, Danilo Villanueva, Pedro Iván Alvarez, Francisco Cubillos

Abstract:

Biodrying aims at removing water from biowastes and has been mostly studied for municipal solid wastes (MSW), while few studies have dealt with secondary sludge from the paper and pulp industry. The goal of this study was to investigate the effect of initial moisture content (MC) on the batch biodrying of pulp and paper secondary sludge, using rice husks as bulking agents. Three initial MCs were studied (54, 65, and 74% w.b.) in closed batch laboratory-scale reactors under adiabatic conditions and with a constant air-flow rate (0.65 l min-1 kg-1 wet solid). The initial MC of the mixture of secondary sludge and rice husks showed a significant effect on the biodrying process. Using initial moisture content between 54-65% w.b., the solid moisture content was reduce up to 37 % w.b. in ten days, getting calorific values between 8000-9000 kJ kg-1. It was concluded that a decreasing of initial MC improves the drying rate and decreases the solid volatile consumption, therefore, the optimization of biodrying should consider this parameter.

Keywords: biodrying, secondary sludge, initial moisture content, pulp and paper industry, rice husk

Procedia PDF Downloads 509
933 Application of the Carboxylate Platform in the Consolidated Bioconversion of Agricultural Wastes to Biofuel Precursors

Authors: Sesethu G. Njokweni, Marelize Botes, Emile W. H. Van Zyl

Abstract:

An alternative strategy to the production of bioethanol is by examining the degradability of biomass in a natural system such as the rumen of mammals. This anaerobic microbial community has higher cellulolytic activities than microbial communities from other habitats and degrades cellulose to produce volatile fatty acids (VFA), methane and CO₂. VFAs have the potential to serve as intermediate products for electrochemical conversion to hydrocarbon fuels. In vitro mimicking of this process would be more cost-effective than bioethanol production as it does not require chemical pre-treatment of biomass, a sterile environment or added enzymes. The strategies of the carboxylate platform and the co-cultures of a bovine ruminal microbiota from cannulated cows were combined in order to investigate and optimize the bioconversion of agricultural biomass (apple and grape pomace, citrus pulp, sugarcane bagasse and triticale straw) to high value VFAs as intermediates for biofuel production in a consolidated bioprocess. Optimisation of reactor conditions was investigated using five different ruminal inoculum concentrations; 5,10,15,20 and 25% with fixed pH at 6.8 and temperature at 39 ˚C. The ANKOM 200/220 fiber analyser was used to analyse in vitro neutral detergent fiber (NDF) disappearance of the feedstuffs. Fresh and cryo-frozen (5% DMSO and 50% glycerol for 3 months) rumen cultures were tested for the retainment of fermentation capacity and durability in 72 h fermentations in 125 ml serum vials using a FURO medical solutions 6-valve gas manifold to induce anaerobic conditions. Fermentation of apple pomace, triticale straw, and grape pomace showed no significant difference (P > 0.05) in the effect of 15 and 20 % inoculum concentrations for the total VFA yield. However, high performance liquid chromatographic separation within the two inoculum concentrations showed a significant difference (P < 0.05) in acetic acid yield, with 20% inoculum concentration being the optimum at 4.67 g/l. NDF disappearance of 85% in 96 h and total VFA yield of 11.5 g/l in 72 h (A/P ratio = 2.04) for apple pomace entailed that it was the optimal feedstuff for this process. The NDF disappearance and VFA yield of DMSO (82% NDF disappearance and 10.6 g/l VFA) and glycerol (90% NDF disappearance and 11.6 g/l VFA) stored rumen also showed significantly similar degradability of apple pomace with lack of treatment effect differences compared to a fresh rumen control (P > 0.05). The lack of treatment effects was a positive sign in indicating that there was no difference between the stored samples and the fresh rumen control. Retaining of the fermentation capacity within the preserved cultures suggests that its metabolic characteristics were preserved due to resilience and redundancy of the rumen culture. The amount of degradability and VFA yield within a short span was similar to other carboxylate platforms that have longer run times. This study shows that by virtue of faster rates and high extent of degradability, small scale alternatives to bioethanol such as rumen microbiomes and other natural fermenting microbiomes can be employed to enhance the feasibility of biofuels large-scale implementation.

Keywords: agricultural wastes, carboxylate platform, rumen microbiome, volatile fatty acids

Procedia PDF Downloads 130
932 Stripping of Flavour-Active Compounds from Aqueous Food Streams: Effect of Liquid Matrix on Vapour-Liquid Equilibrium in a Beer-Like Solution

Authors: Ali Ammari, Karin Schroen

Abstract:

In brewing industries, stripping is a downstream process to separate volatiles from beer. Due to physiochemical similarities between flavour components, the selectivity of this method is not favourable. Besides, the presence of non-volatile compounds such as proteins and carbohydrates may affect the separation of flavours due to their retaining properties. By using a stripping column with structured packing coupled with a gas chromatography, in this work, the overall mass transfer coefficient along with their corresponding equilibrium data was investigated for a model solution consist of water, ethanol, ethyl acetate and isoamyl acetate. Static headspace analysis also was employed to derive equilibrium data for flavours in the presence of beer dry matter. As it was expected ethanol and dry matter showed retention properties; however, the effect of viscosity in mass transfer coefficient was discarded due to the fact that the viscosity of solution decreased during stripping. The effect of ethanol and beer dry matter were mapped to be used for designing stripping could.

Keywords: flavour, headspace, Henry’s coefficient, mass transfer coefficient, stripping

Procedia PDF Downloads 194
931 Memories of Lost Fathers: The Unfinished Transmission of Generational Values in Hungarian Cinema by Peter Falanga

Authors: Peter Falanga

Abstract:

During the process of de-Stalinization that began in 1956 with the Twentieth Congress of the Soviet Communist Party, many filmmakers in Hungary chose to explore their country’s political discomforts by using Socialist Realism as a negative model against which they could react to the dominating ideology. A renewed national film industry and a more permissive political regime would allow filmmakers to take to task the plight of the preceding generation who had experienced the fatal political turmoil of both World Wars and the purges of Stalin. What follows is no longer the multigenerational unity found in Socialist Realism wherein both the old and the young embrace Stalin’s revolutionary optimism; instead, the protagonists are parentless, and thus their connection to the previous generation is partially severed. In these films, violent historical forces leave one generation to search for both a connection with their family’s past, and for moral guidance to direct their future. István Szabó’s Father (1966), Márta Mészáros Diary for My Children (1984), and Pál Gábor’s Angi Vera (1978) each consider the fraught relationship between successive generations through the lens of postwar youth. A characteristic each of their protagonist’s share is that they are all missing one or both parents, and cope with familial loss either through recalling memories of their parents in dream-like sequences, or, in the case of Angi Vera, through embracing the surrogate paternalism that the Communist Party promises to provide. This paper considers the argument these films present about the progress of Hungarian history, and how this topic is explored in more recent films that similarly focus on the transmission of generational values. Scholars such as László Strausz and John Cunningham have written on the continuous concern with the transmission of generational values in more recent films such as István Szabó’s Sunshine (1999), Béla Tarr’s Werckmeister Harmonies (2000), György Pálfi’s Taxidermia (2006), Ágnes Kocsis’ Pál Adrienn (2010), and Kornél Mundruczó’s Evolution (2021). These films, they argue, make intimate portrayals of the various sweeping political changes in Hungary’s history and question how these epochs or events have impacted Hungarian identities. If these films attempt to personalize historical shifts of Hungary, then what is the significance of featuring characters who have lost one or both parents? An attempt to understand this coherent trend in Hungarian cinema will profit from examining the earlier, celebrated films of Szabó, Mészáros, and Gábor, who inaugurated this preoccupation with generational values. The pervasive interplay of dreams and memory in their films invites an additional element to their argument concerning historical progression. This paper incorporates Richard Teniman’s notion of the “dialectics of memory” in which memory is in a constant process of negation and reinvention to explain why these Directors prefer to explore Hungarian identity through the disarranged form of psychological realism over the linear causality structure of historical realism.

Keywords: film theory, Eastern European Studies, film history, Eastern European History

Procedia PDF Downloads 122
930 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy

Procedia PDF Downloads 329
929 A Mixed Methodology of the Social and Spatial Fragmentation of the City of Beirut Leading to the Creation of Internal Boundaries

Authors: Hala Obeid

Abstract:

Among the cities that have been touched by hard events and have been experiencing this polemic of existence, one can quote Beirut. A city that defies and confronts itself for its own existence. Beirut materialized all the social complexity; it has also preserved the memory of a society that has been able to build and reflect a certain unique identity. In spite of its glory, Lebanon’s civil war has marked a turning point in Beirut’s history. It has caused many deaths and opposed religious communities. Once this civil war has ended, the reconstruction of the city center, however, saw the spatial exclusion of manual labor, small local commerce, and middle-class residences. The urban functions that characterized the pre-war center were removed, and the city’s spontaneous evolutions were replaced by a historical urban planning, which neglected the city’s memory and identity. The social and spatial fragmentation that has erupted since the war has led to a breakdown of spatial and social boundaries within the city. The aim of this study is to evaluate the impact of fragmentation and boundaries on the city of Beirut in spatial, social, religious and ethnic terms. The method used in this research is what we call the mixed method which is a combination between the quantitative method and the qualitative one. These two approaches, in this case, do not oppose but complement each other in order to study the city of Beirut physically and socially. The main purpose of the qualitative approach is to describe and analyze the social phenomenon of the fragmentation of the city; this method can be summarized by the field observation and study. While the quantitative approach is based on filling out questionnaires that leads to statistics analyzes. Together, these two approaches will mark the course of the research. As a result, Beirut is not only a divided city but is fragmented spatially into many fragments and socially into many groups. This fragmentation is creating immaterial boundaries between fragments and therefore between groups. These urban and social boundaries are specifically religious and ethnic limits. As a conclusion, one of the most important and discussed boundary in Beirut is a spatial and religious boundary called ‘the green line’ or the demarcation line, a true caesura within the city. It marks the opposition of two urban groups and the aggravated fragmentation between them. This line divided Beirut into two compartments: East Beirut (for Christians) and West Beirut (for Muslims). This green line has become an urban void that holds the past in suspension. Finally, to think of Beirut as an urban unit becomes an insoluble problem.

Keywords: Beirut, boundaries, fragmentation, identity

Procedia PDF Downloads 178
928 Virtual Practical Work as Formation of Physics Concept for Student

Authors: Sepdiana W. Rahmawati, Santi A. P. Anggraini

Abstract:

The world of education has made progress with the various new technologies with help of computer. No exception physics education, especially virtual physics practical work. By doing practical work, memory of physics concept will be more advantageous for student and they will understand the essence of actual physics, not only spiked formula. With help of computers, created a variety of applications that can be used by students to perform virtual practical work and students will start thinking systematically to be able find its own concepts and understand the application of physics.

Keywords: essence of physics, formation concept, physics concept, virtual practical work

Procedia PDF Downloads 406
927 Psychosocial Strategies Used by Individuals with Schizophrenia: An Analysis of Internet Forum Posts

Authors: Charisse H. Tay

Abstract:

Background: Schizophrenia is a severe chronic mental disorder that can result in hallucinations, delusions, reduced social engagement, and lack of motivation. While antipsychotic medications often provide the basis for treatment, psychosocial strategies complement the benefit of medications and can result in meaningful improvements in symptoms and functioning. The aim of the study was to investigate psychosocial strategies used by internet self-help forum participants to effectively manage symptoms caused by schizophrenia. Internet self-help forums are a resource for medical and psychological problems and are commonly used to share information about experiences with symptom management. Method: Three international self-help internet forums on schizophrenia were identified using a search engine. 1,181 threads regarding non-pharmacological, psychosocial self-management of schizophrenia symptoms underwent screening, resulting in the final identification and coding of 91 threads and 191 posts from 134 unique forum users that contained details on psychosocial strategies endorsed personally by users that allowed them to effectively manage symptoms of schizophrenia, including positive symptoms (e.g., auditory/visual/tactile hallucinations, delusions, paranoia), negative symptoms (e.g.., avolition, apathy, anhedonia), symptoms of distress, and cognitive symptoms (e.g., memory loss). Results: Effective symptom management strategies personally endorsed by online forum users were psychological skills (e.g., re-focusing, mindfulness/meditation, reality checking; n = 94), engaging in activities (e.g., exercise, working/volunteering, hobbies; n = 84), social/familial support (n = 48), psychotherapy (n = 33), diet (n = 18), and religion/spirituality (n = 14). 44.4% of users reported using more than one strategy to manage their symptoms. The most common symptoms targeted and effectively managed, as specified by users, were positive symptoms (n = 113), negative symptoms (n = 17), distress (n = 8), and memory loss (n = 6). 10.5% of users reported more than one symptom effectively targeted. 70.2% of users with positive symptoms reported that psychological skills were effective for symptom relief. 88% of users with negative symptoms and 75% with distress symptoms reported that engaging in activities was effective. Discussion: Individuals with schizophrenia rely on a variety of different psychosocial methods to manage their symptoms. Different symptomology appears to be more effectively targeted by different types of psychosocial strategies. This may help to inform treatment strategy and tailored for individuals with schizophrenia.

Keywords: psychosocial treatment, qualitative methods, schizophrenia, symptom management

Procedia PDF Downloads 124
926 Ordered Mesoporous WO₃-TiO₂ Nanocomposites for Enhanced Xylene Gas Detection

Authors: Vijay K. Tomer, Ritu Malik, Satya P. Nehra, Anshu Sharma

Abstract:

Highly ordered mesoporous WO₃-TiO₂ nanohybrids with large intrinsic surface area and highly ordered pore channels were synthesized using mesoporous silica, KIT-6 as hard template using a nanocasting strategy. The nanohybrid samples were characterized by a variety of physico-chemical techniques including X-ray diffraction, Nitrogen adsorption-desorption isotherms, and high resolution transmission electron microscope. The nanohybrids were tested for detection of important indoor Volatile Organic Compounds (VOCs) including acetone, ethanol, n-butanol, toluene, and xylene. The sensing result illustrates that the nanocomposite sensor was highly responsive towards xylene gas at relatively lower operating temperature. A rapid response and recovery time, highly linear response and excellent stability in the concentration ranges from 1 to 100 ppm was observed for xylene gas. It is believed that the promising results of this study can be utilized in the synthesis of ordered mesoporous nanostructures which can extend its configuration for the development of new age e-nose type sensors with enhanced gas-sensing performance.

Keywords: nanohybrids, response, sensor, VOCs, xylene

Procedia PDF Downloads 331
925 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications

Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol

Abstract:

NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.

Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD

Procedia PDF Downloads 235
924 Protective Effect of Cow Urine against Chlorpyrifos Induced-Genotoxicity and Neurotoxicity in Albino Rats

Authors: Shelly Sharma, Pooja Chadha

Abstract:

Humans are exposed to pesticides and insecticides either directly or indirectly. Exposure to these pesticides may lead to acute toxicity to mammals and non-target organisms. Chlorpyrifos (CPF) is a broad spectrum organophosphate pesticide widely used in various countries of the world. The aim of the present study was to assess the toxicity associated with chlorpyrifos exposure and possible mitigating effect of cow urine against genotoxic and toxic effects in rat brain induced by chlorpyrifos. For this purpose LD50 was determined and rats were orally administered with 1/8th of LD50 (19mg/kg b.wt). Brain samples were taken after 24hrs, 48hrs and 72hrs of treatment. A significant increase in the % tail DNA was observed along with the increase in MDA levels of brain tissues in chlorpyrifos treated groups as compared to control. Cow urine treated groups show decrease in DNA damage and MDA levels as compared to CPF treated group. The study indicates that cow urine has ameliorative potential against neurotoxicity and genotoxicity induced by CPF. Cow urine is considered rich in vitamin A, E and volatile fatty acids which provide antioxidant potential to it. Thus, it can be used as a genoprotective agent.

Keywords: comet assay, brain, cow urine, genotoxicity, toxicity

Procedia PDF Downloads 381
923 Ionic Liquid 1-Butyl-3-Methylimidazolium Bromide as Reaction Medium for the Synthesis of Flavanones under Solvent-Free Conditions

Authors: Cecilia Espindola, Juan Carlos Palacios

Abstract:

Flavonoids are a large group of natural compounds which are found in many fruits and vegetables. A subgroup of these called flavanones display a wide range of biological activities, and they also have an important physiological role in plants. The ionic liquid (ILs) are compounds consisting of an organic cation with an organic or inorganic anion. Due to its unique properties such as high electrical conductivity, wide temperature range of the liquid state, thermal and electrochemical stability, high ionic density and low volatility and flammability, are considered as ecological solvents in organic synthesis, catalysis, electrolytes in accumulators, and electrochemistry, non-volatile plasticizers, and chemical separation. It was synthesized ionic liquid IL 1-butyl-3-methylimidazolium bromide free-solvent and used as reaction medium for flavanones synthesis, under several reaction conditions of temperature, time and production. The obtained compounds were analyzed by melting point, elemental analysis, IR and UV-vis spectroscopy.

Keywords: 1-butyl-3-methylimidazolium bromide, flavonoids, free-solvent, IR spectroscopy

Procedia PDF Downloads 120
922 Inappropriate Effects Which the Use of Computer and Playing Video Games Have on Young People

Authors: Maja Ruzic-Baf, Mirjana Radetic-Paic

Abstract:

The use of computers by children has many positive aspects, including the development of memory, learning methods, problem-solving skills and the feeling of one’s own competence and self-confidence. Playing on line video games can encourage hanging out with peers having similar interests as well as communication; it develops coordination, spatial relations and presentation. On the other hand, the Internet enables quick access to different information and the exchange of experiences. How kids use computers and what the negative effects of this can be depends on various factors. ICT has improved and become easy to get for everyone. In the past 12 years so many video games has been made even to that level that some of them are free to play. Young people, even some adults, had simply start to forget about the real outside world because in that other, digital world, they have found something that makes them feal more worthy as a man. This article present the use of ICT, forms of behavior and addictions to on line video games. The use of computers by children has many positive aspects, including the development of memory, learning methods, problem-solving skills and the feeling of one’s own competence and self-confidence. Playing on line video games can encourage hanging out with peers having similar interests as well as communication; it develops coordination, spatial relations and presentation. On the other hand, the Internet enables quick access to different information and the exchange of experiences. How kids use computers and what the negative effects of this can be depends on various factors. ICT has improved and become easy to get for everyone. In the past 12 years so many video games has been made even to that level that some of them are free to play. Young people, even some adults, had simply start to forget about the real outside world because in that other, digital world, they have found something that makes them feal more worthy as a man. This article present the use of ICT, forms of behavior and addictions to on line video games.

Keywords: addiction to video games, behaviour, ICT, young people

Procedia PDF Downloads 545
921 Environmental Factors and Executive Functions of Children in 5-Year-Old Kindergarten

Authors: Stephanie Duval

Abstract:

The concept of educational success, combined with the overall development of the child in kindergarten, is at the center of current interests, both in research and in the environments responsible for the education of young children. In order to promote it, researchers emphasize the importance of studying the executive functions [EF] of children in preschool education. More precisely, the EFs, which refers to working memory [WM], inhibition, mental flexibility and planning, would be the pivotal element of the child’s educational success. In order to support the EFs of the child, and even his educational success, the quality of the environments is beginning to be explored more and more. The question that arises now is how to promote EFs for young children in the educational environment, in order to support their educational success? The objective of this study is to investigate the link between the quality of interactions in 5-year-old kindergarten and child’s EFs. The sample consists of 118 children (70 girls, 48 boys) in 12 classes. The quality of the interactions is observed from the Classroom Assessment Scoring System [CLASS], and the EFs (i.e., working memory, inhibition, cognitive flexibility, and planning) are measured with administered tests. The hypothesis of this study was that the quality of teacher-child interactions in preschool education, as measured by the CLASS, was associated with the child’s EFs. The results revealed that the quality of emotional support offered by adults in kindergarten, included in the CLASS tool, was positively and significantly related to WM and inhibition skills. The results also suggest that WM is a key skill in the development of EFs, which may be associated with the educational success of the child. However, this hypothesis remains to be clarified, as is the link with educational success. In addition, results showed that factors associated to the family (ex. parents’ income) moderate the relationship between the domain ‘instructional support’ of the CLASS (ex. concept development) and child’s WM skills. These data suggest a moderating effect related to family characteristics in the link between ‘quality of classroom interactions’ and ‘EFs’. This project proposes, as a future avenue, to check the distinctive effect of different environments (familial and educational) on the child’s EFs. More specifically, future study could examine the influence of the educational environment on EF skills, as well as whether or not there is a moderating effect of the family environment (ex. parents' income) on the link between the quality of the interactions in the classroom and the EFs of the children, as anticipated by this research.

Keywords: executive functions [EFs], environmental factors, quality of interactions, preschool education

Procedia PDF Downloads 365
920 Effects of Type and Concentration Stabilizers on the Characteristics of Nutmeg Oil Nanoemulsions Prepared by High-Pressure Homogenization

Authors: Yuliani Aisyah, Sri Haryani, Novi Safriani

Abstract:

Nutmeg oil is one of the essential oils that have the ability as an antibacterial so it potentially uses to inhibit the growth of undesirable microbes in food. However, the essential oil that has low solubility in water, high volatile content, and strong aroma properties is difficult to apply in to foodstuffs. Therefore, the oil-in-water nanoemulsion system was used in this research. Gelatin, lecithin and tween 80 with 10%, 20%, 30% concentrations have been examined for the preparation of nutmeg oil nanoemulsions. The physicochemical properties and stability of nutmeg oil nanoemulsion were analyzed on viscosity, creaming index, emulsifying activity, droplet size, and polydispersity index. The results showed that the type and concentration stabilizer had a significant effect on viscosity, creaming index, droplet size and polydispersity index (P ≤ 0,01). The nanoemulsions stabilized with tween 80 had the best stability because the creaming index value was 0%, the emulsifying activity value was 100%, the droplet size was small (79 nm) and the polydispersity index was low (0.10) compared to the nanoemulsions stabilized with gelatin and lecithin. In brief, Tween 80 is strongly recommended to be used for stabilizing nutmeg oil nanoemulsions.

Keywords: nanoemulsion, nutmeg oil, stabilizer, stability

Procedia PDF Downloads 159
919 Chemical Constituents and Biological Evaluation of Leaves Essential Oils of Vitex agnus-castus L. Growing in the Southern-West Algeria

Authors: Abdallah Habbab, Khaled Sekkoum, Nasser Belboukhari

Abstract:

Objective: This study is designed to examine the chemical composition, antioxidant and antibacterial activities of the essential oil extracted from leaves of Vitex agnus-castus. Methods: The essential oils of dry leaves of Vitex agnus-castus L. were obtained by hydro-distillation, afforded oil in the yield of 5.5% and their volatile constituents were identified by GC/MS. Antioxidant activity of the sample was determined by test system DPPH. Antifungal activity was tested against three fungal strains (Aspergillus flavus, Penicillium escpansum and Aspergillus ochraceus) by direct contact method. Results: Forty-three compounds were identified, representing 98.02% of the oil. Major components of the oil were 1,8-cineole (18.27 %), caryophyllene (8.60 %), N-(M-fluorophenyl)-maleimide (6.30 %), (+)-epi-bicyclosesquiphellandrene (6.00 %), terpinen-4-ol (5.57 %), pyrrolo (3,2,1-jk) carbazole (5.43 %), caryophyllene oxide (4.79 %), and phenol (4.09 %). Conclusion: The chemical constituents in the essential oil from the locally grown Vitex agnus-castus were identified. Therefore, the essential oil of Vitex agnus-castus is an active candidate which would be used as antioxidant, or antifungal agent in new drugs preparation for therapy of diseases.

Keywords: Vitex agnus-castus, essential oil, GC/MS, DPPH, 1, 8-cineole

Procedia PDF Downloads 463
918 Emotions in Human-Machine Interaction

Authors: Joanna Maj

Abstract:

Awe inspiring is the idea that emotions could be present in human-machine interactions, both on the human side as well as the machine side. Human factors present intriguing components and are examined in detail while discussing this controversial topic. Mood, attention, memory, performance, assessment, causes of emotion, and neurological responses are analyzed as components of the interaction. Problems in computer-based technology, revenge of the system on its users and design, and applications comprise a major part of all descriptions and examples throughout this paper. It also allows for critical thinking while challenging intriguing questions regarding future directions in research, dealing with emotion in human-machine interactions.

Keywords: biocomputing, biomedical engineering, emotions, human-machine interaction, interfaces

Procedia PDF Downloads 133
917 Solvent Free Microwave Extraction of Essential Oils: A Clean Chemical Processing in the Teaching and Research Laboratory

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Microwave Clevenger or microwave accelerated distillation (MAD) is a combination of microwave heating and distillation, performed at atmospheric pressure without added any solvent or water. Isolation and concentration of volatile compounds are performed by a single stage. MAD extraction of orange essential oil was studied using fresh orange peel from Valencia late cultivar oranges as the raw material. MAD has been compared with a conventional technique, which used a Clevenger apparatus with hydro-distillation (HD). MAD and HD were compared in term of extraction time, yields, chemical composition and quality of the essential oil, efficiency and costs of the process. Extraction of essential oils from orange peels with MAD was better in terms of energy saving, extraction time (30 min versus 3 h), oxygenated fraction (11.7% versus 7.9%), product yield (0.42% versus 0.39%) and product quality. Orange peels treated by MAD and HD were observed by scanning electronic microscopy (SEM). Micrographs provide evidence of more rapid opening of essential oil glands treated by MAD, in contrast to conventional hydro-distillation.

Keywords: clevenger, microwave, extraction; hydro-distillation, essential oil, orange peel

Procedia PDF Downloads 350
916 Development & Standardization of a Literacy Free Cognitive Rehabilitation Program for Patients Post Traumatic Brain Injury

Authors: Sakshi Chopra, Ashima Nehra, Sumit Sinha, Harsimarpreet Kaur, Ravindra Mohan Pandey

Abstract:

Background: Cognitive rehabilitation aims to retrain brain injured individuals with cognitive deficits to restore or compensate lost functions. As illiterates or people with low literacy levels represent a significant proportion of the world, specific rehabilitation modules for such populations are indispensable. Literacy is significantly associated with all neuropsychological measures and retraining programs widely use written or spoken techniques which essentially require the patient to read or write. So, the aim of the study was to develop and standardize a literacy free neuropsychological rehabilitation program for improving cognitive functioning in patients with mild and moderate Traumatic Brain Injury (TBI). Several studies have pointed out to the impairments seen in memory, executive functioning, and attention and concentration post-TBI, so the rehabilitation program focussed on these domains. Visual item memorization, stick constructions, symbol cancellations, and colouring techniques were used to construct the retraining program. Methodology: The development of the program consisted of planning, preparing, analyzing, and revising the different modules. The construction focussed on areas of retraining immediate and delayed visual memory, planning ability, focused and divided attention, concentration, and response inhibition (to control irritability and aggression). A total of 98 home based retraining modules were prepared in the 4 domains (42 for memory, 42 for executive functioning, 7 for attention and concentration, and 7 for response inhibition). The standardization was done on 20 healthy controls to review, select and edit items. For each module, the time, errors made and errors per second were noted down, to establish the difficulty level of each module and were arranged in increasing level of difficulty over a period of 6 weeks. The retraining tasks were then administered on 11 brain injured individuals (5 after Mild TBI and 6 after Moderate TBI). These patients were referred from the Trauma Centre to Clinical Neuropsychology OPD, All India Institute of Medical Sciences, New Delhi, India. Results: The time was taken, errors made and errors per second were analysed for all domains. Education levels were divided into illiterates, up to 10 years, 10 years to graduation and graduation and above. Mean and standard deviations were calculated. Between group and within group analysis was done using the t-test. The performance of 20 healthy controls was analyzed and only a significant difference was observed on the time taken for the attention tasks and all other domains had non-significant differences in performance between different education levels. Comparing the errors, time taken between patient and control group, there was a significant difference in all the domains at the 0.01 level except the errors made on executive functioning, indicating that the tool can successfully differentiate between healthy controls and patient groups. Conclusions: Apart from the time taken for symbol cancellations, the entire cognitive rehabilitation program is literacy free. As it taps the major areas of impairment post-TBI, it could be a useful tool to rehabilitate the patient population with low literacy levels across the world. The next step is already underway to test its efficacy in improving cognitive functioning in a randomized clinical controlled trial.

Keywords: cognitive rehabilitation, illiterates, India, traumatic brain injury

Procedia PDF Downloads 333
915 Metaphysics of the Unified Field of the Universe

Authors: Santosh Kaware, Dnyandeo Patil, Moninder Modgil, Hemant Bhoir, Debendra Behera

Abstract:

The Unified Field Theory has been an area of intensive research since many decades. This paper focuses on philosophy and metaphysics of unified field theory at Planck scale - and its relationship with super string theory and Quantum Vacuum Dynamic Physics. We examined the epistemology of questions such as - (1) what is the Unified Field of universe? (2) can it actually - (a) permeate the complete universe - or (b) be localized in bound regions of the universe - or, (c) extend into the extra dimensions? - -or (d) live only in extra dimensions? (3) What should be the emergent ontological properties of Unified field? (4) How the universe is manifesting through its Quantum Vacuum energies? (5) How is the space time metric coupled to the Unified field? We present a number of ansatz - which we outline below. It is proposed that the unified field possesses consciousness as well as a memory - a recording of past history - analogous to ‘Consistent Histories’ interpretation of quantum mechanics. We proposed Planck scale geometry of Unified Field with circle like topology and having 32 energy points on its periphery which are the connected to each other by 10 dimensional meta-strings which are sources for manifestation of different fundamentals forces and particles of universe through its Quantum Vacuum energies. It is also proposed that the sub energy levels of ‘Conscious Unified Field’ are used for the process of creation, preservation and rejuvenation of the universe over a period of time by means of negentropy. These epochs can be for the complete universe, or for localized regions such as galaxies or cluster of galaxies. It is proposed that Unified field operates through geometric patterns of its Quantum Vacuum energies - manifesting as various elementary particles by giving spins to zero point energy elements. Epistemological relationship between unified field theory and super-string theories is examined. Properties of ‘consciousness’ and 'memory' cascades from universe, into macroscopic objects - and further onto the elementary particles - via a fractal pattern. Other properties of fundamental particles - such as mass, charge, spin, iso-spin also spill out of such a cascade. The manifestations of the unified field can reach into the parallel universes or the ‘multi-verse’ and essentially have an existence independent of the space-time. It is proposed that mass, length, time scales of the unified theory are less than even the Planck scale - and can be called at a level which we call that of 'Super Quantum Gravity (SQG)'.

Keywords: super string theory, Planck scale geometry, negentropy, super quantum gravity

Procedia PDF Downloads 274
914 Poly(Trimethylene Carbonate)/Poly(ε-Caprolactone) Phase-Separated Triblock Copolymers with Advanced Properties

Authors: Nikola Toshikj, Michel Ramonda, Sylvain Catrouillet, Jean-Jacques Robin, Sebastien Blanquer

Abstract:

Biodegradable and biocompatible block copolymers have risen as the golden materials in both medical and environmental applications. Moreover, if their architecture is of controlled manner, higher applications can be foreseen. In the meantime, organocatalytic ROP has been promoted as more rapid and immaculate route, compared to the traditional organometallic catalysis, towards efficient synthesis of block copolymer architectures. Therefore, herein we report novel organocatalytic pathway with guanidine molecules (TBD) for supported synthesis of trimethylene carbonate initiated by poly(caprolactone) as pre-polymer. Pristine PTMC-b-PCL-b-PTMC block copolymer structure, without any residual products and clear desired block proportions, was achieved under 1.5 hours at room temperature and verified by NMR spectroscopies and size-exclusion chromatography. Besides, when elaborating block copolymer films, further stability and amelioration of mechanical properties can be achieved via additional reticulation step of precedently methacrylated block copolymers. Subsequently, stimulated by the insufficient studies on the phase-separation/crystallinity relationship in these semi-crystalline block copolymer systems, their intrinsic thermal and morphology properties were investigated by differential scanning calorimetry and atomic force microscopy. Firstly, by DSC measurements, the block copolymers with χABN values superior to 20 presented two distinct glass transition temperatures, close to the ones of the respecting homopolymers, demonstrating an initial indication of a phase-separated system. In the interim, the existence of the crystalline phase was supported by the presence of melting temperature. As expected, the crystallinity driven phase-separated morphology predominated in the AFM analysis of the block copolymers. Neither crosslinking at melted state, hence creation of a dense polymer network, disturbed the crystallinity phenomena. However, the later revealed as sensible to rapid liquid nitrogen quenching directly from the melted state. Therefore, AFM analysis of liquid nitrogen quenched and crosslinked block copolymer films demonstrated a thermodynamically driven phase-separation clearly predominating over the originally crystalline one. These AFM films remained stable with their morphology unchanged even after 4 months at room temperature. However, as demonstrated by DSC analysis once rising the temperature above the melting temperature of the PCL block, neither the crosslinking nor the liquid nitrogen quenching shattered the semi-crystalline network, while the access to thermodynamical phase-separated structures was possible for temperatures under the poly (caprolactone) melting point. Precisely this coexistence of dual crosslinked/crystalline networks in the same copolymer structure allowed us to establish, for the first time, the shape-memory properties in such materials, as verified by thermomechanical analysis. Moreover, the response temperature to the material original shape depended on the block copolymer emplacement, hence PTMC or PCL as end-block. Therefore, it has been possible to reach a block copolymer with transition temperature around 40°C thus opening potential real-life medical applications. In conclusion, the initial study of phase-separation/crystallinity relationship in PTMC-b-PCL-b-PTMC block copolymers lead to the discovery of novel shape memory materials with superior properties, widely demanded in modern-life applications.

Keywords: biodegradable block copolymers, organocatalytic ROP, self-assembly, shape-memory

Procedia PDF Downloads 128
913 Enhanced Methane Production from Waste Paper through Anaerobic Co-Digestion with Macroalgae

Authors: Cristina Rodriguez, Abed Alaswad, Zaki El-Hassan, Abdul G. Olabi

Abstract:

This study investigates the effect on methane production from the waste paper when co-digested with macroalgal biomass as a source of nitrogen. Both feedstocks were previously mechanically pretreated in order to reduce their particle size. Methane potential assays were carried out at laboratory scale in batch mode for 28 days. The study was planned according to two factors: the feedstock to inoculum (F/I) ratio and the waste paper to macroalgae (WP/MA) ratio. The F/I ratios checked were 0.2, 0.3 and 0.4 and the WP/MA ratios were 0:100, 25:75, 50:50, 75:25 and 100:0. The highest methane yield (608 ml/g of volatile solids (VS)) was achieved at an F/I ratio of 0.2 and a WP/MA ratio of 50:50. The methane yield at a ratio WP/MA of 50:50 is higher than for single compound, while for ratios WP/MA of 25:75 and 75:25 the methane yield decreases compared to biomass mono-digestion. This behavior is observed for the three levels of F/I ratio being more noticeable at F/I ratio of 0.3. A synergistic effect was found for the WP/MA ratio of 50:50 and all F/I ratios and for WP/MA=50:50 and F/I=0.2. A maximum increase of methane yield of 49.58% was found for a co-digestion ratio of 50:50 and an F/I ratio of 0.4. It was concluded that methane production from waste paper improves significantly when co-digested with macroalgae biomass. The methane yields from co-digestion were also found higher that from macroalgae mono-digestion.

Keywords: anaerobic co-digestion, biogas, macroalgae, waste paper

Procedia PDF Downloads 367
912 A Comparative Study of Cognitive Factors Affecting Social Distancing among Vaccinated and Unvaccinated Filipinos

Authors: Emmanuel Carlo Belara, Albert John Dela Merced, Mark Anthony Dominguez, Diomari Erasga, Jerome Ferrer, Bernard Ombrog

Abstract:

Social distancing errors are a common prevalence between vaccinated and unvaccinated in the Filipino community. This study aims to identify and relate the factors on how they affect our daily lives. Observed factors include memory, attention, anxiety, decision-making, and stress. Upon applying the ergonomic tools and statistical treatment such as t-test and multiple linear regression, stress and attention turned out to have the most impact to the errors of social distancing.

Keywords: vaccinated, unvaccinated, socoal distancing, filipinos

Procedia PDF Downloads 201
911 Characterization of an Isopropanol-Butanol Clostridium

Authors: Chen Zhang, Fengxue Xin, Jianzhong He

Abstract:

A unique Clostridium beijerinckii species strain BGS1 was obtained from grass land samples, which is capable of producing 8.43g/L butanol and 3.21 isopropanol from 60g/L glucose while generating 4.68g/L volatile fatty acids (VFAs) from 30g/L xylan. The concentration of isopropanol produced by culture BGS1 is ~15% higher than previously reported wild-type Clostridium beijerinckii under similar conditions. Compared to traditional Acetone-Butanol-Ethanol (ABE) fermentation species, culture BGS1 only generates negligible amount of ethanol and acetone, but produces butanol and isopropanol as biosolvent end-products which are pure alcohols and more economical than ABE. More importantly, culture BGS1 can consume acetone to produce isopropanol, e.g., 1.84g/L isopropanol from 0.81g/L acetone in 60g/L glucose medium containing 6.15g/L acetone. The analysis of BGS1 draft genome annotated by RAST server demonstrates that no ethanol production is caused by the lack of pyruvate decarboxylase gene – related to ethanol production. In addition, an alcohol dehydrogenase (adhe gene) was found in BGS1 which could be a potential gene responsible for isopropanol-generation. This is the first report on Isopropanol-Butanol (IB) fermentation by wild-type Clostridium strain and its application for isopropanol and butanol production.

Keywords: acetone conversion, butanol, clostridium, isopropanol

Procedia PDF Downloads 292
910 Micro-Milling Process Development of Advanced Materials

Authors: M. A. Hafiz, P. T. Matevenga

Abstract:

Micro-level machining of metals is a developing field which has shown to be a prospective approach to produce features on the parts in the range of a few to a few hundred microns with acceptable machining quality. It is known that the mechanics (i.e. the material removal mechanism) of micro-machining and conventional machining have significant differences due to the scaling effects associated with tool-geometry, tool material and work piece material characteristics. Shape memory alloys (SMAs) are those metal alloys which display two exceptional properties, pseudoelasticity and the shape memory effect (SME). Nickel-titanium (NiTi) alloys are one of those unique metal alloys. NiTi alloys are known to be difficult-to-cut materials specifically by using conventional machining techniques due to their explicit properties. Their high ductility, high amount of strain hardening, and unusual stress–strain behaviour are the main properties accountable for their poor machinability in terms of tool wear and work piece quality. The motivation of this research work was to address the challenges and issues of micro-machining combining with those of machining of NiTi alloy which can affect the desired performance level of machining outputs. To explore the significance of range of cutting conditions on surface roughness and tool wear, machining tests were conducted on NiTi. Influence of different cutting conditions and cutting tools on surface and sub-surface deformation in work piece was investigated. Design of experiments strategy (L9 Array) was applied to determine the key process variables. The dominant cutting parameters were determined by analysis of variance. These findings showed that feed rate was the dominant factor on surface roughness whereas depth of cut found to be dominant factor as far as tool wear was concerned. The lowest surface roughness was achieved at the feed rate of equal to the cutting edge radius where as the lowest flank wear was observed at lowest depth of cut. Repeated machining trials have yet to be carried out in order to observe the tool life, sub-surface deformation and strain induced hardening which are also expecting to be amongst the critical issues in micro machining of NiTi. The machining performance using different cutting fluids and strategies have yet to be studied.

Keywords: nickel titanium, micro-machining, surface roughness, machinability

Procedia PDF Downloads 340
909 Loading Forces following Addition of 5% Cu in Nickel-Titanium Alloy Used for Orthodontics

Authors: Aphinan Phukaoluan, Surachai Dechkunakorn, Niwat Anuwongnukroh, Anak Khantachawana, Pongpan Kaewtathip, Julathep Kajornchaiyakul, Wassana Wichai

Abstract:

Aims: This study aims to address the amount of force delivered by a NiTiCu orthodontic wire with a ternary composition ratio of 46.0 Ni: 49.0 Ti: 5.0 Cu and to compare the results with a commercial NiTiCu 35 °C orthodontic archwire. Materials and Methods: Nickel (purity 99.9%), Titanium (purity 99.9%), and Copper (purity 99.9%) were used in this study with the atomic weight ratio 46.0 Ni: 49.0 Ti: 5.0 Cu. The elements were melted to form an alloy using an electrolytic arc furnace in argon gas atmosphere and homogenized at 800 °C for 1 hr. The alloys were subsequently sliced into thin plates (1.5mm) by EDM wire cutting machine to obtain the specimens and were cold-rolled with 30% followed by heat treatment in a furnace at 400 °C for 1 hour. Then, the three newly fabricated NiTiCu specimens were cut in nearly identical wire sizes of 0.016 inch x0.022 inch. Commercial preformed Ormco NiTiCu35 °C archwire with size 0.016 inch x 0.022 inches were used for comparative purposes. Three-point bending test was performed using a Universal Testing Machine to investigate the force of the load-deflection curve at oral temperature (36 °C+ 1) with deflection points at 0.25, 0.5, 0.75, 1.0. 1.25, and 1.5 mm. Descriptive statistics was used to evaluate each variables and independent t-test was used to analyze the differences between the groups. Results: Both NiTiCu wires presented typical superelastic properties as observed from the load-deflection curve. The average force was 341.70 g for loading, and 264.18 g for unloading for 46.0 Ni: 49.0 Ti: 5.0 Cu wire. Similarly, the values were 299.88 g for loading, and 201.96 g for unloading of Ormco NiTiCu35°C. There were significant differences (p < 0.05) in mean loading and unloading forces between the two NiTiCu wires. The deflection forces in loading and unloading force for Ormco NiTiCu at each point were less than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at the deflection point of 0.25mm. Regarding the force difference between each deflection point of loading and unloading force, Ormco NiTiCu35 °C exerted less force than 46.0 Ni: 49.0 Ti: 5.0 Cu wire, except at difference deflection at 1.5-1.25 mm of unloading force. However, there were still within the acceptable limits for orthodontic use. Conclusion: The fabricated ternary alloy of 46.0 Ni: 49.0 Ti: 5.0 Cu (atomic weight) with 30% reduction and heat treatment at 400°C for 1 hr. and Ormco 35 °C NiTiCu presented the characteristics of the shape memory in their wire form. The unloading forces of both NiTiCu wires were in the range of orthodontic use. This should be a good foundation for further studies towards development of new orthodontic NiTiCu archwires.

Keywords: loading force, ternary alloy, NiTiCu, shape memory, orthodontic wire

Procedia PDF Downloads 285