Search results for: Mobile listening applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7976

Search results for: Mobile listening applications

1226 Algorithm for Automatic Real-Time Electrooculographic Artifact Correction

Authors: Norman Sinnigen, Igor Izyurov, Marina Krylova, Hamidreza Jamalabadi, Sarah Alizadeh, Martin Walter

Abstract:

Background: EEG is a non-invasive brain activity recording technique with a high temporal resolution that allows the use of real-time applications, such as neurofeedback. However, EEG data are susceptible to electrooculographic (EOG) and electromyography (EMG) artifacts (i.e., jaw clenching, teeth squeezing and forehead movements). Due to their non-stationary nature, these artifacts greatly obscure the information and power spectrum of EEG signals. Many EEG artifact correction methods are too time-consuming when applied to low-density EEG and have been focusing on offline processing or handling one single type of EEG artifact. A software-only real-time method for correcting multiple types of EEG artifacts of high-density EEG remains a significant challenge. Methods: We demonstrate an improved approach for automatic real-time EEG artifact correction of EOG and EMG artifacts. The method was tested on three healthy subjects using 64 EEG channels (Brain Products GmbH) and a sampling rate of 1,000 Hz. Captured EEG signals were imported in MATLAB with the lab streaming layer interface allowing buffering of EEG data. EMG artifacts were detected by channel variance and adaptive thresholding and corrected by using channel interpolation. Real-time independent component analysis (ICA) was applied for correcting EOG artifacts. Results: Our results demonstrate that the algorithm effectively reduces EMG artifacts, such as jaw clenching, teeth squeezing and forehead movements, and EOG artifacts (horizontal and vertical eye movements) of high-density EEG while preserving brain neuronal activity information. The average computation time of EOG and EMG artifact correction for 80 s (80,000 data points) 64-channel data is 300 – 700 ms depending on the convergence of ICA and the type and intensity of the artifact. Conclusion: An automatic EEG artifact correction algorithm based on channel variance, adaptive thresholding, and ICA improves high-density EEG recordings contaminated with EOG and EMG artifacts in real-time.

Keywords: EEG, muscle artifacts, ocular artifacts, real-time artifact correction, real-time ICA

Procedia PDF Downloads 181
1225 Investigation of the Growth Kinetics of Phases in Ni–Sn System

Authors: Varun A Baheti, Sanjay Kashyap, Kamanio Chattopadhyay, Praveen Kumar, Aloke Paul

Abstract:

Ni–Sn system finds applications in the microelectronics industry, especially with respect to flip–chip or direct chip, attach technology. Here the region of interest is under bump metallization (UBM), and solder bump (Sn) interface due to the formation of brittle intermetallic phases there. Understanding the growth of these phases at UBM/Sn interface is important, as in many cases it controls the electro–mechanical properties of the product. Cu and Ni are the commonly used UBM materials. Cu is used for good bonding because of fast reaction with solder and Ni often acts as a diffusion barrier layer due to its inherently slower reaction kinetics with Sn–based solders. Investigation on the growth kinetics of phases in Ni–Sn system is reported in this study. Just for simplicity, Sn being major solder constituent is chosen. Ni–Sn electroplated diffusion couples are prepared by electroplating pure Sn on Ni substrate. Bulk diffusion couples prepared by the conventional method are also studied along with Ni–Sn electroplated diffusion couples. Diffusion couples are annealed for 25–1000 h at 50–215°C to study the phase evolutions and growth kinetics of various phases. The interdiffusion zone was analysed using field emission gun equipped scanning electron microscope (FE–SEM) for imaging. Indexing of selected area diffraction (SAD) patterns obtained from transmission electron microscope (TEM) and composition measurements done in electron probe micro−analyser (FE–EPMA) confirms the presence of various product phases grown across the interdiffusion zone. Time-dependent experiments indicate diffusion controlled growth of the product phase. The estimated activation energy in the temperature range 125–215°C for parabolic growth constants (and hence integrated interdiffusion coefficients) of the Ni₃Sn₄ phase shed light on the growth mechanism of the phase; whether its grain boundary controlled or lattice controlled diffusion. The location of the Kirkendall marker plane indicates that the Ni₃Sn₄ phase grows mainly by diffusion of Sn in the binary Ni–Sn system.

Keywords: diffusion, equilibrium phase, metastable phase, the Ni-Sn system

Procedia PDF Downloads 309
1224 Synthesis and Characterization of Capric-Stearic Acid/ Graphene Oxide-TiO₂ Microcapsules for Solar Energy Storage and Photocatalytic Efficiency

Authors: Ghada Ben Hamad, Zohir Younsi, Hassane Naji, Noureddine Lebaz, Naoual Belouaggadia

Abstract:

This study deals with a bifunctional micro-encapsulated phase change (MCP) material, capric-stearic acid/graphene oxide-TiO2, which has been successfully developed by in situ hydrolysis and polycondensation of tetrabutyl titanate and modification of graphene oxide (GO) on the TiO2 doped shell. The use of graphene and doped TiO2 is a promising approach to provide photocatalytic activity under visible light and improve the microcapsules physicochemical properties. The morphology and chemical structure of the resulting microcapsule samples were determined by using Fourier transform infrared (FT-IR) spectroscopy, scanning electronic microscope (SEM), and X-ray diffractometer (XRD) methods. The ultraviolet, visible spectrophotometer (UV–vis), the differential scanning calorimeter (DSC) and the thermogravimetric analyzer (TGA) were used to investigate the absorption of visible and ultraviolet (UV), the thermal properties, and thermal stabilities of the microcapsules. Note that, the visible light photocatalytic activity was assessed for the toluene and benzene gaseous removal in a suitable test room. The microcapsules exhibit an interesting spherical morphology and an average diameter of 15 to 25 μm. The addition of graphene can enhance the rigidity of the shell and improve the microcapsules thermal reliability. At the same time, the thermal analysis tests showed that the synthesized microcapsules had a high solar thermal energy-storage and better thermal stability. In addition, the capric-stearic acid microcapsules exhibited high solar photocatalytic activity with respect to atmospheric pollutants under natural sunlight. The fatty acid samples obtained with the GO/TiO2 shell showed great potential for applications of solar energy storage, solar photocatalytic degradation of air pollutants and buildings energy conservation.

Keywords: thermal energy storage, microencapsulation, titanium dioxide, photocatalysis, graphene oxide

Procedia PDF Downloads 131
1223 An Efficient Emitting Supramolecular Material Derived from Calixarene: Synthesis, Optical and Electrochemical Features

Authors: Serkan Sayin, Songul F. Varol

Abstract:

High attention on the organic light-emitting diodes has been paid since their efficient properties in the flat panel displays, and solid-state lighting was realized. Because of their high efficient electroluminescence, brightness and providing eminent in the emission range, organic light emitting diodes have been preferred a material compared with the other materials consisting of the liquid crystal. Calixarenes obtained from the reaction of p-tert-butyl phenol and formaldehyde in a suitable base have been potentially used in various research area such as catalysis, enzyme immobilization, and applications, ion carrier, sensors, nanoscience, etc. In addition, their tremendous frameworks, as well as their easily functionalization, make them an effective candidate in the applied chemistry. Herein, a calix[4]arene derivative has been synthesized, and its structure has been fully characterized using Fourier Transform Infrared Spectrophotometer (FTIR), proton nuclear magnetic resonance (¹H-NMR), carbon-13 nuclear magnetic resonance (¹³C-NMR), liquid chromatography-mass spectrometry (LC-MS), and elemental analysis techniques. The calixarene derivative has been employed as an emitting layer in the fabrication of the organic light-emitting diodes. The optical and electrochemical features of calixarane-contained organic light-emitting diodes (Clx-OLED) have been also performed. The results showed that Clx-OLED exhibited blue emission and high external quantum efficacy. As a conclusion obtained results attributed that the synthesized calixarane derivative is a promising chromophore with efficient fluorescent quantum yield that provides it an attractive candidate for fabricating effective materials for fluorescent probes and labeling studies. This study was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK Grant no. 117Z402).

Keywords: calixarene, OLED, supramolecular chemistry, synthesis

Procedia PDF Downloads 254
1222 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass

Authors: Raheleh Farzanmanesh, Christopher J. Weston

Abstract:

Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.

Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2

Procedia PDF Downloads 74
1221 Analysis of Cell Cycle Status in Radiation Non-Targeted Hepatoma Cells Using Flow Cytometry: Evidence of Dose Dependent Response

Authors: Sharmi Mukherjee, Anindita Chakraborty

Abstract:

Cellular irradiation incites complex responses including arrest of cell cycle progression. This article accentuates the effects of radiation on cell cycle status of radiation non-targeted cells. Human Hepatoma HepG2 cells were exposed to increasing doses of γ radiations (1, 2, 4, 6 Gy) and their cell culture media was transferred to non-targeted HepG2 cells cultured in other Petri plates. These radiation non-targeted cells cultured in the ICCM (Irradiated cell conditioned media) were the bystander cells on which cell cycle analysis was performed using flow cytometry. An apparent decrease in the distribution of bystander cells at G0/G1 phase was observed with increased radiation doses upto 4 Gy representing a linear relationship. This was accompanied by a gradual increase in cellular distribution at G2/M phase. Interestingly the number of cells in G2/M phase at 1 and 2 Gy irradiation was not significantly different from each other. However, the percentage of G2 phase cells at 4 and 6 Gy doses were significantly higher than 2 Gy dose indicating the IC50 dose to be between 2 and 4 Gy. Cell cycle arrest is an indirect indicator of genotoxic damage in cells. In this study, bystander stress signals through the cell culture media of irradiated cells disseminated the radiation induced DNA damages in the non-targeted cells which resulted in arrest of the cell cycle progression at G2/M phase checkpoint. This implies that actual radiation biological effects represent a penumbra with effects encompassing a larger area than the actual beam. This article highlights the existence of genotoxic damages as bystander effects of γ rays in human Hepatoma cells by cell cycle analysis and opens up avenues for appraisal of bystander stress communications between tumor cells. Contemplation of underlying signaling mechanisms can be manipulated to maximize damaging effects of radiation with minimum dose and thus has therapeutic applications.

Keywords: bystander effect, cell cycle, genotoxic damage, hepatoma

Procedia PDF Downloads 184
1220 Controlled Growth of Au Hierarchically Ordered Crystals Architectures for Electrochemical Detection of Traces of Molecules

Authors: P. Bauer, K. Mougin, V. Vignal, A. Buch, P. Ponthiaux, D. Faye

Abstract:

Nowadays, noble metallic nanostructures with unique morphology are widely used as new sensors due to their fascinating optical, electronic and catalytic properties. Among various shapes, dendritic nanostructures have attracted much attention because of their large surface-to-volume ratio, high sensitivity and special texture with sharp tips and nanoscale junctions. Several methods have been developed to fabricate those specific structures such as electrodeposition, photochemical way, seed-mediated growth or wet chemical method. The present study deals with a novel approach for a controlled growth pattern-directed organisation of Au flower-like crystals (NFs) deposited onto stainless steel plates to achieve large-scale functional surfaces. This technique consists in the deposition of a soft nanoporous template on which Au NFs are grown by electroplating and seed-mediated method. Size, morphology, and interstructure distance have been controlled by a site selective nucleation process. Dendritic Au nanostructures have appeared as excellent Raman-active candidates due to the presence of very sharp tips of multi-branched Au nanoparticles that leads to a large local field enhancement and a good SERS sensitivity. In addition, these structures have also been used as electrochemical sensors to detect traces of molecules present in a solution. A correlation of the number of active sites on the surface and the current charge by both colorimetric method and cyclic voltammetry of gold structures have allowed a calibration of the system. This device represents a first step for the fabrication of MEMs platform that could ultimately be integrated into a lab-on-chip system. It also opens pathways to several technologically large-scale nanomaterials fabrication such as hierarchically ordered crystal architectures for sensor applications.

Keywords: dendritic, electroplating, gold, template

Procedia PDF Downloads 187
1219 Carbon-Based Electrodes for Parabens Detection

Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea

Abstract:

Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.

Keywords: carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben

Procedia PDF Downloads 225
1218 Electronics Thermal Management Driven Design of an IP65-Rated Motor Inverter

Authors: Sachin Kamble, Raghothama Anekal, Shivakumar Bhavi

Abstract:

Thermal management of electronic components packaged inside an IP65 rated enclosure is of prime importance in industrial applications. Electrical enclosure protects the multiple board configurations such as inverter, power, controller board components, busbars, and various power dissipating components from harsh environments. Industrial environments often experience relatively warm ambient conditions, and the electronic components housed in the enclosure dissipate heat, due to which the enclosures and the components require thermal management as well as reduction of internal ambient temperatures. Design of Experiments based thermal simulation approach with MOSFET arrangement, Heat sink design, Enclosure Volume, Copper and Aluminum Spreader, Power density, and Printed Circuit Board (PCB) type were considered to optimize air temperature inside the IP65 enclosure to ensure conducive operating temperature for controller board and electronic components through the different modes of heat transfer viz. conduction, natural convection and radiation using Ansys ICEPAK. MOSFET’s with the parallel arrangement, IP65 enclosure molded heat sink with rectangular fins on both enclosures, specific enclosure volume to satisfy the power density, Copper spreader to conduct heat to the enclosure, optimized power density value and selecting Aluminum clad PCB which improves the heat transfer were the contributors towards achieving a conducive operating temperature inside the IP-65 rated Motor Inverter enclosure. A reduction of 52 ℃ was achieved in internal ambient temperature inside the IP65 enclosure between baseline and final design parameters, which met the operative temperature requirements of the electronic components inside the IP-65 rated Motor Inverter.

Keywords: Ansys ICEPAK, aluminium clad PCB, IP 65 enclosure, motor inverter, thermal simulation

Procedia PDF Downloads 124
1217 Incorporating Adult Learners’ Interests into Learning Styles: Enhancing Education for Lifelong Learners

Authors: Christie DeGregorio

Abstract:

In today's rapidly evolving educational landscape, adult learners are becoming an increasingly significant demographic. These individuals often possess a wealth of life experiences and diverse interests that can greatly influence their learning styles. Recognizing and incorporating these interests into educational practices can lead to enhanced engagement, motivation, and overall learning outcomes for adult learners. This essay aims to explore the significance of incorporating adult learners' interests into learning styles and provide an overview of the methodologies used in related studies. When investigating the incorporation of adult learners' interests into learning styles, researchers have employed various methodologies to gather valuable insights. These methodologies include surveys, interviews, case studies, and classroom observations. Surveys and interviews allow researchers to collect self-reported data directly from adult learners, providing valuable insights into their interests, preferences, and learning styles. Case studies offer an in-depth exploration of individual adult learners, highlighting how their interests can be integrated into personalized learning experiences. Classroom observations provide researchers with a firsthand understanding of the dynamics between adult learners' interests and their engagement within a learning environment. The major findings from studies exploring the incorporation of adult learners' interests into learning styles reveal the transformative impact of this approach. Firstly, aligning educational content with adult learners' interests increases their motivation and engagement in the learning process. By connecting new knowledge and skills to topics they are passionate about, adult learners become active participants in their own education. Secondly, integrating interests into learning styles fosters a sense of relevance and applicability. Adult learners can see the direct connection between the knowledge they acquire and its real-world applications, which enhances their ability to transfer learning to various contexts. Lastly, personalized learning experiences tailored to individual interests enable adult learners to take ownership of their educational journey, promoting lifelong learning habits and self-directedness.

Keywords: integration, personalization, transferability, learning style

Procedia PDF Downloads 75
1216 DNA-Polycation Condensation by Coarse-Grained Molecular Dynamics

Authors: Titus A. Beu

Abstract:

Many modern gene-delivery protocols rely on condensed complexes of DNA with polycations to introduce the genetic payload into cells by endocytosis. In particular, polyethyleneimine (PEI) stands out by a high buffering capacity (enabling the efficient condensation of DNA) and relatively simple fabrication. Realistic computational studies can offer essential insights into the formation process of DNA-PEI polyplexes, providing hints on efficient designs and engineering routes. We present comprehensive computational investigations of solvated PEI and DNA-PEI polyplexes involving calculations at three levels: ab initio, all-atom (AA), and coarse-grained (CG) molecular mechanics. In the first stage, we developed a rigorous AA CHARMM (Chemistry at Harvard Macromolecular Mechanics) force field (FF) for PEI on the basis of accurate ab initio calculations on protonated model pentamers. We validated this atomistic FF by matching the results of extensive molecular dynamics (MD) simulations of structural and dynamical properties of PEI with experimental data. In a second stage, we developed a CG MARTINI FF for PEI by Boltzmann inversion techniques from bead-based probability distributions obtained from AA simulations and ensuring an optimal match between the AA and CG structural and dynamical properties. In a third stage, we combined the developed CG FF for PEI with the standard MARTINI FF for DNA and performed comprehensive CG simulations of DNA-PEI complex formation and condensation. Various technical aspects which are crucial for the realistic modeling of DNA-PEI polyplexes, such as options of treating electrostatics and the relevance of polarizable water models, are discussed in detail. Massive CG simulations (with up to 500 000 beads) shed light on the mechanism and provide time scales for DNA polyplex formation independence of PEI chain size and protonation pattern. The DNA-PEI condensation mechanism is shown to primarily rely on the formation of DNA bundles, rather than by changes of the DNA-strand curvature. The gained insights are expected to be of significant help for designing effective gene-delivery applications.

Keywords: DNA condensation, gene-delivery, polyethylene-imine, molecular dynamics.

Procedia PDF Downloads 120
1215 In vitro Antifungal Activity of Methanolic Extracts of Eight Various Cultivar of Persian Punica granatum L. against Candida Species

Authors: Shahindokht Bassiri-Jahromi, Mohammad Reza Pourshafie, Farzad Katiraee, Mannan Hajimahmoodi, Ehsan Mostafavi, Malihe Talebi

Abstract:

Objective: Resistance of Candida species to antifungal agents has potentially serious implications for management of infections. Candida species are now fourth common organisms isolated from hospitalized patients. It is important to increase effective therapy. In the past decade, numerous reports of treatment failures were reported. Prevention and control of these infections will require new antimicrobial agents. Plant-derived antifungal have always been a source of novel therapeutics. The aim of this study was to investigate the antifungal effect of methanolic extract of pomegranate peel and pulp against Candida species. Material and Methods: Eight cultivars of Punica granatum L. were collected from Saveh Agricultural Investigation Center in Iran. Both pomegranate pulp and peel were dried and powdered separately. The dried powders were extracted by using a soxhlet extractor. The antifungal effect of methanolic extract of pomegranate peel and pulp were determined in vitro by minimum inhibitory concentration (MIC) against five standard species of (ATCC 10231), C. parapsilosis (ATCC 22019), C. tropicalis (ATCC 750), C. glabrata (PTCC 5297), and C. kroseii (PTCC 5295). Results: Maximum inhibitions of antifungal effect were attributed to peel extract pomegranate cultivar and Candida species. The most potential antifungal inhibition among 8 different cultivars observed by sour malas, sour white peel, and sour summer extracts respectively, against five Candida strains. The antifungal activity of pulp extracts against Candida species was approximately negative. Conclusion: The use of Punica granatum peel extract has been shown to possess antifungal activities. The phytochemistry and pharmacological actions of Punica granatum peel components suggest a wide range of clinical applications for the treatment and prevention of candidiasis.

Keywords: antifungal activity, Candida species, Punica granatum L., pharmacognosy

Procedia PDF Downloads 485
1214 In situ Ortho-Quinone Methide Reactions for Construction of Flavonoids with Fused Ring Systems

Authors: Vidia A. Nuraini, Eugene M. H. Yee, Mohan Bhadbhade, David StC. Black, Naresh Kumar

Abstract:

Flavonoids are naturally occurring compounds that have been shown to exhibit a wide range of biological properties including anticancer and anti-inflammatory activities. However, flavonoids suffer from low bioavailability, which limits their overall utility for therapeutic applications. One of the methods to overcome this limitation is through structural modification of natural flavonoids. In this study, flavanone, isoflavanone, and isoflavene, were structurally modified through the introduction of additional fused-ring systems via ortho-quinone methide intermediates (o-QMs). These intermediates can readily undergo a [4+2] cycloaddition through an inverse-electron-demand Diels–Alder reaction with electron-rich dienophiles. A regioselective Mannich reaction using bis-(N,N-dimethylamino)methane was employed to generate the o-QM precursors of flavanone, isoflavanone, and isoflavene. The o-QM intermediates were subsequently generated in situ through thermal elimination of the dimethylamine functionality and reacted with a variety of dienophiles to produce novel flavonoids with fused-ring systems. A total of 21 novel flavonoid analogs were successfully synthesized. The X-ray crystal structure of cycloaddition adducts, particularly those derived from 3,4-dihydro-2H-pyran and p-methoxystyrene revealed a special case of enantiomeric disorder, where two enantiomers in equal amounts superpose with one another, with the exception for atoms that have opposite configuration. The anticancer properties of fused-ring systems derived from isoflavene were evaluated against the neuroblastoma SKN-BE(2)C, the triple negative breast cancer MDA-MB-231, and the glioblastoma U87 cancer cell lines. One of these cycloaddition adducts had displayed improved anti-proliferative activity against MDA-MB-231 and U87 cancer cell lines as compared to the parent compound. Further anticancer and anti-inflammatory activities of the flavanone and isoflavanone analogs are currently being investigated.

Keywords: Diels-Alder reaction, flavonoids, Mannich reaction, ortho-quinone methide.

Procedia PDF Downloads 253
1213 Investigating the Motion of a Viscous Droplet in Natural Convection Using the Level Set Method

Authors: Isadora Bugarin, Taygoara F. de Oliveira

Abstract:

Binary fluids and emulsions, in general, are present in a vast range of industrial, medical, and scientific applications, showing complex behaviors responsible for defining the flow dynamics and the system operation. However, the literature describing those highlighted fluids in non-isothermal models is currently still limited. The present work brings a detailed investigation on droplet migration due to natural convection in square enclosure, aiming to clarify the effects of drop viscosity on the flow dynamics by showing how distinct viscosity ratios (droplet/ambient fluid) influence the drop motion and the final movement pattern kept on stationary regimes. The analysis was taken by observing distinct combinations of Rayleigh number, drop initial position, and viscosity ratios. The Navier-Stokes and Energy equations were solved considering the Boussinesq approximation in a laminar flow using the finite differences method combined with the Level Set method for binary flow solution. Previous results collected by the authors showed that the Rayleigh number and the drop initial position affect drastically the motion pattern of the droplet. For Ra ≥ 10⁴, two very marked behaviors were observed accordingly with the initial position: the drop can travel either a helical path towards the center or a cyclic circular path resulting in a closed cycle on the stationary regime. The variation of viscosity ratio showed a significant alteration of pattern, exposing a large influence on the droplet path, capable of modifying the flow’s behavior. Analyses on viscosity effects on the flow’s unsteady Nusselt number were also performed. Among the relevant contributions proposed in this work is the potential use of the flow initial conditions as a mechanism to control the droplet migration inside the enclosure.

Keywords: binary fluids, droplet motion, level set method, natural convection, viscosity

Procedia PDF Downloads 122
1212 Method for Auto-Calibrate Projector and Color-Depth Systems for Spatial Augmented Reality Applications

Authors: R. Estrada, A. Henriquez, R. Becerra, C. Laguna

Abstract:

Spatial Augmented Reality is a variation of Augmented Reality where the Head-Mounted Display is not required. This variation of Augmented Reality is useful in cases where the need for a Head-Mounted Display itself is a limitation. To achieve this, Spatial Augmented Reality techniques substitute the technological elements of Augmented Reality; the virtual world is projected onto a physical surface. To create an interactive spatial augmented experience, the application must be aware of the spatial relations that exist between its core elements. In this case, the core elements are referred to as a projection system and an input system, and the process to achieve this spatial awareness is called system calibration. The Spatial Augmented Reality system is considered calibrated if the projected virtual world scale is similar to the real-world scale, meaning that a virtual object will maintain its perceived dimensions when projected to the real world. Also, the input system is calibrated if the application knows the relative position of a point in the projection plane and the RGB-depth sensor origin point. Any kind of projection technology can be used, light-based projectors, close-range projectors, and screens, as long as it complies with the defined constraints; the method was tested on different configurations. The proposed procedure does not rely on a physical marker, minimizing the human intervention on the process. The tests are made using a Kinect V2 as an input sensor and several projection devices. In order to test the method, the constraints defined were applied to a variety of physical configurations; once the method was executed, some variables were obtained to measure the method performance. It was demonstrated that the method obtained can solve different arrangements, giving the user a wide range of setup possibilities.

Keywords: color depth sensor, human computer interface, interactive surface, spatial augmented reality

Procedia PDF Downloads 124
1211 A Gold-Based Nanoformulation for Delivery of the CRISPR/Cas9 Ribonucleoprotein for Genome Editing

Authors: Soultana Konstantinidou, Tiziana Schmidt, Elena Landi, Alessandro De Carli, Giovanni Maltinti, Darius Witt, Alicja Dziadosz, Agnieszka Lindstaedt, Michele Lai, Mauro Pistello, Valentina Cappello, Luciana Dente, Chiara Gabellini, Piotr Barski, Vittoria Raffa

Abstract:

CRISPR/Cas9 technology has gained the interest of researchers in the field of biotechnology for genome editing. Since its discovery as a microbial adaptive immune defense, this system has been widely adopted and is acknowledged for having a variety of applications. However, critical barriers related to safety and delivery are persisting. Here, we propose a new concept of genome engineering, which is based on a nano-formulation of Cas9. The Cas9 enzyme was conjugated to a gold nanoparticle (AuNP-Cas9). The AuNP-Cas9 maintained its cleavage efficiency in vitro, to the same extent as the ribonucleoprotein, including non-conjugated Cas9 enzyme, and showed high gene editing efficiency in vivo in zebrafish embryos. Since CRISPR/Cas9 technology is extensively used in cancer research, melanoma was selected as a validation target. Cell studies were performed in A375 human melanoma cells. Particles per se had no impact on cell metabolism and proliferation. Intriguingly, the AuNP-Cas9 internalized spontaneously in cells and localized as a single particle in the cytoplasm and organelles. More importantly, the AuNP-Cas9 showed a high nuclear localization signal. The AuNP-Cas9, overcoming the delivery difficulties of Cas9, could be used in cellular biology and localization studies. Taking advantage of the plasmonic properties of gold nanoparticles, this technology could potentially be a bio-tool for combining gene editing and photothermal therapy in cancer cells. Further work will be focused on intracellular interactions of the nano-formulation and characterization of the optical properties.

Keywords: CRISPR/Cas9, gene editing, gold nanoparticles, nanotechnology

Procedia PDF Downloads 101
1210 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome

Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco

Abstract:

Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.

Keywords: data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index

Procedia PDF Downloads 135
1209 Extraction, Characterization, and Applicability of Rich β-Glucan Fractions from Fungal Biomass

Authors: Zaida Perez-Bassart, Berta Polanco-Estibalez, Maria Jose Fabra, Amparo Lopez-Rubio, Antonio Martinez-Abad

Abstract:

Mushroom production has enormously increased in recent years, not only as food products but also for applications in pharmaceuticals, nutraceuticals, and cosmetics. Consequently, interest in its chemical composition, nutritional value, and therapeutic properties has also increased. Fungi are rich in bioactive compounds such as polysaccharides, polyphenols, glycopeptides, and ergosterol, of great medicinal value, but within polysaccharides, β-glucans are the most prominent molecules. They are formed by D-glucose monomers, linked by β-glucosidic bonds β-(1,3) with side chains linked by β-(1,6) bonds. The number and position of the β-(1,6) branches strongly influence the arrangement of the tertiary structure, which, together with the molecular weight, determine the different attributed bioactivities (immunostimulating, anticancer, antimicrobial, prebiotic, etc.) and physico-chemical properties (solubility, bioaccessibility, viscosity or emulsifying). On the other hand, there is a growing interest in the study of fungi as an alternative source of chitin obtained from the by-products of the fungal industry. In this work, a cascade extraction process using aqueous neutral and alkaline treatments was carried out for Grifola frondosa and Lentinula edodes, and the compositional analysis and functional properties of each fraction were characterized. Interestingly, the first fraction obtained by using aqueous treatment at room temperature was the richest in polysaccharides, proteins, and polyphenols, thus obtaining a greater antioxidant capacity than in the other fractions. In contrast, the fractions obtained by alkaline treatments showed a higher degree of β-glucans purification compared to aqueous extractions but a lower extraction yield. Results revealed the different structural recalcitrance of β-glucans, preferentially linked to proteins or chitin depending on the fungus type, which had a direct impact on the functionalities and bioactivities of each fraction.

Keywords: fungi, mushroom, β-glucans, chitin

Procedia PDF Downloads 136
1208 Nanopriming Potential of Metal Nanoparticles against Internally Seed Borne Pathogen Ustilago triciti

Authors: Anjali Sidhu, Anju Bala, Amit Kumar

Abstract:

Metal nanoparticles have the potential to revolutionize the agriculture owing to sizzling interdisciplinary nano-technological application domain. Numerous patents and products incorporating engineered nanoparticles (NPs) entered into agro-applications with the collective goal to promote proficiency as well as sustainability with lower input and generating meager waste than conventional products and approaches. Loose smut of wheat caused by Ustilago segetum tritici is an internally seed-borne pathogen. It is dormant in the seed unless the seed germinates and its symptoms are expressed at the reproductive stage of the plant only. Various seed treatment agents are recommended for this disease but due to the inappropriate methods of seed treatments used by farmers, each and every seed may not get treated, and the infected seeds escape the fungicidal action. The antimicrobial potential and small size of nanoparticles made them the material of choice as they could enter each seed and restrict the pathogen inside the seed due to the availability of more number of nanoparticles per unit volume of the nanoformulations. Nanoparticles of diverse nature known for their in vitro antimicrobial activity viz. ZnO, MgO, CuS and AgNPs were synthesized, surface modified and characterized by traditional methods. They were applied on infected wheat seeds which were then grown in pot conditions, and their mycelium was tracked in the shoot and leaf region of the seedlings by microscopic staining techniques. Mixed responses of inhibition of this internal mycelium were observed. The time and method of application concluded to be critical for application, which was optimised in the present work. The results implicated that there should be field trails to get final fate of these pot trails up to commercial level. The success of their field trials could be interpreted as a revolution to replace high dose organic fungicides of high residue behaviour.

Keywords: metal nanoparticles, nanopriming, seed borne pathogen, Ustilago segetum tritici

Procedia PDF Downloads 145
1207 Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk

Authors: Masbubul Ishtiaque Ahmed

Abstract:

Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity.

Keywords: food chain, determine the levels of minerals, trace elements, heavy metals, production and use, human exposure, toxicity, carcinogenicity

Procedia PDF Downloads 286
1206 2D Ferromagnetism in Van der Waals Bonded Fe₃GeTe₂

Authors: Ankita Tiwari, Jyoti Saini, Subhasis Ghosh

Abstract:

For many years, researchers have been fascinated by the subject of how properties evolve as dimensionality is lowered. Early on, it was shown that the presence of a significant magnetic anisotropy might compensate for the lack of long-range (LR) magnetic order in a low-dimensional system (d < 3) with continuous symmetry, as proposed by Hohenberg-Mermin and Wagner (HMW). Strong magnetic anisotropy allows an LR magnetic order to stabilize in two dimensions (2D) even in the presence of stronger thermal fluctuations which is responsible for the absence of Heisenberg ferromagnetism in 2D. Van der Waals (vdW) ferromagnets, including CrI₃, CrTe₂, Cr₂X₂Te₆ (X = Si and Ge) and Fe₃GeTe₂, offer a nearly ideal platform for studying ferromagnetism in 2D. Fe₃GeTe₂ is the subject of extensive investigation due to its tunable magnetic properties, high Curie temperature (Tc ~ 220K), and perpendicular magnetic anisotropy. Many applications in the field of spintronics device development have been quite active due to these appealing features of Fe₃GeTe₂. Although it is known that LR-driven ferromagnetism is necessary to get around the HMW theorem in 2D experimental realization, Heisenberg 2D ferromagnetism remains elusive in condensed matter systems. Here, we show that Fe₃GeTe₂ hosts both localized and delocalized spins, resulting in itinerant and local-moment ferromagnetism. The presence of LR itinerant interaction facilitates to stabilize Heisenberg ferromagnet in 2D. With the help of Rhodes-Wohlfarth (RW) and generalized RW-based analysis, Fe₃GeTe₂ has been shown to be a 2D ferromagnet with itinerant magnetism that can be modulated by an external magnetic field. Hence, the presence of both local moment and itinerant magnetism has made this system interesting in terms of research in low dimensions. We have also rigorously performed critical analysis using an improvised method. We show that the variable critical exponents are typical signatures of 2D ferromagnetism in Fe₃GeTe₂. The spontaneous magnetization exponent β changes the universality class from mean-field to 2D Heisenberg with field. We have also confirmed the range of interaction via the renormalization group (RG) theory. According to RG theory, Fe₃GeTe₂ is a 2D ferromagnet with LR interactions.

Keywords: Van der Waal ferromagnet, 2D ferromagnetism, phase transition, itinerant ferromagnetism, long range order

Procedia PDF Downloads 72
1205 Performance Analysis of Microelectromechanical Systems-Based Piezoelectric Energy Harvester

Authors: Sanket S. Jugade, Swapneel U. Naphade, Satyabodh M. Kulkarni

Abstract:

Microscale energy harvesters can be used to convert ambient mechanical vibrations to electrical energy. Such devices have great applications in low powered electronics in remote environments like powering wireless sensor nodes of Internet of Things, lightings on highways or in ships, etc. In this paper, a Microelectromechanical systems (MEMS) based energy harvester has been modeled using Analytical and Finite Element Method (FEM). The device consists of a microcantilever with a proof mass attached to its free end and a Polyvinylidene Fluoride (PVDF) piezoelectric thin film deposited on the surface of microcantilever in a unimorph or bimorph configuration. For the analytical method, the energy harvester was modeled as an equivalent electrical system in SIMULINK. The Finite element model was developed and analyzed using the commercial package COMSOL Multiphysics. The modal analysis was performed first to find the fundamental natural frequency and its variation with geometrical parameters of the system. Then the harmonic analysis was performed to find the input mechanical power, output electrical voltage, and power for a range of excitation frequencies and base acceleration values. The variation of output power with load resistance, PVDF film thickness, and damping values was also found out. The results from FEM were then validated with that of the analytical model. Finally, the performance of the device was optimized with respect to various electro-mechanical parameters. For a unimorph configuration consisting of single crystal silicon microcantilever of dimensions 8mm×2mm×80µm and proof mass of 9.32 mg with optimal values of the thickness of PVDF film and load resistance as 225 µm and 20 MΩ respectively, the maximum electrical power generated for base excitation of 0.2g at 630 Hz is 0.9 µW.

Keywords: bimorph, energy harvester, FEM, harmonic analysis, MEMS, PVDF, unimorph

Procedia PDF Downloads 190
1204 Applying Multiple Kinect on the Development of a Rapid 3D Mannequin Scan Platform

Authors: Shih-Wen Hsiao, Yi-Cheng Tsao

Abstract:

In the field of reverse engineering and creative industries, applying 3D scanning process to obtain geometric forms of the objects is a mature and common technique. For instance, organic objects such as faces and nonorganic objects such as products could be scanned to acquire the geometric information for further application. However, although the data resolution of 3D scanning device is increasing and there are more and more abundant complementary applications, the penetration rate of 3D scanning for the public is still limited by the relative high price of the devices. On the other hand, Kinect, released by Microsoft, is known for its powerful functions, considerably low price, and complete technology and database support. Therefore, related studies can be done with the applying of Kinect under acceptable cost and data precision. Due to the fact that Kinect utilizes optical mechanism to extracting depth information, limitations are found due to the reason of the straight path of the light. Thus, various angles are required sequentially to obtain the complete 3D information of the object when applying a single Kinect for 3D scanning. The integration process which combines the 3D data from different angles by certain algorithms is also required. This sequential scanning process costs much time and the complex integration process often encounter some technical problems. Therefore, this paper aimed to apply multiple Kinects simultaneously on the field of developing a rapid 3D mannequin scan platform and proposed suggestions on the number and angles of Kinects. In the content, a method of establishing the coordination based on the relation between mannequin and the specifications of Kinect is proposed, and a suggestion of angles and number of Kinects is also described. An experiment of applying multiple Kinect on the scanning of 3D mannequin is constructed by Microsoft API, and the results show that the time required for scanning and technical threshold can be reduced in the industries of fashion and garment design.

Keywords: 3D scan, depth sensor, fashion and garment design, mannequin, multiple Kinect sensor

Procedia PDF Downloads 368
1203 Determination of the Effectiveness of Some Methods Used in Greater Wax Moth (Galleria mellonella L.) in Honeycombs

Authors: Neslihan Ozsoy Taskiran, Miray Dayioglu, Belgin Gunbey, Banu Yucel, Cigdem Takma, Unal Karik, Tugce Olgun, Levent Aydin

Abstract:

A greater wax moth (Galleria mellonella L.), which is one of the most important pests after Varroa, plays a role in the transportation of many pathogens into the hive as well as damage to the honeycombs, and beekeepers suffer economically. Due to the risk that some of the methods against this pest may cause residue in bee products, and it can be harmful to the health of people who consume these products. Therefore, the most appropriate, most economical, and effective method should be applied in the moth control. For this purpose, in the first phase of the project (2017-2018), planned to be 2-stage in the Aegean Agricultural Research Institute in 2017-2020, the honeycombs, certified with good agricultural practice, were kept in a favorable condition for moths. Later, applications (Sulfur - B401 - Walnut (Leaf & Smoker) - lavender essential oil (1cc & 2cc & 3cc & 4cc) - laurel essential oil (1cc & 2cc & 3cc & 4cc) - control) were applied to the honeycombs with moths. In 2017, the B401 group had the highest wax moth damage area, and the group with the lowest wax moth damage area was determined as lavender 1cc; In 2018, the highest wax moth damage area was found in the walnut smoker group, while the lowest wax moth damage area was found in sulfur, walnut leaves, laurel 1cc - 2cc - 4cc, lavender 1cc - 2cc - 3cc - 4cc and control groups. In addition, sulfur residue amount (mean 128,18 mg/kg) in honeycomb was measured in the sulfur-treated group. Phase 1 of the project was completed, and the most important sub-groups among walnut (leaf) - lavender (1cc) and laurel (4cc) groups were identified. Accordingly, it is planned to carry out these treatments ((sulfur - B401 - walnut (leaf) - lavender (1cc) and laurel (4cc)) on honeycombs with do not contain moths, and later, it is planned to examine the effects of the treatment on the offspring area and honey yield by giving these honeycombs to the hives, in the 2nd stage of the project (2019-2020).

Keywords: honey bee, lavender essential oil, laurel essential oil, walnut, wax moth

Procedia PDF Downloads 168
1202 Comparison of Regional and Local Indwelling Catheter Techniques to Prolong Analgesia in Total Knee Arthroplasty Procedures: Continuous Peripheral Nerve Block and Continuous Periarticular Infiltration

Authors: Jared Cheves, Amanda DeChent, Joyce Pan

Abstract:

Total knee replacements (TKAs) are one of the most common but painful surgical procedures performed in the United States. Currently, the gold standard for postoperative pain management is the utilization of opioids. However, in the wake of the opioid epidemic, the healthcare system is attempting to reduce opioid consumption by trialing innovative opioid sparing analgesic techniques such as continuous peripheral nerve blocks (CPNB) and continuous periarticular infiltration (CPAI). The alleviation of pain, particularly during the first 72 hours postoperatively, is of utmost importance due to its association with delayed recovery, impaired rehabilitation, immunosuppression, the development of chronic pain, the development of rebound pain, and decreased patient satisfaction. While both CPNB and CPAI are being used today, there is limited evidence comparing the two to the current standard of care or to each other. An extensive literature review was performed to explore the safety profiles and effectiveness of CPNB and CPAI in reducing reported pain scores and decreasing opioid consumption. The literature revealed the usage of CPNB contributed to lower pain scores and decreased opioid use when compared to opioid-only control groups. Additionally, CPAI did not improve pain scores or decrease opioid consumption when combined with a multimodal analgesic (MMA) regimen. When comparing CPNB and CPAI to each other, neither unanimously lowered pain scores to a greater degree, but the literature indicates that CPNB decreased opioid consumption more than CPAI. More research is needed to further cement the efficacy of CPNB and CPAI as standard components of MMA in TKA procedures. In addition, future research can also focus on novel catheter-free applications to reduce the complications of continuous catheter analgesics.

Keywords: total knee arthroplasty, continuous peripheral nerve blocks, continuous periarticular infiltration, opioid, multimodal analgesia

Procedia PDF Downloads 98
1201 Off-Line Text-Independent Arabic Writer Identification Using Optimum Codebooks

Authors: Ahmed Abdullah Ahmed

Abstract:

The task of recognizing the writer of a handwritten text has been an attractive research problem in the document analysis and recognition community with applications in handwriting forensics, paleography, document examination and handwriting recognition. This research presents an automatic method for writer recognition from digitized images of unconstrained writings. Although a great effort has been made by previous studies to come out with various methods, their performances, especially in terms of accuracy, are fallen short, and room for improvements is still wide open. The proposed technique employs optimal codebook based writer characterization where each writing sample is represented by a set of features computed from two codebooks, beginning and ending. Unlike most of the classical codebook based approaches which segment the writing into graphemes, this study is based on fragmenting a particular area of writing which are beginning and ending strokes. The proposed method starting with contour detection to extract significant information from the handwriting and the curve fragmentation is then employed to categorize the handwriting into Beginning and Ending zones into small fragments. The similar fragments of beginning strokes are grouped together to create Beginning cluster, and similarly, the ending strokes are grouped to create the ending cluster. These two clusters lead to the development of two codebooks (beginning and ending) by choosing the center of every similar fragments group. Writings under study are then represented by computing the probability of occurrence of codebook patterns. The probability distribution is used to characterize each writer. Two writings are then compared by computing distances between their respective probability distribution. The evaluations carried out on ICFHR standard dataset of 206 writers using Beginning and Ending codebooks separately. Finally, the Ending codebook achieved the highest identification rate of 98.23%, which is the best result so far on ICFHR dataset.

Keywords: off-line text-independent writer identification, feature extraction, codebook, fragments

Procedia PDF Downloads 513
1200 Experimental Studies on Stress Strain Behavior of Expanded Polystyrene Beads-Sand Mixture

Authors: K. N. Ashna

Abstract:

Lightweight fills are a viable alternative where weak soils such as soft clay, peat, and loose silt are encountered. Materials such as Expanded Polystyrene (EPS) geo-foam, plastics, tire wastes, rubber wastes have been used along with soil in order to obtain a lightweight fill. Out of these, Expanded Polystyrene (EPS) geo-foam has gained wide popularity in civil engineering over the past years due to its wide variety of applications. It is extremely lightweight, durable and is available in various densities to meet the strength requirements. It can be used as backfill behind retaining walls to reduce lateral load, as a fill over soft clay or weak soils to prevent the excessive settlements and to reduce seismic forces. Geo-foam is available in block form as well as beads form. In this project Expanded Polystyrene (EPS) beads of various diameters and varying densities were mixed along with sand to study their lightweight as well as strength properties. Four types of EPS beads were used 1mm, 2mm, 3-7 mm and a mix of 1-7 mm. In this project, EPS beads were varied at .25%, .5%, .75% and 1% by weight of sand. A water content of 10% by weight of sand was added to prevent segregation of the mixture. Unconsolidated Unconfined (UU) tri-axial test was conducted at 100kPa, 200 kPa and 300 kPa and angle of internal friction, and cohesion was obtained. Unit weight of the mix was obtained for a relative density of 65%. The results showed that by increasing the EPS content by weight, maximum deviator stress, unit weight, angle of internal friction and initial elastic modulus decreased. An optimum EPS bead content was arrived at by considering the strength as well as the unit weight. The stress-strain behaviour of the mix was found to be dependent on type of bead, bead content and density of the beads. Finally, regression equations were developed to predict the initial elastic modulus of the mix.

Keywords: expanded polystyrene beads, geofoam, lightweight fills, stress-strain behavior, triaxial test

Procedia PDF Downloads 265
1199 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data

Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali

Abstract:

The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.

Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors

Procedia PDF Downloads 70
1198 Edible and Ecofriendly Packaging – A Trendsetter of the Modern Era – Standardization and Properties of Films and Cutleries from Food Starch

Authors: P. Raajeswari, S. M. Devatha, R. Pragatheeswari

Abstract:

The edible packaging is a new trendsetter in the era of modern packaging. The researchers and food scientist recognise edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability. Starch was extracted from different sources that contains abundantly like potato, tapioca, rice, wheat, and corn. The starch based edible films and cutleries are developed as an alternative for conventional packages providing the nutritional benefit when consumed along with the food. The development of starch based edible films by the extraction of starch from various raw ingredients at lab scale level. The films are developed by the employment of plasticiser at different concentrations of 1.5ml and 2ml. The films developed using glycerol as a plasticiser in filmogenic solution to increase the flexibility and plasticity of film. It reduces intra and intermolecular forces in starch, and it increases the mobility of starch based edible films. The films developed are tested for its functional properties such as thickness, tensile strength, elongation at break, moisture permeability, moisture content, and puncture strength. The cutleries like spoons and cups are prepared by making dough and rolling the starch along with water. The overall results showed that starch based edible films absorbed less moisture, and they also contributed to the low moisture permeability with high tensile strength. Food colorants extracted from red onion peel, pumpkin, and red amaranth adds on the nutritive value, colour, and attraction when incorporated in edible cutleries, and it doesn’t influence the functional properties. Addition of a low quantity of glycerol in edible films and colour extraction from onion peel, pumpkin, and red amaranth enhances biodegradability and provides a good quantity of nutrients when consumed. Therefore, due to its multiple advantages, food starch can serve as the best response for eco-friendly industrial products aimed to replace single use plastics at low cost.

Keywords: edible films, edible cutleries, plasticizer, glycerol, starch, functional property

Procedia PDF Downloads 186
1197 Study of the Relationship between the Civil Engineering Parameters and the Floating of Buoy Model Which Made from Expanded Polystyrene-Mortar

Authors: Panarat Saengpanya

Abstract:

There were five objectives in this study including the study of housing type with water environment, the physical and mechanical properties of the buoy material, the mechanical properties of the buoy models, the floating of the buoy models and the relationship between the civil engineering parameters and the floating of the buoy. The buoy examples made from Expanded Polystyrene (EPS) covered by 5 mm thickness of mortar with the equal thickness on each side. Specimens are 0.05 m cubes tested at a displacement rate of 0.005 m/min. The existing test method used to assess the parameters relationship is ASTM C 109 to provide comparative results. The results found that the three type of housing with water environment were Stilt Houses, Boat House, and Floating House. EPS is a lightweight material that has been used in engineering applications since at least the 1950s. Its density is about a hundredth of that of mortar, while the mortar strength was found 72 times of EPS. One of the advantage of composite is that two or more materials could be combined to take advantage of the good characteristics of each of the material. The strength of the buoy influenced by mortar while the floating influenced by EPS. Results showed the buoy example compressed under loading. The Stress-Strain curve showed the high secant modulus before reached the peak value. The failure occurred within 10% strain then the strength reduces while the strain was continuing. It was observed that the failure strength reduced by increasing the total volume of examples. For the buoy examples with same area, an increase of the failure strength is found when the high dimension is increased. The results showed the relationship between five parameters including the floating level, the bearing capacity, the volume, the high dimension and the unit weight. The study found increases in high of buoy lead to corresponding decreases in both modulus and compressive strength. The total volume and the unit weight had relationship with the bearing capacity of the buoy.

Keywords: floating house, buoy, floating structure, EPS

Procedia PDF Downloads 146