Search results for: optimal binary linear codes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7104

Search results for: optimal binary linear codes

354 Theorizing Optimal Use of Numbers and Anecdotes: The Science of Storytelling in Newsrooms

Authors: Hai L. Tran

Abstract:

When covering events and issues, the news media often employ both personal accounts as well as facts and figures. However, the process of using numbers and narratives in the newsroom is mostly operated through trial and error. There is a demonstrated need for the news industry to better understand the specific effects of storytelling and data-driven reporting on the audience as well as explanatory factors driving such effects. In the academic world, anecdotal evidence and statistical evidence have been studied in a mutually exclusive manner. Existing research tends to treat pertinent effects as though the use of one form precludes the other and as if a tradeoff is required. Meanwhile, narratives and statistical facts are often combined in various communication contexts, especially in news presentations. There is value in reconceptualizing and theorizing about both relative and collective impacts of numbers and narratives as well as the mechanism underlying such effects. The current undertaking seeks to link theory to practice by providing a complete picture of how and why people are influenced by information conveyed through quantitative and qualitative accounts. Specifically, the cognitive-experiential theory is invoked to argue that humans employ two distinct systems to process information. The rational system requires the processing of logical evidence effortful analytical cognitions, which are affect-free. Meanwhile, the experiential system is intuitive, rapid, automatic, and holistic, thereby demanding minimum cognitive resources and relating to the experience of affect. In certain situations, one system might dominate the other, but rational and experiential modes of processing operations in parallel and at the same time. As such, anecdotes and quantified facts impact audience response differently and a combination of data and narratives is more effective than either form of evidence. In addition, the present study identifies several media variables and human factors driving the effects of statistics and anecdotes. An integrative model is proposed to explain how message characteristics (modality, vividness, salience, congruency, position) and individual differences (involvement, numeracy skills, cognitive resources, cultural orientation) impact selective exposure, which in turn activates pertinent modes of processing, and thereby induces corresponding responses. The present study represents a step toward bridging theoretical frameworks from various disciplines to better understand the specific effects and the conditions under which the use of anecdotal evidence and/or statistical evidence enhances or undermines information processing. In addition to theoretical contributions, this research helps inform news professionals about the benefits and pitfalls of incorporating quantitative and qualitative accounts in reporting. It proposes a typology of possible scenarios and appropriate strategies for journalists to use when presenting news with anecdotes and numbers.

Keywords: data, narrative, number, anecdote, storytelling, news

Procedia PDF Downloads 59
353 An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements

Authors: Denis A. Sokolov, Andrey V. Mazurkevich

Abstract:

In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference.

Keywords: femtosecond laser, pulse correlation, interferometer, laser absolute range finder, coordinate measurement

Procedia PDF Downloads 27
352 Comparison of Two Home Sleep Monitors Designed for Self-Use

Authors: Emily Wood, James K. Westphal, Itamar Lerner

Abstract:

Background: Polysomnography (PSG) recordings are regularly used in research and clinical settings to study sleep and sleep-related disorders. Typical PSG studies are conducted in professional laboratories and performed by qualified researchers. However, the number of sleep labs worldwide is disproportionate to the increasing number of individuals with sleep disorders like sleep apnea and insomnia. Consequently, there is a growing need to supply cheaper yet reliable means to measure sleep, preferably autonomously by subjects in their own home. Over the last decade, a variety of devices for self-monitoring of sleep became available in the market; however, very few have been directly validated against PSG to demonstrate their ability to perform reliable automatic sleep scoring. Two popular mobile EEG-based systems that have published validation results, the DREEM 3 headband and the Z-Machine, have never been directly compared one to the other by independent researchers. The current study aimed to compare the performance of DREEM 3 and the Z-Machine to help investigators and clinicians decide which of these devices may be more suitable for their studies. Methods: 26 participants have completed the study for credit or monetary compensation. Exclusion criteria included any history of sleep, neurological or psychiatric disorders. Eligible participants arrived at the lab in the afternoon and received the two devices. They then spent two consecutive nights monitoring their sleep at home. Participants were also asked to keep a sleep log, indicating the time they fell asleep, woke up, and the number of awakenings occurring during the night. Data from both devices, including detailed sleep hypnograms in 30-second epochs (differentiating Wake, combined N1/N2, N3; and Rapid Eye Movement sleep), were extracted and aligned upon retrieval. For analysis, the number of awakenings each night was defined as four or more consecutive wake epochs between sleep onset and termination. Total sleep time (TST) and the number of awakenings were compared to subjects’ sleep logs to measure consistency with the subjective reports. In addition, the sleep scores from each device were compared epoch-by-epoch to calculate the agreement between the two devices using Cohen’s Kappa. All analysis was performed using Matlab 2021b and SPSS 27. Results/Conclusion: Subjects consistently reported longer times spent asleep than the time reported by each device (M= 448 minutes for sleep logs compared to M= 406 and M= 345 minutes for the DREEM and Z-Machine, respectively; both ps<0.05). Linear correlations between the sleep log and each device were higher for the DREEM than the Z-Machine for both TST and the number of awakenings, and, likewise, the mean absolute bias between the sleep logs and each device was higher for the Z-Machine for both TST (p<0.001) and awakenings (p<0.04). There was some indication that these effects were stronger for the second night compared to the first night. Epoch-by-epoch comparisons showed that the main discrepancies between the devices were for detecting N2 and REM sleep, while N3 had a high agreement. Overall, the DREEM headband seems superior for reliably scoring sleep at home.

Keywords: DREEM, EEG, seep monitoring, Z-machine

Procedia PDF Downloads 82
351 Effect of Silica Nanoparticles on Three-Point Flexural Properties of Isogrid E-Glass Fiber/Epoxy Composite Structures

Authors: Hamed Khosravi, Reza Eslami-Farsani

Abstract:

Increased interest in lightweight and efficient structural components has created the need for selecting materials with improved mechanical properties. To do so, composite materials are being widely used in many applications, due to durability, high strength and modulus, and low weight. Among the various composite structures, grid-stiffened structures are extensively considered in various aerospace and aircraft applications, because of higher specific strength and stiffness, higher impact resistance, superior load-bearing capacity, easy to repair, and excellent energy absorption capability. Although there are a good number of publications on the design aspects and fabrication of grid structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Therefore, the aim of this research is to study the reinforcing effect of silica nanoparticles on the flexural properties of epoxy/E-glass isogrid panels under three-point bending test. Samples containing 0, 1, 3, and 5 wt.% of the silica nanoparticles, with 44 and 48 vol.% of the glass fibers in the ribs and skin components respectively, were fabricated by using a manual filament winding method. Ultrasonic and mechanical routes were employed to disperse the nanoparticles within the epoxy resin. To fabricate the ribs, the unidirectional fiber rovings were impregnated with the matrix mixture (epoxy + nanoparticles) and then laid up into the grooves of a silicone mold layer-by-layer. At once, four plies of woven fabrics, after impregnating into the same matrix mixture, were layered on the top of the ribs to produce the skin part. In order to conduct the ultimate curing and to achieve the maximum strength, the samples were tested after 7 days of holding at room temperature. According to load-displacement graphs, the bellow trend was observed for all of the samples when loaded from the skin side; following an initial linear region and reaching a load peak, the curve was abruptly dropped and then showed a typical absorbed energy region. It would be worth mentioning that in these structures, a considerable energy absorption was observed after the primary failure related to the load peak. The results showed that the flexural properties of the nanocomposite samples were always higher than those of the nanoparticle-free sample. The maximum enhancement in flexural maximum load and energy absorption was found to be for the incorporation of 3 wt.% of the nanoparticles. Furthermore, the flexural stiffness was continually increased by increasing the silica loading. In conclusion, this study suggested that the addition of nanoparticles is a promising method to improve the flexural properties of grid-stiffened fibrous composite structures.

Keywords: grid-stiffened composite structures, nanocomposite, three point flexural test , energy absorption

Procedia PDF Downloads 315
350 Peripheral Neuropathy after Locoregional Anesthesia

Authors: Dalila Chaid, Bennameur Fedilli, Mohammed Amine Bellelou

Abstract:

The study focuses on the experience of lower-limb amputees, who face both physical and psychological challenges due to their disability. Chronic neuropathic pain and various types of limb pain are common in these patients. They often require orthopaedic interventions for issues such as dressings, infection, ulceration, and bone-related problems. Research Aim: The aim of this study is to determine the most suitable anaesthetic technique for lower-limb amputees, which can provide them with the greatest comfort and prolonged analgesia. The study also aims to demonstrate the effectiveness and cost-effectiveness of ultrasound-guided local regional anaesthesia (LRA) in this patient population. Methodology: The study is an observational analytical study conducted over a period of eight years, from 2010 to 2018. It includes a total of 955 cases of revisions performed on lower limb stumps. The parameters analyzed in this study include the effectiveness of the block and the use of sedation, the duration of the block, the post-operative visual analog scale (VAS) scores, and patient comfort. Findings: The study findings highlight the benefits of ultrasound-guided LRA in providing comfort by optimizing post-operative analgesia, which can contribute to psychological and bodily repair in lower-limb amputees. Additionally, the study emphasizes the use of alpha2 agonist adjuvants with sedative and analgesic properties, long-acting local anaesthetics, and larger volumes for better outcomes. Theoretical Importance: This study contributes to the existing knowledge by emphasizing the importance of choosing an appropriate anaesthetic technique for lower-limb amputees. It highlights the potential of ultrasound-guided LRA and the use of specific adjuvants and local anaesthetics in improving post-operative analgesia and overall patient outcomes. Data Collection and Analysis Procedures: Data for this study were collected through the analysis of medical records and relevant documentation related to the 955 cases included in the study. The effectiveness of the anaesthetic technique, duration of the block, post-operative pain scores, and patient comfort were analyzed using statistical methods. Question Addressed: The study addresses the question of which anaesthetic technique would be most suitable for lower-limb amputees to provide them with optimal comfort and prolonged analgesia. Conclusion: The study concludes that ultrasound-guided LRA, along with the use of alpha2 agonist adjuvants, long-acting local anaesthetics, and larger volumes, can be an effective approach in providing comfort and improving post-operative analgesia for lower-limb amputees. This technique can potentially contribute to the psychological and bodily repair of these patients. The findings of this study have implications for clinical practice in the management of lower-limb amputees, highlighting the importance of personalized anaesthetic approaches for better outcomes.

Keywords: neuropathic pain, ultrasound-guided peripheral nerve block, DN4 quiz, EMG

Procedia PDF Downloads 40
349 The Role of Movement Quality after Osgood-Schlatter Disease in an Amateur Football Player: A Case Study

Authors: D. Pogliana, A. Maso, N. Milani, D. Panzin, S. Rivaroli, J. Konin

Abstract:

This case aims to identify the role of movement quality during the final stage of return to sport (RTS) in a male amateur football player 13 years old after passing the acute phase of the bilateral Osgood-Schlatter disease (OSD). The patient, after a year from passing the acute phase of OSD with the abstention of physical activity, reports bilateral anterior knee pain at the beginning of the football sport activity. Interventions: After the orthopedist check, who recommended physiotherapy sessions for the correction of motor patterns and the isometric reinforcement of the muscles of the quadriceps, the rehabilitation intervention was developed in 7 weeks through 14 sessions of neuro-motor training (NMT) with a frequency of two weekly sessions and six sessions of muscle-strengthening with a frequency of one weekly session. The sessions of NMT were carried out through free body exercises (or with overloads) with visual bio-feedback with the help of two cameras (one with anterior vision and one with lateral vision of the subject) and a big touch screen. The aim of these sessions of NMT was to modify the dysfunctional motor patterns evaluated by the 2D motion analysis test. The test was carried out at the beginning and at the end of the rehabilitation course and included five movements: single-leg squat (SLS), drop jump (DJ), single-leg hop (SLH), lateral shuffle (LS), and change of direction (COD). Each of these movements was evaluated through the video analysis of dynamic valgus knee, pelvic tilt, trunk control, shock absorption, and motor strategy. A free image analysis software (Kinovea) was then used to calculate scores. Results: Baseline assessment of the subject showed a total score of 59% on the right limb and 64% on the left limb (considering an optimal score above 85%) with large deficits in shock absorption capabilities, the presence of dynamic valgus knee, and dysfunctional motor strategies defined “quadriceps dominant.” After six weeks of training, the subject achieved a total score of 80% on the right limb and 86% on the left limb, with significant improvements in shock absorption capabilities, the presence of dynamic knee valgus, and the employment of more hip-oriented motor strategies on both lower limbs. The improvements shown in dynamic knee valgus, greater hip-oriented motor strategies, and improved shock absorption identified through six weeks of the NMT program can help a teenager amateur football player to manage the anterior knee pain during sports activity. In conclusion, NMT was a good choice to help a 13 years old male amateur football player to return to performance without pain after OSD and can also be used with all this type of athletes of the other teams' sports.

Keywords: movement analysis, neuro-motor training, knee pain, movement strategies

Procedia PDF Downloads 102
348 Probing Mechanical Mechanism of Three-Hinge Formation on a Growing Brain: A Numerical and Experimental Study

Authors: Mir Jalil Razavi, Tianming Liu, Xianqiao Wang

Abstract:

Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns can provide useful clues into normal and pathological brain function. During the development, the cerebral cortex experiences a noticeable expansion in volume and surface area accompanied by tremendous tissue folding which may be attributed to many possible factors. Despite decades of endeavors, the fundamental mechanism and key regulators of this crucial process remain incompletely understood. Therefore, to taking even a small role in unraveling of brain folding mystery, we present a mechanical model to find mechanism of 3-hinges formation in a growing brain that it has not been addressed before. A 3-hinge is defined as a gyral region where three gyral crests (hinge-lines) join. The reasons that how and why brain prefers to develop 3-hinges have not been answered very well. Therefore, we offer a theoretical and computational explanation to mechanism of 3-hinges formation in a growing brain and validate it by experimental observations. In theoretical approach, the dynamic behavior of brain tissue is examined and described with the aid of a large strain and nonlinear constitutive model. Derived constitute model is used in the computational model to define material behavior. Since the theoretical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the 3-hinges formation and secondary morphological folds of the developing brain. Three-dimensional (3D) finite element analyses on a multi-layer soft tissue model which mimics a small piece of the brain are performed to investigate the fundamental mechanism of consistent hinge formation in the cortical folding. Results show that after certain amount growth of cortex, mechanical model starts to be unstable and then by formation of creases enters to a new configuration with lower strain energy. By further growth of the model, formed shallow creases start to form convoluted patterns and then develop 3-hinge patterns. Simulation results related to 3-hinges in models show good agreement with experimental observations from macaque, chimpanzee and human brain images. These results have great potential to reveal fundamental principles of brain architecture and to produce a unified theoretical framework that convincingly explains the intrinsic relationship between cortical folding and 3-hinges formation. This achieved fundamental understanding of the intrinsic relationship between cortical folding and 3-hinges formation would potentially shed new insights into the diagnosis of many brain disorders such as schizophrenia, autism, lissencephaly and polymicrogyria.

Keywords: brain, cortical folding, finite element, three hinge

Procedia PDF Downloads 207
347 Photoemission Momentum Microscopy of Graphene on Ir (111)

Authors: Anna V. Zaporozhchenko, Dmytro Kutnyakhov, Katherina Medjanik, Christian Tusche, Hans-Joachim Elmers, Olena Fedchenko, Sergey Chernov, Martin Ellguth, Sergej A. Nepijko, Gerd Schoenhense

Abstract:

Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor.

Keywords: band structure, graphene, momentum microscopy, LDAD

Procedia PDF Downloads 311
346 Examining the Independent Effects of Early Exposure to Game Consoles and Parent-Child Activities on Psychosocial Development

Authors: Rosa S. Wong, Keith T. S. Tung, Frederick K. Ho, Winnie W. Y. Tso, King-wa Fu, Nirmala Rao, Patrick Ip

Abstract:

As technology advances, exposures in early childhood are no longer confined to stimulations in the surrounding physical environments. Children nowadays are also subject to influences from the digital world. In particular, early access to game consoles can cause risks to child development, especially when the game is not developmentally appropriate for young children. Overstimulation is possible and could impair brain development. On the other hand, recreational parent-child activities, including outdoor activities and visits to museums, require child interaction with parents, which is beneficial for developing adaptive emotion regulation and social skills. Given the differences between these two types of exposures, this study investigated and compared the independent effects of early exposure to a game console and early play-based parent-child activities on children’s long-term psychosocial outcomes. This study used data from a subset of children (n=304, 142 male and 162 female) in the longitudinal cohort study, which studied the long-term impact of family socioeconomic status on child development. In 2012/13, we recruited a group of children at Kindergarten 3 (K3) randomly from Hong Kong local kindergartens and collected data regarding their duration of exposure to game console and recreational parent-child activities at that time. In 2018/19, we re-surveyed the parents of these children who were matriculated as Form 1 (F1) students (ages ranging from 11 to 13 years) in secondary schools and asked the parents to rate their children’s psychosocial problems in F1. Linear regressions were conducted to examine the associations between early exposures and adolescent psychosocial problems with and without adjustment for child gender and K3 family socioeconomic status. On average, K3 children spent about 42 minutes on a game console every day and had 2-3 recreational activities with their parents every week. Univariate analyses showed that more time spent on game consoles at K3 was associated with more psychosocial difficulties in F1 particularly more externalizing problems. The effect of early exposure to game console on externalizing behavior remained significant (B=0.59, 95%CI: 0.15 to 1.03, p=0.009) after adjusting for recreational parent-child activities and child gender. For recreational parent-child activities at K3, its effect on overall psychosocial difficulties became insignificant after adjusting for early exposure to game consoles and child gender. However, it was found to have significant protective effect on externalizing problems (B=-0.65, 95%CI: -1.23 to -0.07, p=0.028) even after adjusting for the confounders. Early exposure to game consoles has negative impact on children’s psychosocial health, whereas play-based parent-child activities can foster positive psychosocial outcomes. More efforts should be directed to propagate the risks and benefits of these activities and urge the parents and caregivers to replace child-alone screen time with parent-child play time in daily routine.

Keywords: early childhood, electronic device, parenting, psychosocial wellbeing

Procedia PDF Downloads 137
345 Work-Family Conflict and Family and Job Resources among Women: The Role of Negotiation

Authors: Noa Nelson, Meitar Moshe, Dana Cohen

Abstract:

Work-family conflict (WFC) is a significant source of stress for contemporary employees, with research indicating its heightened severity for women. The conservation of resources theory argues that individuals experience stress when their resources fall short of demands, and attempt to reach balance by obtaining resources. Presumably then, to achieve work-family balance women would need to negotiate for resources such as spouse support, employer support and work flexibility. The current research tested the hypotheses that competent negotiation at home and at work associated with increased family and job resources and with decreased WFC, as well as with higher work, marital and life satisfaction. In the first study, 113 employed mothers, married or cohabiting, reported to what extent they conducted satisfactory negotiation with spouse over division of housework, and their actual housework load compared to spouse. They answered a WFC questionnaire, measuring how much work interferes with family (WIF) and how much family interferes with work (FIW), and finally, measurements of satisfaction. In the second study, 94 employed mothers, married or cohabiting reported to what extent they conducted satisfactory negotiation with their boss over balancing work demands with family needs. They reported the levels of three job resources: flexibility, control and family-friendly organizational culture. Finally, they answered the same WFC and satisfaction measurements from study 1. Statistical analyses –t-tests, correlations, and hierarchical linear regressions- showed that in both studies, women reported higher WIF than FIW. Negotiations associated with increased resources: support from spouse, work flexibility and control and a family-friendly culture; negotiation with spouse associated also with satisfaction measurements. However, negotiations or resources (except family-friendly culture) did not associate with reduced conflict. The studies demonstrate the role of negotiation in obtaining family and job resources. Causation cannot be determined, but the fact is that employed mothers who enjoyed more support (at both home and work), flexibility and control, were more likely to keep active interactions to increase them. This finding has theoretical and practical implications, especially in view of research on female avoidance of negotiation. It is intriguing that negotiations and resources generally did not associate with reduced WFC. This finding might reflect the severity of the conflict, especially of work interfering with family, which characterizes many contemporary jobs. It might also suggest that employed mothers have high expectations from themselves, and even under supportive circumstances, experience the challenge of balancing two significant and demanding roles. The research contributes to the fields of negotiation, gender, and work-life balance. It calls for further studies, to test its model in additional populations and validate the role employees have in actively negotiating for the balance that they need. It also calls for further research to understand the contributions of job and family resources to reducing work-family conflict, and the circumstances under which they contribute.

Keywords: sork-family conflict, work-life balance, negotiation, gender, job resources, family resources

Procedia PDF Downloads 196
344 E-Business Role in the Development of the Economy of Sultanate of Oman

Authors: Mairaj Salim, Asma Zaheer

Abstract:

Oman has accomplished as much or more than its fellow Gulf monarchies, despite starting from scratch considerably later, having less oil income to utilize, dealing with a larger and more rugged geography, and resolving a bitter civil war along the way. Of course, Oman's progress in the past 30-plus years has not been without problems and missteps, but the balance is squarely on the positive side of the ledger. Oil has been the driving force of the Omani economy since Oman began commercial production in 1967. The oil industry supports the country’s high standard of living and is primarily responsible for its modern and expansive infrastructure, including electrical utilities, telephone services, roads, public education and medical services. In addition to extensive oil reserves, Oman also has substantial natural gas reserves, which are expected to play a leading role in the Omani economy in the Twenty-first Century. To reduce the country’s dependence on oil revenues, the government is restructuring the economy by directing investment to non-oil activities. Since the 21st century IT has changed the performing tasks. To manage the affairs for the benefits of organizations and economy, the Omani government has adopted E-Business technologies for the development. E-Business is important because it allows • Transformation of old economy relationships (vertical/linear relationships) to new economy relationships characterized by end-to-end relationship management solutions (integrated or extended relationships) • Facilitation and organization of networks, small firms depend on ‘partner’ firms for supplies and product distribution to meet customer demands • SMEs to outsource back-end process or cost centers enabling the SME to focus on their core competence • ICT to connect, manage and integrate processes internally and externally • SMEs to join networks and enter new markets, through shortened supply chains to increase market share, customers and suppliers • SMEs to take up the benefits of e-business to reduce costs, increase customer satisfaction, improve client referral and attract quality partners • New business models of collaboration for SMEs to increase their skill base • SMEs to enter virtual trading arena and increase their market reach A national strategy for the advancement of information and communication technology (ICT) has been worked out, mainly to introduce e-government, e-commerce, and a digital society. An information technology complex KOM (Knowledge Oasis Muscat) had been established, consisting of section for information technology, incubator services, a shopping center of technology software and hardware, ICT colleges, E-Government services and other relevant services. So, all these efforts play a vital role in the development of Oman economy.

Keywords: ICT, ITA, CRM, SCM, ERP, KOM, SMEs, e-commerce and e-business

Procedia PDF Downloads 227
343 High Efficiency Double-Band Printed Rectenna Model for Energy Harvesting

Authors: Rakelane A. Mendes, Sandro T. M. Goncalves, Raphaella L. R. Silva

Abstract:

The concepts of energy harvesting and wireless energy transfer have been widely discussed in recent times. There are some ways to create autonomous systems for collecting ambient energy, such as solar, vibratory, thermal, electromagnetic, radiofrequency (RF), among others. In the case of the RF it is possible to collect up to 100 μW / cm². To collect and/or transfer energy in RF systems, a device called rectenna is used, which is defined by the junction of an antenna and a rectifier circuit. The rectenna presented in this work is resonant at the frequencies of 1.8 GHz and 2.45 GHz. Frequencies at 1.8 GHz band are e part of the GSM / LTE band. The GSM (Global System for Mobile Communication) is a frequency band of mobile telephony, it is also called second generation mobile networks (2G), it came to standardize mobile telephony in the world and was originally developed for voice traffic. LTE (Long Term Evolution) or fourth generation (4G) has emerged to meet the demand for wireless access to services such as Internet access, online games, VoIP and video conferencing. The 2.45 GHz frequency is part of the ISM (Instrumentation, Scientific and Medical) frequency band, this band is internationally reserved for industrial, scientific and medical development with no need for licensing, and its only restrictions are related to maximum power transfer and bandwidth, which must be kept within certain limits (in Brazil the bandwidth is 2.4 - 2.4835 GHz). The rectenna presented in this work was designed to present efficiency above 50% for an input power of -15 dBm. It is known that for wireless energy capture systems the signal power is very low and varies greatly, for this reason this ultra-low input power was chosen. The Rectenna was built using the low cost FR4 (Flame Resistant) substrate, the antenna selected is a microfita antenna, consisting of a Meandered dipole, and this one was optimized using the software CST Studio. This antenna has high efficiency, high gain and high directivity. Gain is the quality of an antenna in capturing more or less efficiently the signals transmitted by another antenna and/or station. Directivity is the quality that an antenna has to better capture energy in a certain direction. The rectifier circuit used has series topology and was optimized using Keysight's ADS software. The rectifier circuit is the most complex part of the rectenna, since it includes the diode, which is a non-linear component. The chosen diode is the Schottky diode SMS 7630, this presents low barrier voltage (between 135-240 mV) and a wider band compared to other types of diodes, and these attributes make it perfect for this type of application. In the rectifier circuit are also used inductor and capacitor, these are part of the input and output filters of the rectifier circuit. The inductor has the function of decreasing the dispersion effect on the efficiency of the rectifier circuit. The capacitor has the function of eliminating the AC component of the rectifier circuit and making the signal undulating.

Keywords: dipole antenna, double-band, high efficiency, rectenna

Procedia PDF Downloads 96
342 Planning for Location and Distribution of Regional Facilities Using Central Place Theory and Location-Allocation Model

Authors: Danjuma Bawa

Abstract:

This paper aimed at exploring the capabilities of Location-Allocation model in complementing the strides of the existing physical planning models in the location and distribution of facilities for regional consumption. The paper was designed to provide a blueprint to the Nigerian government and other donor agencies especially the Fertilizer Distribution Initiative (FDI) by the federal government for the revitalization of the terrorism ravaged regions. Theoretical underpinnings of central place theory related to spatial distribution, interrelationships, and threshold prerequisites were reviewed. The study showcased how Location-Allocation Model (L-AM) alongside Central Place Theory (CPT) was applied in Geographic Information System (GIS) environment to; map and analyze the spatial distribution of settlements; exploit their physical and economic interrelationships, and to explore their hierarchical and opportunistic influences. The study was purely spatial qualitative research which largely used secondary data such as; spatial location and distribution of settlements, population figures of settlements, network of roads linking them and other landform features. These were sourced from government ministries and open source consortium. GIS was used as a tool for processing and analyzing such spatial features within the dictum of CPT and L-AM to produce a comprehensive spatial digital plan for equitable and judicious location and distribution of fertilizer deports in the study area in an optimal way. Population threshold was used as yardstick for selecting suitable settlements that could stand as service centers to other hinterlands; this was accomplished using the query syntax in ArcMapTM. ArcGISTM’ network analyst was used in conducting location-allocation analysis for apportioning of groups of settlements around such service centers within a given threshold distance. Most of the techniques and models ever used by utility planners have been centered on straight distance to settlements using Euclidean distances. Such models neglect impedance cutoffs and the routing capabilities of networks. CPT and L-AM take into consideration both the influential characteristics of settlements and their routing connectivity. The study was undertaken in two terrorism ravaged Local Government Areas of Adamawa state. Four (4) existing depots in the study area were identified. 20 more depots in 20 villages were proposed using suitability analysis. Out of the 300 settlements mapped in the study area about 280 of such settlements where optimally grouped and allocated to the selected service centers respectfully within 2km impedance cutoff. This study complements the giant strides by the federal government of Nigeria by providing a blueprint for ensuring proper distribution of these public goods in the spirit of bringing succor to these terrorism ravaged populace. This will ardently at the same time help in boosting agricultural activities thereby lowering food shortage and raising per capita income as espoused by the government.

Keywords: central place theory, GIS, location-allocation, network analysis, urban and regional planning, welfare economics

Procedia PDF Downloads 125
341 Enhancement of Radiosensitization by Aptamer 5TR1-Functionalized AgNCs for Triple-Negative Breast Cancer

Authors: Xuechun Kan, Dongdong Li, Fan Li, Peidang Liu

Abstract:

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with a poor prognosis, and radiotherapy is one of the main treatment methods. However, due to the obvious resistance of tumor cells to radiotherapy, high dose of ionizing radiation is required during radiotherapy, which causes serious damage to normal tissues near the tumor. Therefore, how to improve radiotherapy resistance and enhance the specific killing of tumor cells by radiation is a hot issue that needs to be solved in clinic. Recent studies have shown that silver-based nanoparticles have strong radiosensitization, and silver nanoclusters (AgNCs) also provide a broad prospect for tumor targeted radiosensitization therapy due to their ultra-small size, low toxicity or non-toxicity, self-fluorescence and strong photostability. Aptamer 5TR1 is a 25-base oligonucleotide aptamer that can specifically bind to mucin-1 highly expressed on the membrane surface of TNBC 4T1 cells, and can be used as a highly efficient tumor targeting molecule. In this study, AgNCs were synthesized by DNA template based on 5TR1 aptamer (NC-T5-5TR1), and its role as a targeted radiosensitizer in TNBC radiotherapy was investigated. The optimal DNA template was first screened by fluorescence emission spectroscopy, and NC-T5-5TR1 was prepared. NC-T5-5TR1 was characterized by transmission electron microscopy, ultraviolet-visible spectroscopy and dynamic light scattering. The inhibitory effect of NC-T5-5TR1 on cell activity was evaluated using the MTT method. Laser confocal microscopy was employed to observe NC-T5-5TR1 targeting 4T1 cells and verify its self-fluorescence characteristics. The uptake of NC-T5-5TR1 by 4T1 cells was observed by dark-field imaging, and the uptake peak was evaluated by inductively coupled plasma mass spectrometry. The radiation sensitization effect of NC-T5-5TR1 was evaluated through cell cloning and in vivo anti-tumor experiments. Annexin V-FITC/PI double staining flow cytometry was utilized to detect the impact of nanomaterials combined with radiotherapy on apoptosis. The results demonstrated that the particle size of NC-T5-5TR1 is about 2 nm, and the UV-visible absorption spectrum detection verifies the successful construction of NC-T5-5TR1, and it shows good dispersion. NC-T5-5TR1 significantly inhibited the activity of 4T1 cells and effectively targeted and fluoresced within 4T1 cells. The uptake of NC-T5-5TR1 reached its peak at 3 h in the tumor area. Compared with AgNCs without aptamer modification, NC-T5-5TR1 exhibited superior radiation sensitization, and combined radiotherapy significantly inhibited the activity of 4T1 cells and tumor growth in 4T1-bearing mice. The apoptosis level of NC-T5-5TR1 combined with radiation was significantly increased. These findings provide important theoretical and experimental support for NC-T5-5TR1 as a radiation sensitizer for TNBC.

Keywords: 5TR1 aptamer, silver nanoclusters, radio sensitization, triple-negative breast cancer

Procedia PDF Downloads 26
340 Evaluation of the Role of Advocacy and the Quality of Care in Reducing Health Inequalities for People with Autism, Intellectual and Developmental Disabilities at Sheffield Teaching Hospitals

Authors: Jonathan Sahu, Jill Aylott

Abstract:

Individuals with Autism, Intellectual and Developmental disabilities (AIDD) are one of the most vulnerable groups in society, hampered not only by their own limitations to understand and interact with the wider society, but also societal limitations in perception and understanding. Communication to express their needs and wishes is fundamental to enable such individuals to live and prosper in society. This research project was designed as an organisational case study, in a large secondary health care hospital within the National Health Service (NHS), to assess the quality of care provided to people with AIDD and to review the role of advocacy to reduce health inequalities in these individuals. Methods: The research methodology adopted was as an “insider researcher”. Data collection included both quantitative and qualitative data i.e. a mixed method approach. A semi-structured interview schedule was designed and used to obtain qualitative and quantitative primary data from a wide range of interdisciplinary frontline health care workers to assess their understanding and awareness of systems, processes and evidence based practice to offer a quality service to people with AIDD. Secondary data were obtained from sources within the organisation, in keeping with “Case Study” as a primary method, and organisational performance data were then compared against national benchmarking standards. Further data sources were accessed to help evaluate the effectiveness of different types of advocacy that were present in the organisation. This was gauged by measures of user and carer experience in the form of retrospective survey analysis, incidents and complaints. Results: Secondary data demonstrate near compliance of the Organisation with the current national benchmarking standard (Monitor Compliance Framework). However, primary data demonstrate poor knowledge of the Mental Capacity Act 2005, poor knowledge of organisational systems, processes and evidence based practice applied for people with AIDD. In addition there was poor knowledge and awareness of frontline health care workers of advocacy and advocacy schemes for this group. Conclusions: A significant amount of work needs to be undertaken to improve the quality of care delivered to individuals with AIDD. An operational strategy promoting the widespread dissemination of information may not be the best approach to deliver quality care and optimal patient experience and patient advocacy. In addition, a more robust set of standards, with appropriate metrics, needs to be developed to assess organisational performance which will stand the test of professional and public scrutiny.

Keywords: advocacy, autism, health inequalities, intellectual developmental disabilities, quality of care

Procedia PDF Downloads 194
339 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models

Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg

Abstract:

Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.

Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction

Procedia PDF Downloads 289
338 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding

Authors: Ines Oliveira, Ana Reis

Abstract:

Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.

Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation

Procedia PDF Downloads 187
337 Restless Leg Syndrome as the Presenting Symptom of Neuroendocrine Tumor

Authors: Mustafa Cam, Nedim Ongun, Ufuk Kutluana

Abstract:

Introduction: Restless LegsSyndrome (RLS) is a common, under-recognized disorder disrupts sleep and diminishes quality of life (1). The most common conditions highly associated with RLS include renalfailure, iron and folic acid deficiency, peripheral neuropathy, pregnancy, celiacdisease, Crohn’sdiseaseandrarelymalignancy (2).Despite a clear relation between low peripheral iron and increased prevalence and severity of RLS, the prevalence and clinical significance of RLS in iron-deficientanemic populations is unknown (2). We report here a case of RLS due to iron deficiency in the setting of neuroendocrinetumor. Report of Case: A 35 year-old man was referred to our clinic with general weakness, weight loss (10 kg in 2 months)and 2-month history of uncomfortable sensations in his legs with urge to move, partially relieved by movement. The symptoms were presented very day, worsening in the evening; the discomfort forced the patient to getup and walk around at night. RLS was severe, with a score of 22 at the International RLS ratingscale. The patient had no past medical history. The patient underwent a complete set of blood analyses and the following ab normal values were found (normal limitswithinbrackets): hemoglobin 9.9 g/dl (14-18), MCV 70 fL (80-94), ferritin 3,5 ng/mL (13-150). Brain and spinemagnetic resonance imaging was normal. The patient consultated with gastroenterology clinic and gastointestinal systemendoscopy was performed for theetiology of the iron deficiency anemia. After the gastricbiopsy, results allowed us to reach the diagnosis of neuroen docrine tumor and the patient referred to oncology clinic. Discussion: The first important consideration from this case report is that the patient was referred to our clinic because of his severe RLS symptoms dramatically reducing his quality of life. However, our clinical study clearly demonstrated that RLS was not the primary disease. Considering the information available for this patient, we believe that the most likely possibility is that RLS was secondary to iron deficiency, a very well-known and established cause of RLS in theliterature (3,4). Neuroendocrine tumors (NETs) are rare epithelial neoplasms with neuroendocrine differentiation that most commonly originate in the lungs and gastrointestinal tract (5). NETs vary widely in their clinical presentation; symptoms are often nonspecific and can be mistaken for those of other more common conditions (6). 50% of patients with reported disease stage have either regional or distant metastases at diagnosis (7). Accurate and earlier NET diagnosis is the first step in shortening the time to optimal care and improved outcomes for patients (8). The most important message from this case report is that RLS symptoms can sometimes be thesign of a life-threatening condition. Conclusion: Careful and complete collection of clinical and laboratory data should be carried out in RLS patients. Inparticular, if RLS onset coincides with weight loss and iron deficieny anemia, gastricendos copy should be performed. It is known about that malignancy is a rare etiology in RLS patients and to our knowledge; it is the first case with neuro endocrine tumor presenting with RLS.

Keywords: neurology, neuroendocrine tumor, restless legs syndrome, sleep

Procedia PDF Downloads 263
336 The Antioxidant Activity of Grape Chkhaveri and Its Wine Cultivated in West Georgia (Adjaria)

Authors: Maia Kharadze, Indira Djaparidze, Maia Vanidze, Aleko Kalandia

Abstract:

Modern scientific world studies chemical components and antioxidant activity of different kinds of vines according to their breed purity and location. To our knowledge, this kind of research has not been conducted in Georgia yet. The object of our research was to study Chkhaveri vine, which is included in the oldest varieties of the Black Sea basin vine. We have studied different-altitude Chkaveri grapes, juice, and wine (half dry rose-colored produced with European technologies) and their technical markers, qualitative and quantitive composition of their biologically active compounds and their antioxidant activity. We were determining the amount of phenols using Folin-Ciocalteu reagent, Flavonoids, Catechins and Anthocyanins using Spectral method and antioxidant activity using DPPH method. Several compounds were identified using –HPLC-UV-Vis, UPLC-MS methods. Six samples of Chkhaveri species– 5, 300, 360, 380, 400, 780 meter altitudes were taken and analyzed. The sample taken from 360 m altitude is distinguished by its cluster mass (383.6 grams) and high amount of sugar (20.1%). The sample taken from the five-meter altitude is distinguished by having high acidity (0.95%). Unlike other grapes varieties, such concentration of sugar and relatively low levels of citric acid ultimately leads to Chkhaveri wine individuality. Biologically active compounds of Chkhaveri were researched in 2014, 2015, 2016. The amount of total phenols in samples of 2016 fruit varies from 976.7 to 1767.0 mg/kg. Amount of Anthocians is 721.2-1630.2 mg/kg, and the amount of Flavanoids varies from 300.6 to 825.5 mg/kg. Relatively high amount of anthocyanins was found in the Chkhaveri at 780-meter altitude - 1630.2 mg/kg. Accordingly, the amount of Phenols and Flavanoids is high- 1767.9 mg/kg and 825.5 mg/kg. These characteristics are low in samples gathered from 5 meters above sea level, Anthocyanins-721.2 mg/ kg, total Phenols-976.7 mg/ kg, and Flavanoids-300.6 mg/kg. The highest amount of bioactive compounds can be found in the Chkhaveri samples of high altitudes because with rising height environment becomes harsh, the plant has to develop a better immune system using Phenolic compounds. The technology that is used for the production of wine also plays a huge role in the composition of the final product. Optimal techniques of maceration and ageing were worked out. While squeezing Chkhaveri, there are no anthocyanins in the juice. However, the amount of Anthocyanins rises during maceration. After the fermentation of dregs, the amount of anthocyanins is 55%, 521.3 gm/l, total Phenols 80% 1057.7 mg/l and Flavanoids 23.5 mg/l. Antioxidant activity of samples was also determined using the effect of 50% inhibition of the samples. All samples have high antioxidant activity. For instance, in samples at 780 meters above the sea-level antioxidant activity was 53.5%. It is relatively high compared to the sample at 5 m above sea-level with the antioxidant activity of 30.5%. Thus, there is a correlation between the amount Anthocyanins and antioxidant activity. The designated project has been fulfilled by financial support of the Georgia National Science Foundation (Grant AP/96/13, Grant 216816), Any idea in this publication is possessed by the author and may not represent the opinion of the Georgia National Science Foundation.

Keywords: antioxidants, bioactive content, wine, chkhaveri

Procedia PDF Downloads 204
335 Predictors of Sexually Transmitted Infection of Korean Adolescent Females: Analysis of Pooled Data from Korean Nationwide Survey

Authors: Jaeyoung Lee, Minji Je

Abstract:

Objectives: In adolescence, adolescents are curious about sex, but sexual experience before becoming an adult can cause the risk of high probability of sexually transmitted infection. Therefore, it is very important to prevent sexually transmitted infections so that adolescents can grow in healthy and upright way. Adolescent females, especially, have sexual behavior distinguished from that of male adolescents. Protecting female adolescents’ reproductive health is even more important since it is directly related to the childbirth of the next generation. This study, thus, investigated the predictors of sexually transmitted infection in adolescent females with sexual experiences based on the National Health Statistics in Korea. Methods: This study was conducted based on the National Health Statistics in Korea. The 11th Korea Youth Behavior Web-based Survey in 2016 was conducted in the type of anonymous self-reported survey in order to find out the health behavior of adolescents. The target recruitment group was middle and high school students nationwide as of April 2016, and 65,528 students from a total of 800 middle and high schools participated. The study was conducted in 537 female high school students (Grades 10–12) among them. The collected data were analyzed as complex sampling design using SPSS statistics 22. The strata, cluster, weight, and finite population correction provided by Korea Center for Disease Control & Prevention (KCDC) were reflected to constitute complex sample design files, which were used in the statistical analysis. The analysis methods included Rao-Scott chi-square test, complex samples general linear model, and complex samples multiple logistic regression analysis. Results: Out of 537 female adolescents, 11.9% (53 adolescents) had experiences of venereal infection. The predictors for venereal infection of the subjects were ‘age at first intercourse’ and ‘sexual intercourse after drinking’. The sexually transmitted infection of the subjects was decreased by 0.31 times (p=.006, 95%CI=0.13-0.71) for middle school students and 0.13 times (p<.001, 95%CI=0.05-0.32) for high school students whereas the age of the first sexual experience was under elementary school age. In addition, the sexually transmitted infection of the subjects was 3.54 times (p < .001, 95%CI=1.76-7.14) increased when they have experience of sexual relation after drinking alcohol, compared to those without the experience of sexual relation after drinking alcohol. Conclusions: The female adolescents had high probability of sexually transmitted infection if their age for the first sexual experience was low. Therefore, the female adolescents who start sexual experience earlier shall have practical sex education appropriate for their developmental stage. In addition, since the sexually transmitted infection increases, if they have sexual relations after drinking alcohol, the consideration for prevention of alcohol use or intervention of sex education shall be required. When health education intervention is conducted for health promotion for female adolescents in the future, it is necessary to reflect the result of this study.

Keywords: adolescent, coitus, female, sexually transmitted diseases

Procedia PDF Downloads 172
334 Cement Matrix Obtained with Recycled Aggregates and Micro/Nanosilica Admixtures

Authors: C. Mazilu, D. P. Georgescu, A. Apostu, R. Deju

Abstract:

Cement mortars and concretes are some of the most used construction materials in the world, global cement production being expected to grow to approx. 5 billion tons, until 2030. But, cement is an energy intensive material, the cement industry being responsible for cca. 7% of the world's CO2 emissions. Also, natural aggregates represent non-renewable resources, exhaustible, which must be used efficiently. A way to reduce the negative impact on the environment is the use of additional hydraulically active materials, as a partial substitute for cement in mortars and concretes and/or the use of recycled concrete aggregates (RCA) for the recovery of construction waste, according to EU Directive 2018/851. One of the most effective active hydraulic admixtures is microsilica and more recently, with the technological development on a nanometric scale, nanosilica. Studies carried out in recent years have shown that the introduction of SiO2 nanoparticles into cement matrix improves the properties, even compared to microsilica. This is due to the very small size of the nanosilica particles (<100nm) and the very large specific surface, which helps to accelerate cement hydration and acts as a nucleating agent to generate even more calcium hydrosilicate which densifies and compacts the structure. The cementitious compositions containing recycled concrete aggregates (RCA) present, in generally, inferior properties compared to those obtained with natural aggregates. Depending on the degree of replacement of natural aggregate, decreases the workability of mortars and concretes with RAC, decrease mechanical resistances and increase drying shrinkage; all being determined, in particular, by the presence to the old mortar attached to the original aggregate from the RAC, which makes its porosity high and the mixture of components to require more water for preparation. The present study aims to use micro and nanosilica for increase the performance of some mortars and concretes obtained with RCA. The research focused on two types of cementitious systems: a special mortar composition used for encapsulating Low Level radioactive Waste (LLW); a composition of structural concrete, class C30/37, with the combination of exposure classes XC4+XF1 and settlement class S4. The mortar was made with 100% recycled aggregate, 0-5 mm sort and in the case of concrete, 30% recycled aggregate was used for 4-8 and 8-16 sorts, according to EN 206, Annex E. The recycled aggregate was obtained from a specially made concrete for this study, which after 28 days was crushed with the help of a Retsch jaw crusher and further separated by sieving on granulometric sorters. The partial replacement of cement was done progressively, in the case of the mortar composition, with microsilica (3, 6, 9, 12, 15% wt.), nanosilica (0.75, 1.5, 2.25% wt.), respectively mixtures of micro and nanosilica. The optimal combination of silica, from the point of view of mechanical resistance, was later used also in the case of the concrete composition. For the chosen cementitious compositions, the influence of micro and/or nanosilica on the properties in the fresh state (workability, rheological characteristics) and hardened state (mechanical resistance, water absorption, freeze-thaw resistance, etc.) is highlighted.

Keywords: cement, recycled concrete aggregates, micro/nanosilica, durability

Procedia PDF Downloads 39
333 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 56
332 Direct Contact Ultrasound Assisted Drying of Mango Slices

Authors: E. K. Mendez, N. A. Salazar, C. E. Orrego

Abstract:

There is undoubted proof that increasing the intake of fruit lessens the risk of hypertension, coronary heart disease, stroke, and probable evidence that lowers the risk of cancer. Proper fruit drying is an excellent alternative to make their shelf-life longer, commercialization easier, and ready-to-eat healthy products or ingredients. The conventional way of drying is by hot air forced convection. However, this process step often requires a very long residence time; furthermore, it is highly energy consuming and detrimental to the product quality. Nowadays, power ultrasound (US) technic has been considered as an emerging and promising technology for industrial food processing. Most of published works dealing with drying food assisted by US have studied the effect of ultrasonic pre-treatment prior to air-drying on food and the airborne US conditions during dehydration. In this work a new approach was tested taking in to account drying time and two quality parameters of mango slices dehydrated by convection assisted by 20 KHz power US applied directly using a holed plate as product support and sound transmitting surface. During the drying of mango (Mangifera indica L.) slices (ca. 6.5 g, 0.006 m height and 0.040 m diameter), their weight was recorded every hour until final moisture content (10.0±1.0 % wet basis) was reached. After previous tests, optimization of three drying parameters - frequencies (2, 5 and 8 minutes each half-hour), air temperature (50-55-60⁰C) and power (45-70-95W)- was attempted by using a Box–Behnken design under the response surface methodology for the optimal drying time, color parameters and rehydration rate of dried samples. Assays involved 17 experiments, including a quintuplicate of the central point. Dried samples with and without US application were packed in individual high barrier plastic bags under vacuum, and then stored in the dark at 8⁰C until their analysis. All drying assays and sample analysis were performed in triplicate. US drying experimental data were fitted with nine models, among which the Verna model resulted in the best fit with R2 > 0.9999 and reduced χ2 ≤ 0.000001. Significant reductions in drying time were observed for the assays that used lower frequency and high US power. At 55⁰C, 95 watts and 2 min/30 min of sonication, 10% moisture content was reached in 211 min, as compared with 320 min for the same test without the use of US (blank). Rehydration rates (RR), defined as the ratio of rehydrated sample weight to that of dry sample and measured, was also larger than those of blanks and, in general, the higher the US power, the greater the RR. The direct contact and intermittent US treatment of mango slices used in this work improve drying rates and dried fruit rehydration ability. This technique can thus be used to reduce energy processing costs and the greenhouse gas emissions of fruit dehydration.

Keywords: ultrasonic assisted drying, fruit drying, mango slices, contact ultrasonic drying

Procedia PDF Downloads 321
331 Storage of Organic Carbon in Chemical Fractions in Acid Soil as Influenced by Different Liming

Authors: Ieva Jokubauskaite, Alvyra Slepetiene, Danute Karcauskiene, Inga Liaudanskiene, Kristina Amaleviciute

Abstract:

Soil organic carbon (SOC) is the key soil quality and ecological stability indicator, therefore, carbon accumulation in stable forms not only supports and increases the organic matter content in the soil, but also has a positive effect on the quality of soil and the whole ecosystem. Soil liming is one of the most common ways to improve the carbon sequestration in the soil. Determination of the optimum intensity and combinations of liming in order to ensure the optimal carbon quantitative and qualitative parameters is one of the most important tasks of this work. The field experiments were carried out at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry (LRCAF) during the 2011–2013 period. The effect of liming with different intensity (at a rate 0.5 every 7 years and 2.0 every 3-4 years) was investigated in the topsoil of acid moraine loam Bathygleyic Dystric Glossic Retisol. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LRCAF. Soil samples for chemical analyses were taken from the topsoil after harvesting. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) at 590 nm wavelength using glucose standards. SOC fractional composition was determined by Ponomareva and Plotnikova version of classical Tyurin method. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR in water extract at soil-water ratio 1:5. Spectral properties (E4/E6 ratio) of humic acids were determined by measuring the absorbance of humic and fulvic acids solutions at 465 and 665 nm. Our study showed a negative statistically significant effect of periodical liming (at 0.5 and 2.0 liming rates) on SOC content in the soil. The content of SOC was 1.45% in the unlimed treatment, while in periodically limed at 2.0 liming rate every 3–4 years it was approximately by 0.18 percentage points lower. It was revealed that liming significantly decreased the DOC concentration in the soil. The lowest concentration of DOC (0.156 g kg-1) was established in the most intensively limed (2.0 liming rate every 3–4 years) treatment. Soil liming exerted an increase of all humic acids and fulvic acid bounded with calcium fractions content in the topsoil. Soil liming resulted in the accumulation of valuable humic acids. Due to the applied liming, the HR/FR ratio, indicating the quality of humus increased to 1.08 compared with that in unlimed soil (0.81). Intensive soil liming promoted the formation of humic acids in which groups of carboxylic and phenolic compounds predominated. These humic acids are characterized by a higher degree of condensation of aromatic compounds and in this way determine the intensive organic matter humification processes in the soil. The results of this research provide us with the clear information on the characteristics of SOC change, which could be very useful to guide the climate policy and sustainable soil management.

Keywords: acid soil, carbon sequestration, long–term liming, soil organic carbon

Procedia PDF Downloads 201
330 Design of a Human-in-the-Loop Aircraft Taxiing Optimisation System Using Autonomous Tow Trucks

Authors: Stefano Zaninotto, Geoffrey Farrugia, Johan Debattista, Jason Gauci

Abstract:

The need to reduce fuel and noise during taxi operations in the airports with a scenario of constantly increasing air traffic has resulted in an effort by the aerospace industry to move towards electric taxiing. In fact, this is one of the problems that is currently being addressed by SESAR JU and two main solutions are being proposed. With the first solution, electric motors are installed in the main (or nose) landing gear of the aircraft. With the second solution, manned or unmanned electric tow trucks are used to tow aircraft from the gate to the runway (or vice-versa). The presence of the tow trucks results in an increase in vehicle traffic inside the airport. Therefore, it is important to design the system in a way that the workload of Air Traffic Control (ATC) is not increased and the system assists ATC in managing all ground operations. The aim of this work is to develop an electric taxiing system, based on the use of autonomous tow trucks, which optimizes aircraft ground operations while keeping ATC in the loop. This system will consist of two components: an optimization tool and a Graphical User Interface (GUI). The optimization tool will be responsible for determining the optimal path for arriving and departing aircraft; allocating a tow truck to each taxiing aircraft; detecting conflicts between aircraft and/or tow trucks; and proposing solutions to resolve any conflicts. There are two main optimization strategies proposed in the literature. With centralized optimization, a central authority coordinates and makes the decision for all ground movements, in order to find a global optimum. With the second strategy, called decentralized optimization or multi-agent system, the decision authority is distributed among several agents. These agents could be the aircraft, the tow trucks, and taxiway or runway intersections. This approach finds local optima; however, it scales better with the number of ground movements and is more robust to external disturbances (such as taxi delays or unscheduled events). The strategy proposed in this work is a hybrid system combining aspects of these two approaches. The GUI will provide information on the movement and status of each aircraft and tow truck, and alert ATC about any impending conflicts. It will also enable ATC to give taxi clearances and to modify the routes proposed by the system. The complete system will be tested via computer simulation of various taxi scenarios at multiple airports, including Malta International Airport, a major international airport, and a fictitious airport. These tests will involve actual Air Traffic Controllers in order to evaluate the GUI and assess the impact of the system on ATC workload and situation awareness. It is expected that the proposed system will increase the efficiency of taxi operations while reducing their environmental impact. Furthermore, it is envisaged that the system will facilitate various controller tasks and improve ATC situation awareness.

Keywords: air traffic control, electric taxiing, autonomous tow trucks, graphical user interface, ground operations, multi-agent, route optimization

Procedia PDF Downloads 104
329 Kinetic Evaluation of Sterically Hindered Amines under Partial Oxy-Combustion Conditions

Authors: Sara Camino, Fernando Vega, Mercedes Cano, Benito Navarrete, José A. Camino

Abstract:

Carbon capture and storage (CCS) technologies should play a relevant role towards low-carbon systems in the European Union by 2030. Partial oxy-combustion emerges as a promising CCS approach to mitigate anthropogenic CO₂ emissions. Its advantages respect to other CCS technologies rely on the production of a higher CO₂ concentrated flue gas than these provided by conventional air-firing processes. The presence of more CO₂ in the flue gas increases the driving force in the separation process and hence it might lead to further reductions of the energy requirements of the overall CO₂ capture process. A higher CO₂ concentrated flue gas should enhance the CO₂ capture by chemical absorption in solvent kinetic and CO₂ cyclic capacity. They have impact on the performance of the overall CO₂ absorption process by reducing the solvent flow-rate required for a specific CO₂ removal efficiency. Lower solvent flow-rates decreases the reboiler duty during the regeneration stage and also reduces the equipment size and pumping costs. Moreover, R&D activities in this field are focused on novel solvents and blends that provide lower CO₂ absorption enthalpies and therefore lower energy penalties associated to the solvent regeneration. In this respect, sterically hindered amines are considered potential solvents for CO₂ capture. They provide a low energy requirement during the regeneration process due to its molecular structure. However, its absorption kinetics are slow and they must be promoted by blending with faster solvents such as monoethanolamine (MEA) and piperazine (PZ). In this work, the kinetic behavior of two sterically hindered amines were studied under partial oxy-combustion conditions and compared with MEA. A lab-scale semi-batch reactor was used. The CO₂ composition of the synthetic flue gas varied from 15%v/v – conventional coal combustion – to 60%v/v – maximum CO₂ concentration allowable for an optimal partial oxy-combustion operation. Firstly, 2-amino-2-methyl-1-propanol (AMP) showed a hybrid behavior with fast kinetics and a low enthalpy of CO₂ absorption. The second solvent was Isophrondiamine (IF), which has a steric hindrance in one of the amino groups. Its free amino group increases its cyclic capacity. In general, the presence of higher CO₂ concentration in the flue gas accelerated the CO₂ absorption phenomena, producing higher CO₂ absorption rates. In addition, the evolution of the CO2 loading also exhibited higher values in the experiments using higher CO₂ concentrated flue gas. The steric hindrance causes a hybrid behavior in this solvent, between both fast and slow kinetic solvents. The kinetics rates observed in all the experiments carried out using AMP were higher than MEA, but lower than the IF. The kinetic enhancement experienced by AMP at a high CO2 concentration is slightly over 60%, instead of 70% – 80% for IF. AMP also improved its CO₂ absorption capacity by 24.7%, from 15%v/v to 60%v/v, almost double the improvements achieved by MEA. In IF experiments, the CO₂ loading increased around 10% from 15%v/v to 60%v/v CO₂ and it changed from 1.10 to 1.34 mole CO₂ per mole solvent, more than 20% of increase. This hybrid kinetic behavior makes AMP and IF promising solvents for partial oxy–combustion applications.

Keywords: absorption, carbon capture, partial oxy-combustion, solvent

Procedia PDF Downloads 166
328 Detection and Identification of Antibiotic Resistant UPEC Using FTIR-Microscopy and Advanced Multivariate Analysis

Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel

Abstract:

Antimicrobial drugs have played an indispensable role in controlling illness and death associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global healthcare problem. Many antibiotics had lost their effectiveness since the beginning of the antibiotic era because many bacteria have adapted defenses against these antibiotics. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing require the isolation of the pathogen from a clinical specimen by culturing on the appropriate media (this culturing stage lasts 24 h-first culturing). Then, chosen colonies are grown on media containing antibiotic(s), using micro-diffusion discs (second culturing time is also 24 h) in order to determine its bacterial susceptibility. Other methods, genotyping methods, E-test and automated methods were also developed for testing antimicrobial susceptibility. Most of these methods are expensive and time-consuming. Fourier transform infrared (FTIR) microscopy is rapid, safe, effective and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria; nonetheless, its true potential in routine clinical diagnosis has not yet been established. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The UTI E.coli bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 700 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 90% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.

Keywords: antibiotics, E.coli, FTIR, multivariate analysis, susceptibility, UTI

Procedia PDF Downloads 153
327 Partially Aminated Polyacrylamide Hydrogel: A Novel Approach for Temporary Oil and Gas Well Abandonment

Authors: Hamed Movahedi, Nicolas Bovet, Henning Friis Poulsen

Abstract:

Following the advent of the Industrial Revolution, there has been a significant increase in the extraction and utilization of hydrocarbon and fossil fuel resources. However, a new era has emerged, characterized by a shift towards sustainable practices, namely the reduction of carbon emissions and the promotion of renewable energy generation. Given the substantial number of mature oil and gas wells that have been developed inside the petroleum reservoir domain, it is imperative to establish an environmental strategy and adopt appropriate measures to effectively seal and decommission these wells. In general, the cement plug serves as a material for plugging purposes. Nevertheless, there exist some scenarios in which the durability of such a plug is compromised, leading to the potential escape of hydrocarbons via fissures and fractures within cement plugs. Furthermore, cement is often not considered a practical solution for temporary plugging, particularly in the case of well sites that have the potential for future gas storage or CO2 injection. The Danish oil and gas industry has promising potential as a prospective candidate for future carbon dioxide (CO2) injection, hence contributing to the implementation of carbon capture strategies within Europe. The primary reservoir component consists of chalk, a rock characterized by limited permeability. This work focuses on the development and characterization of a novel hydrogel variant. The hydrogel is designed to be injected via a low-permeability reservoir and afterward undergoes a transformation into a high-viscosity gel. The primary objective of this research is to explore the potential of this hydrogel as a new solution for effectively plugging well flow. Initially, the synthesis of polyacrylamide was carried out using radical polymerization inside the confines of the reaction flask. Subsequently, with the application of the Hoffman rearrangement, the polymer chain undergoes partial amination, facilitating its subsequent reaction with the crosslinker and enabling the formation of a hydrogel in the subsequent stage. The organic crosslinker, glutaraldehyde, was employed in the experiment to facilitate the formation of a gel. This gel formation occurred when the polymeric solution was subjected to heat within a specified range of reservoir temperatures. Additionally, a rheological survey and gel time measurements were conducted on several polymeric solutions to determine the optimal concentration. The findings indicate that the gel duration is contingent upon the starting concentration and exhibits a range of 4 to 20 hours, hence allowing for manipulation to accommodate diverse injection strategies. Moreover, the findings indicate that the gel may be generated in environments characterized by acidity and high salinity. This property ensures the suitability of this substance for application in challenging reservoir conditions. The rheological investigation indicates that the polymeric solution exhibits the characteristics of a Herschel-Bulkley fluid with somewhat elevated yield stress prior to solidification.

Keywords: polyacrylamide, hofmann rearrangement, rheology, gel time

Procedia PDF Downloads 54
326 Impact of Experiential Learning on Executive Function, Language Development, and Quality of Life for Adults with Intellectual and Developmental Disabilities (IDD)

Authors: Mary Deyo, Zmara Harrison

Abstract:

This study reports the outcomes of an 8-week experiential learning program for 6 adults with Intellectual and Developmental Disabilities (IDD) at a day habilitation program. The intervention foci for this program include executive function, language learning in the domains of expressive, receptive, and pragmatic language, and quality of life. The interprofessional collaboration aimed at supporting adults with IDD to reach person-centered, functional goals across skill domains is critical. This study is a significant addition to the speech-language pathology literature in that it examines a therapy method that potentially meets this need while targeting domains within the speech-language pathology scope of practice. Communication therapy was provided during highly valued and meaningful hands-on learning experiences, referred to as the Garden Club, which incorporated all aspects of planting and caring for a garden as well as related journaling, sensory, cooking, art, and technology-based activities. Direct care staff and an undergraduate research assistant were trained by SLP to be impactful language guides during their interactions with participants in the Garden Club. SLP also provided direct therapy and modeling during Garden Club. Research methods used in this study included a mixed methods analysis of a literature review, a quasi-experimental implementation of communication therapy in the context of experiential learning activities, Quality of Life participant surveys, quantitative pre- post- data collection and linear mixed model analysis, qualitative data collection with qualitative content analysis and coding for themes. Outcomes indicated overall positive changes in expressive vocabulary, following multi-step directions, sequencing, problem-solving, planning, skills for building and maintaining meaningful social relationships, and participant perception of the Garden Project’s impact on their own quality of life. Implementation of this project also highlighted supports and barriers that must be taken into consideration when planning similar projects. Overall findings support the use of experiential learning projects in day habilitation programs for adults with IDD, as well as additional research to deepen understanding of best practices, supports, and barriers for implementation of experiential learning with this population. This research provides an important contribution to research in the fields of speech-language pathology and other professions serving adults with IDD by describing an interprofessional experiential learning program with positive outcomes for executive function, language learning, and quality of life.

Keywords: experiential learning, adults, intellectual and developmental disabilities, expressive language, receptive language, pragmatic language, executive function, communication therapy, day habilitation, interprofessionalism, quality of life

Procedia PDF Downloads 87
325 Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress

Authors: Xuerui Niu, Bolin Wang, Xinchuang Zhang, Xiaohua Ma, Bin Hou, Ling Yang

Abstract:

The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved.

Keywords: GaN-based E-mode p-HFETs, dynamic electric stress, threshold voltage, monolithic power integration technology

Procedia PDF Downloads 65