Search results for: recovery ratio
5604 Synthesis of DHA Rich Glycerides with Immobilized Lipases from Mucor miehei and Rhizopus oryzae
Authors: Satyendra P. Chaurasia, Aditi Sharma, Ajay K. Dalai
Abstract:
The esterification of Docosahexaenoic acid (DHA) with glycerol using immobilized Mucor mie-hei lipase (MML) and Rhizopus oryzae lipase (ROL) have been studied in the present paper to synthesize triglycerides (TG) rich in DHA. Both immobilized lipases (MML and ROL), and their support materials (immobead-150 and ion-exchange resin) were characterized and compared for surface properties with BET, for chemical functional groups with FT-IR, and for particle size distribution with particle size analyzer. The most suitable reaction conditions for synthesis of DHA rich TG in biphasic solvent system were found as 1:3 (wt/wt) glycerol to DHA ratio, 1:1 (wt/wt) buffer to DHA ratio, 1:1 (wt/wt) solvent to DHA ratio at 50 ºC temperature, and 600 rpm speed of agitation with 100 mg of immobilized lipases. Maximum 95.9 % esterification was obtained with immobilized MML in 14 days reaction with formation of 65.7 wt% DHA rich TG. Whereas, immobilized ROL has shown formation of only 23.8 wt% DHA rich TG with total 78.9 % esterification in 15 days. Additionally, repeated use of both immobilized lipases was con-ducted up to five cycles, indicated 50.4% and 41.2 % activity retention after fifth repeated use of immobilized MML and ROL, respectively.Keywords: DHA, immobilized Mucor miehei lipase, Rhizopus oryzae lipase, esterification
Procedia PDF Downloads 3545603 Impact of Lack of Testing on Patient Recovery in the Early Phase of COVID-19: Narratively Collected Perspectives from a Remote Monitoring Program
Authors: Nicki Mohammadi, Emma Reford, Natalia Romano Spica, Laura Tabacof, Jenna Tosto-Mancuso, David Putrino, Christopher P. Kellner
Abstract:
Introductory Statement: The onset of the COVID-19 pandemic demanded an unprecedented need for the rapid development, dispersal, and application of infection testing. However, despite the impressive mobilization of resources, individuals were incredibly limited in their access to tests, particularly during the initial months of the pandemic (March-April 2020) in New York City (NYC). Access to COVID-19 testing is crucial in understanding patients’ illness experiences and integral to the development of COVID-19 standard-of-care protocols, especially in the context of overall access to healthcare resources. Succinct Description of basic methodologies: 18 Patients in a COVID-19 Remote Patient Monitoring Program (Precision Recovery within the Mount Sinai Health System) were interviewed regarding their experience with COVID-19 during the first wave (March-May 2020) of the COVID-19 pandemic in New York City. Patients were asked about their experiences navigating COVID-19 diagnoses, the health care system, and their recovery process. Transcribed interviews were analyzed for thematic codes, using grounded theory to guide the identification of emergent themes and codebook development through an iterative process. Data coding was performed using NVivo12. References for the domain “testing” were then extracted and analyzed for themes and statistical patterns. Clear Indication of Major Findings of the study: 100% of participants (18/18) referenced COVID-19 testing in their interviews, with a total of 79 references across the 18 transcripts (average: 4.4 references/interview; 2.7% interview coverage). 89% of participants (16/18) discussed the difficulty of access to testing, including denial of testing without high severity of symptoms, geographical distance to the testing site, and lack of testing resources at healthcare centers. Participants shared varying perspectives on how the lack of certainty regarding their COVID-19 status affected their course of recovery. One participant shared that because she never tested positive she was shielded from her anxiety and fear, given the death toll in NYC. Another group of participants shared that not having a concrete status to share with family, friends and professionals affected how seriously onlookers took their symptoms. Furthermore, the absence of a positive test barred some individuals from access to treatment programs and employment support. Concluding Statement: Lack of access to COVID-19 testing in the first wave of the pandemic in NYC was a prominent element of patients’ illness experience, particularly during their recovery phase. While for some the lack of concrete results was protective, most emphasized the invalidating effect this had on the perception of illness for both self and others. COVID-19 testing is now widely accessible; however, those who are unable to demonstrate a positive test result but who are still presumed to have had COVID-19 in the first wave must continue to adapt to and live with the effects of this gap in knowledge and care on their recovery. Future efforts are required to ensure that patients do not face barriers to care due to the lack of testing and are reassured regarding their access to healthcare. Affiliations- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 2Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NYKeywords: accessibility, COVID-19, recovery, testing
Procedia PDF Downloads 1935602 Preformed Au Colloidal Nanoparticles Immobilised on NiO as Highly Efficient Heterogeneous Catalysts for Reduction of 4-Nitrophenol to 4-Aminophenol
Authors: Khaled Alshammari
Abstract:
A facile approach to synthesizing highly active and stable Au/NiO catalysts for the hydrogenation of nitro-aromatics is reported. Preformed gold nanoparticles have been immobilized onto NiO using a colloidal method. In this article, the reduction of 4-nitrophenol with NaBH4 has been used as a model reaction to investigate the catalytic activity of synthesized Au/NiO catalysts. In addition, we report a systematic study of the reduction kinetics and the influence of specific reaction parameters such as (i) temperature, (ii) stirring rate, (iii) sodium borohydride concentration and (iv) substrate/metal molar ratio. The reaction has been performed at a substrate/metal molar ratio of 7.4, a ratio significantly higher than previously reported. The reusability of the catalyst has been examined, with little to no decrease in activity observed over 5 catalytic cycles. Systematic variation of Au loading reveals the successful synthesis of low-cost and efficient Au/NiO catalysts at very low Au content and using high substrate/metal molar ratios.Keywords: nonochemistry, catalyst, nanoparticles supported, characterization of materials, colloidal nanoparticles
Procedia PDF Downloads 655601 Optimization of Wavy Channel Using Genetic Algorithm
Authors: Yue-Tzu Yang, Peng-Jen Chen
Abstract:
The present study deals with the numerical optimization of wavy channel with the help of genetic algorithm (GA). Three design variables related to the wave amplitude (A), the wavelength (λ) and the channel aspect ratio (α) are chosen and their ranges are decided through preliminary calculations of three-dimensional Navier-stokes and energy equations. A parametric study is also performed to show the effects of different design variables on the overall performance of the wavy channel. Objective functions related to the heat transfer and pressure drop, performance factor (PF) is formulated to analyze the performance of the wavy channel. The numerical results show that the wave amplitude and the channel aspect ratio have significant effects on the thermal performance. It can improve the performance of the wavy channels by increasing wave amplitude or decreasing the channel aspect ratio. Increasing wavelengths have no significant effects on the heat transfer performance.Keywords: wavy channel, genetic algorithm, optimization, numerical simulation
Procedia PDF Downloads 3015600 The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite
Authors: S. Sharma, U. Batra, S. Kapoor, A. Dua
Abstract:
In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the as-synthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p < 0.0001, two way Anova), however, these were independent of TEA addition (p > 0.15, two way Anova). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p < 0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance.Keywords: capping agent, hydroxyapatite, regression analysis, sol-gel, 2- sample t-test, two-way analysis of variance (ANOVA)
Procedia PDF Downloads 3705599 In-Cylinder Exhaust Heat Recovery of an I. C. Engine Using Water Injection
Authors: Jayakrishnan U.
Abstract:
A concept of adding two strokes to a four stroke Otto or Diesel engine cycle presented here for the waste heat recovery in a four stroke internal combustion engine. Four stroke Diesel cycle and Otto cycle engines have very low thermal efficiency due to high amount of energy loss in exhaust and also on the cooling of the engine. It is estimated about 35 percent of fuel energy is lost in exhaust of engine and 30 percent in cooling of engine. So by modifying a four-stroke Otto or Diesel engine by adding two-stroke heat recovery steam cycle is presented here. Water injection is used to get an additional power stroke by partial compression of the exhaust gases at the end of third stroke in a four stroke I.C.Engine. It is the conversion of a four-stroke cycle to a six-stroke cycle. By taking a four stroke petrol engine of known dimensions, an ideal thermodynamic model is used to analyse and calculate the events of exhaust gas compression and following two strokes of water injection. By changing the exhaust valve closing timing during exhaust stroke and analysing it on various points, an optimum amount of exhaust gas re-compression and amount of water injection can be found for maximizing efficiency and fuel economy. It is achieved by changing the exhaust valve timing and finding an optimum amount of exhaust re-compression, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). Specific fuel consumption of the engine also decreases increasing the fuel economy. The valve closing timings for maximum MEPsteam is limited by either 1 bar or dew point temperature of expansion gas or moisture mixture to avoid moisture formation. By modifying the four-stroke Otto or Diesel cycle by adding two water injection stroke has the potential to significantly increase the engine efficiency and fuel economy.Keywords: internal combustion engine, engine efficiency, six-stroke cycle, water injection, specific fuel consumption
Procedia PDF Downloads 3045598 Study of Individual Parameters on the Enzymatic Glycosidation of Betulinic Acid by Novozyme-435
Authors: A. U. Adamu, Hamisu Abdu, A. A. Saidu
Abstract:
The enzymatic synthesis of 3-O-β-D-glucopyranoside-betulinic acid using Novozyme-435 as a catalyst was studied. The effect of various parameters such as substrate molar ratio, reaction temperature, reaction time, re-used enzymes and amount of enzymes were investigated. The optimum rection conditions for the enzymatic glycosidation of betulinic acid in an organic solvent using Novozym-435 was found to be at 1:1.2 substrate molar ratio, 55oC, 24 h and 180 mg of enzymes with percentage conversion of 88.69 %.Keywords: betulinic acid, glycosidation, novozyme-435, optimization
Procedia PDF Downloads 4265597 Influence of the Adsorption of Anionic–Nonionic Surfactants/Silica Nanoparticles Mixture on Clay Rock Minerals in Chemical Enhanced Oil Recovery
Authors: C. Mendoza Ramírez, M. Gambús Ordaz, R. Mercado Ojeda.
Abstract:
Chemical solutions flooding with surfactants, based on their property of reducing the interfacial tension between crude oil and water, is a potential application of chemical enhanced oil recovery (CEOR), however, the high-rate retention of surfactants associated with adsorption in the porous medium and the complexity of the mineralogical composition of the reservoir rock generates a limitation in the efficiency of displacement of crude oil. This study evaluates the effect of the concentration of a mixture of anionic-non-ionic surfactants with silica nanoparticles, in a rock sample composed of 25.14% clay minerals of the kaolinite, chlorite, halloysite and montmorillonite type, according to the results of X-Ray Diffraction analysis and Scanning Electron Spectrometry (XRD and SEM, respectively). The amount of the surfactant mixture adsorbed on the clay rock minerals was analyzed from the construction of its calibration curve and the 4-Region Isotherm Model in a UV-Visible spectroscopy. The adsorption rate of the surfactant in the clay rock averages 32% across all concentrations, influenced by the presence of the surface area of the substrate with a value of 1.6 m2/g and by the mineralogical composition of the clay that increases the cation exchange capacity (CEC). In addition, on Region I and II a final concentration measurement is not evident in the UV-VIS, due to its ionic nature, its high affinity with the clay rock and its low concentration. Finally, for potential CEOR applications, the adsorption of these mixed surfactant systems is considered due to their industrial relevance and it is concluded that it is possible to use concentrations in Region III and IV; initially the adsorption has an increasing slope and then reaches zero in the equilibrium where interfacial tension values are reached in the order of x10-1 mN/m.Keywords: anionic–nonionic surfactants, clay rock, adsorption, 4-region isotherm model, cation exchange capacity, critical micelle concentration, enhanced oil recovery
Procedia PDF Downloads 695596 Measurement of Liquid Film Thickness in a Vertical Annular Two Phase Flow Changing the Gas-Liquid Density Ratio
Authors: Shoji Mori, Kunito Okuyama
Abstract:
Annular two phase flow is encountered in many industrial equipments, including flow near nuclear fuel rods in boiling water reactor (BWR). Especially, disturbance waves play important roles in the pressure drop, the generation of entrainments, and the dryout of the liquid film. Therefore, it is important to clarify the behavior of disturbance waves and base film. However, most of the previous studies have been performed under atmospheric pressure conditions that provides the properties of liquid and gas which are significantly different from those of a BWR. Therefore, the effect of properties in gas and liquid on liquid film characteristics should be clarified. In this paper we focus on the effect of gas-liquid density ratio on liquid film thickness characteristics. The experiments have been conducted at four density ratio conditions (ρL/ρG =763, 451, 231, and 31). As a result, it is found that and interfacial shear stress collapse not only tF ave but also tF max and tF min successfully under the same liquid mass flow rate conditions irrespective of ρL/ρG, and moreover a non-dimensional parameter tends to collapse tF max,tF ave,and tF min in the wide range of experimental conditions (ρL/ρG:31~763,We:10~1800,ReL:500 ~ 2200).Keywords: two phase flow, liquid film, annular flow, disturbance wave
Procedia PDF Downloads 3895595 Broad Spectrum Biofilm Inhibition by Chitosanase Purified from Bacillus licheniformis Isolated from Spoilt Vegetables
Authors: Sahira Nsayef Muslim, Israa M. S. Al-Kadmy, Nadheema Hammood Hussein, Alaa Naseer Mohammed Ali, Buthainah Mohammed Taha, Rayim Sabah Abbood, Sarah Naji Aziz
Abstract:
A novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples have the ability to produce the chitosanase enzyme when grown on chitosan substrate. Chitosanase was purified to homogeneity with a recovery yield of 35.71% and 5.5 fold of purification by using ammonium sulfate at 45% saturation followed by ion exchange chromatography on DEAE-cellulose column and gel filtration chromatography on Sephadex G-100 column. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria (biofilm producers) after using Congo Red agar and Microtiter plates methods. Highly antibiofilm of chitosanase recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation ratio to 22 and 29%, respectively compared with (100)% of control. Thus, chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug-resistant pathogen-associated infections, especially in situation where biofilms are involved.Keywords: chitosanase, Bacillus licheniformis, vegetables, biofilm
Procedia PDF Downloads 3845594 Numerical Analysis of Shallow Footing Rested on Geogrid Reinforced Sandy Soil
Authors: Seyed Abolhasan Naeini, Javad Shamsi Soosahab
Abstract:
The use of geosynthetic reinforcement within the footing soils is a very effective and useful method to avoid the construction of costly deep foundations. This study investigated the use of geosynthetics for soil improvement based on numerical modeling using FELA software. Pressure settlement behavior and bearing capacity ratio of foundation on geogrid reinforced sand is investigated and the effect of different parameters like as number of geogrid layers and vertical distance between elements in three different relative density soil is studied. The effects of geometrical parameters of reinforcement layers were studied for determining the optimal values to reach to maximum bearing capacity. The results indicated that the optimum range of the distance ratio between the reinforcement layers was achieved at 0.5 to 0.6 and after number of geogrid layers of 4, no significant effect on increasing the bearing capacity of footing on reinforced sandy with geogridKeywords: geogrid, reinforced sand, FELA software, distance ratio, number of geogrid layers
Procedia PDF Downloads 1485593 Physicochemical Characterization of Asphalt Ridge Froth Bitumen
Authors: Nader Nciri, Suil Song, Namho Kim, Namjun Cho
Abstract:
Properties and compositions of bitumen and bitumen-derived liquids have significant influences on the selection of recovery, upgrading and refining processes. Optimal process conditions can often be directly related to these properties. The end uses of bitumen and bitumen products are thus related to their compositions. Because it is not possible to conduct a complete analysis of the molecular structure of bitumen, characterization must be made in other terms. The present paper focuses on physico-chemical analysis of two different types of bitumens. These bitumen samples were chosen based on: the original crude oil (sand oil and crude petroleum), and mode of process. The aim of this study is to determine both the manufacturing effect on chemical species and the chemical organization as a function of the type of bitumen sample. In order to obtain information on bitumen chemistry, elemental analysis (C, H, N, S, and O), heavy metal (Ni, V) concentrations, IATROSCAN chromatography (thin layer chromatography-flame ionization detection), FTIR spectroscopy, and 1H NMR spectroscopy have all been used. The characterization includes information about the major compound types (saturates, aromatics, resins and asphaltenes) which can be compared with similar data for other bitumens, more importantly, can be correlated with data from petroleum samples for which refining characteristics are known. Examination of Asphalt Ridge froth bitumen showed that it differed significantly from representative petroleum pitches, principally in their nonhydrocarbon content, heavy metal content and aromatic compounds. When possible, properties and composition were related to recovery and refining processes. This information is important because of the effects that composition has on recovery and processing reactions.Keywords: froth bitumen, oil sand, asphalt ridge, petroleum pitch, thin layer chromatography-flame ionization detection, infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy
Procedia PDF Downloads 4275592 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression
Authors: Siqi Lin, Yangang Zhao
Abstract:
Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency
Procedia PDF Downloads 4255591 Computational Fluid Dynamics Based Analysis of Heat Exchanging Performance of Rotary Thermal Wheels
Authors: H. M. D. Prabhashana Herath, M. D. Anuradha Wickramasinghe, A. M. C. Kalpani Polgolla, R. A. C. Prasad Ranasinghe, M. Anusha Wijewardane
Abstract:
The demand for thermal comfort in buildings in hot and humid climates increases progressively. In general, buildings in hot and humid climates spend more than 60% of the total energy cost for the functionality of the air conditioning (AC) system. Hence, it is required to install energy efficient AC systems or integrate energy recovery systems for both new and/or existing AC systems whenever possible, to reduce the energy consumption by the AC system. Integrate a Rotary Thermal Wheel as the energy recovery device of an existing AC system has shown very promising with attractive payback periods of less than 5 years. A rotary thermal wheel can be located in the Air Handling Unit (AHU) of a central AC system to recover the energy available in the return air stream. During this study, a sensitivity analysis was performed using a CFD (Computational Fluid Dynamics) software to determine the optimum design parameters (i.e., rotary speed and parameters of the matrix profile) of a rotary thermal wheel for hot and humid climates. The simulations were performed for a sinusoidal matrix geometry. Variation of sinusoidal matrix parameters, i.e., span length and height, were also analyzed to understand the heat exchanging performance and the induced pressure drop due to the air flow. The results show that the heat exchanging performance increases when increasing the wheel rpm. However, the performance increment rate decreases when increasing the rpm. As a result, it is more advisable to operate the wheel at 10-20 rpm. For the geometry, it was found that the sinusoidal geometries with lesser spans and higher heights have higher heat exchanging capabilities. Considering the sinusoidal profiles analyzed during the study, the geometry with 4mm height and 3mm width shows better performance than the other combinations.Keywords: air conditioning, computational fluid dynamics, CFD, energy recovery, heat exchangers
Procedia PDF Downloads 1295590 Removal of Copper from Wastewaters by Nano-Micro Bubble Ion Flotation
Authors: R. Ahmadi, A. Khodadadi, M. Abdollahi
Abstract:
The removal of copper from a dilute synthetic wastewater (10 mg/L) was studied by ion flotation at laboratory scale. Anionic sodium dodecyl sulfate (SDS) was used as a collector and ethanol as a frother. Different parameters such as pH, collector and frother concentrations, foam height and bubble size distribution (multi bubble ion flotation) were tested to determine the optimum flotation conditions in a Denver type flotation machine. To see into the effect of bubbles size distribution in this paper, a nano-micro bubble generator was designed. The nano and microbubbles that are generated in this way were combined with normal size bubbles generated mechanically. Under the optimum conditions (concentration of SDS: 192mg/l, ethanol: 0.5%v/v, pH value: 4 and froth height=12.5 cm) the best removal obtained for the system Cu/SDS with a dry foam (water recovery: 15.5%) was 85.6%. Coalescence of nano-microbubbles with bubbles of normal size belonging to mechanical flotation cell improved the removal of Cu to a maximum floatability of 92.8% and reduced the water recovery to a 13.1%.The flotation time decreased considerably at 37.5% when the multi bubble ion flotation was used.Keywords: froth flotation, copper, water treatment, optimization, recycling
Procedia PDF Downloads 5025589 Electrochemical Behavior and Cathodic Stripping Voltammetric Determination of Dianabol Steroid in Urine at Bare Glassy Carbon Paste Electrode
Authors: N. Al-Orfi, M. S. El-Shahawi, A. S. Bashammakh
Abstract:
The electrochemical response of glassy carbon electrode (GCE) for the sensitive and selective determination of dianabol steroid (DS) in phosphate, Britton-Robinson (B-R) and HEPES buffers of pH 2.0 - 11, 2.0 - 11 and 6.2 - 8.0, respectively using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) at bare GCE was studied. The dependence of the CV response of the developed cathodic peak potential (Ep, c), peak current (ip, c) and the current function (ip, c / υ1/2) on the scan rate (υ) at the bare GCE revealed the occurrence of electrode coupled chemical reaction of EC type mechanism. The selectivity of the proposed method was assessed in the presence of high concentrations of major interfering species e.g. uric acid, ascorbic acid, citric acid, glucose, fructose, sucrose, starch and ions Na+, K+, PO4-3, NO3- and SO42-. The recovery of the method was not significant where t(critical)=2.20 > texp=1.81-1.93 at 95% confidence. The analytical application of the sensor for the quantification of DS in biological fluids as urine was investigated. The results were demonstrated as recovery percentages in the range 95±2.5-97±4.7% with relative standard deviation (RSD) of 0.5-1.5%.Keywords: dianabol, determination, modified electrode, urine
Procedia PDF Downloads 2735588 Skew Planar Wheel Antenna for First Person View of Unmanned Aerial Vehicle
Authors: Raymond Yudhi Purba, Levy Olivia Nur, Radial Anwar
Abstract:
This research presents the design and measurement of a skew planar wheel antenna that is used to visualize the first person view perspective of unmanned aerial vehicles. The antenna has been designed using CST Studio Suite 2019 to have voltage standing wave ratio (VSWR) ≤ 2, return loss ≤ -10 dB, bandwidth ≥ 100 MHz to covering outdoor access point band from 5.725 to 5.825 GHz, omnidirectional radiation pattern, and elliptical polarization. Dimensions of skew planar wheel antenna have been modified using parameter sweep technique to provide good performances. The simulation results provide VSWR 1.231, return loss -19.693 dB, bandwidth 828.8 MHz, gain 3.292 dB, and axial ratio 9.229 dB. Meanwhile, the measurement results provide VSWR 1.237, return loss -19.476 dB, bandwidth 790.5 MHz, gain 3.2034 dB, and axial ratio 4.12 dB.Keywords: skew planar wheel, cloverleaf, first-person view, unmanned aerial vehicle, parameter sweep
Procedia PDF Downloads 2165587 Integrated Planning, Designing, Development and Management of Eco-Friendly Human Settlements for Sustainable Development of Environment, Economic, Peace and Society of All Economies
Authors: Indra Bahadur Chand
Abstract:
This paper will focus on the need for development and application of global protocols and policy in planning, designing, development, and management of systems of eco-towns and eco-villages so that sustainable development will be assured from the perspective of environmental, economical, peace, and harmonized social dynamics. This perspective is essential for the development of civilized and eco-friendly human settlements in the town and rural areas of the nation that will be a milestone for developing a happy and sustainable lifestyle of rural and urban communities of the nation. The urban population of most of the town of developing economies has been tremendously increasing, whereas rural people have been tremendously migrating for the past three decades. Consequently, the urban lifestyle in most towns has stressed in terms of environmental pollution, water crisis, congested traffic, energy crisis, food crisis, and unemployment. Eco-towns and villages should be developed where lifestyle of all residents is sustainable and happy. Built up environment of settlement should reduce and minimize the problems of non ecological CO2 emissions, unbalanced utilization of natural resources, environmental degradation, natural calamities, ecological imbalance, energy crisis, water scarcity, waste management, food crisis, unemployment, deterioration of cultural heritage, social, the ratio among the public and private land ownership, ratio of land covered with vegetation and area of settlement, the ratio of people in the vehicles and foot, the ratio of people employed outside of town and village, ratio of resources recycling of waste materials, water consumption level, the ratio of people and vehicles, ratio of the length of the road network and area of town/villages, a ratio of renewable energy consumption with total energy, a ratio of religious/recreational area out of the total built-up area, the ratio of annual suicide case out of total people, a ratio of annual injured and death out of total people from a traffic accident, a ratio of production of agro foods within town out of total food consumption will be used to assist in designing and monitoring of each eco-towns and villages. An eco-town and villages should be planned and developed to offer sustainable infrastructure and utilities that maintain CO2 level in individual homes and settlements, home energy use, transport, food and consumer goods, water supply, waste management, conservation of historical heritages, healthy neighborhood, conservation of natural landscape, conserving bio-diversity and developing green infrastructures. Eco-towns and villages should be developed on the basis of master planning and architecture that affect and define the settlement and its form. Master planning and engineering should focus in delivering the sustainability criteria of eco towns and eco village. This will involve working with specific landscape and natural resources of locality.Keywords: eco-town, ecological habitation, master plan, sustainable development
Procedia PDF Downloads 1795586 A Study on the Influence of Salicylic Acid on Sub-Mergence Stress Recovery of Selected Rice Cultivars Grown in Kebbi State Northwest Nigeria
Authors: Ja'afar Umar, Salisu Naziru
Abstract:
Submergence stress in plants refers to the physiological and biochemical challenges that occur when plants are partially or fully submerged in water. This type of stress primarily affects plants in flood-prone areas or regions with heavy rainfall, where oxygen availability and other essential resources are limited. Salicylic acid (SA) is an important plant hormone involved in various physiological processes and responses to environmental stress, particularly in plant defense mechanisms against pathogens. Its role as a signaling molecule in plants is crucial for activating defense pathways, regulating growth, and managing responses to biotic (living) and abiotic (non-living) stresses. The study involved using salicylic acid (SA) at concentrations of 1g/L, 2g/L, and 3g/L, dissolved in water, to treat rice plants during submergence stress. The experiment had four treatments: 0g/L (control), 1g/L, 2g/L, and 3g/L of SA, each with four replications. Rice seedlings were submerged in water for 11 days and then desubmerged for 7 days. During the experiment, all plants except the control received a foliar spray of SA solutions, while control plants were sprayed with distilled water. The results indicate a significant difference (P<0.05) between the control and salicylic acid (SA)-treated rice plants. SalicyJalic acid, particularly at concentrations of 1g/L, 2g/L, and 3g/L, generally improved the recovery of all four rice cultivars from submergence stress, as reflected by increased numbers of nodes, longer internodes, taller plants, and longer root lengths compared to untreated controls. Salicylic acid, particularly at concentrations of 1g/L, 2g/L, and 3g/L, generally improved the recovery of all four rice cultivars from submergence stress, as reflected by increased numbers of nodes, longer internodes, taller plants, and longer root lengths compared to untreated controls.Keywords: submergence, stress, rice, salicylic
Procedia PDF Downloads 185585 Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers
Authors: Ahmad Al-Omari, Osama Khreis, Ahmad M. K. Dagamseh, Abdullah Ababneh, Kevin Lear
Abstract:
High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (f-3dB) of 14 GHz and a resonance frequency (fR) of 9.5 GHz at a bias current density (Jbias) of only 4.3 kA/cm2, which corresponds to an improved f-3dB2/Jbias ratio of 44 GHz2/kA/cm2. At higher and lower bias current densities, the f-3dB2/ Jbias ratio decreased to about 30 GHz2/kA/cm2 and 18 GHz2/kA/cm2, respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady f-3dB/ fR ratio of 1.41±10% over the whole range of the bias current (1.3Ith to 6.2Ith). The devices also demonstrated a maximum modulation bandwidth (f-3dB max) of more than 16 GHz at a bias current less than the industrial bias current standard for reliability by 25%.Keywords: current density, high-speed VCSELs, modulation bandwidth, small-signal characteristics, thermal impedance, vertical-cavity surface-emitting lasers
Procedia PDF Downloads 5705584 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition
Authors: D. Geringswald, B. Hintze
Abstract:
The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.Keywords: ALD, high aspect ratio, PE-MOCVD, TiN
Procedia PDF Downloads 3005583 Renewable Energy Potential of Diluted Poultry Manure during Ambient Anaerobic Stabilisation
Authors: Cigdem Yangin-Gomec, Aigerim Jaxybayeva, Orhan Ince
Abstract:
In this study, the anaerobic treatability of chicken manure diluted with tap water (with an influent feed ratio of 1 kg of fresh chicken manure to 6 liter of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with the granular sludge already adapted to chicken manure. The raw waste digested in this study was the manure from laying-hens having average total solids (TS) of about 30% with ca. 60% volatile content. The ASB reactor was fed semi-continuously at ambient operating temperature range (17-23◦C) at a HRT of 13 and 26 days for about 6 months, respectively. The respective average total and soluble chemical oxygen demand (COD) removals were ca. 90% and 75%, whereas average biomethane production rate was calculated ca. 180 lt per kg of CODremoved from the ASB reactor at an average HRT of 13 days. Moreover, total suspended solids (TSS) and volatile suspended solids (VSS) in the influent were reduced more than 97%. Hence, high removals of the organic compounds with respective biogas production made anaerobic stabilization of the diluted chicken manure by ASB reactor at ambient operating temperatures viable. By this way, external heating up to 35◦C (i.e. anaerobic processes have been traditionally operated at mesophilic conditions) could be avoided in the scope of this study.Keywords: ambient anaerobic digestion, biogas recovery, poultry manure, renewable energy
Procedia PDF Downloads 4205582 Effect of Polymer Residues for Wastewater Treatment from Petroleum Production
Authors: Chayonnat Thanamun, Kreangkrai Maneeintr
Abstract:
For petroleum industry, polymer flooding is the one of the main methods in enhanced oil recovery (EOR) that is used water-soluble polymer such as partially hydrolyzed polyacrylamide (HPAM) to increase oil production. It is added to the flooding water to improve the mobility ratio in the flooding process. During the polymer flooding process, water is produced as a by-product along with oil and gas production. This produced water is a mixture of inorganic and organic compound. Moreover, produced water is more difficult to treat than that from water flooding. In this work, the effect of HPAM residue on the wastewater treatment from polymer flooding is studied. Polyaluminium chloride (PAC) is selected to use as a flocculant. Therefore, the objective of this study is to evaluate the effect of polymer residues in produced water on the wastewater treatment by using PAC. The operating parameters of this study are flocculant dosage ranging from 300,400 and 500 mg/L temperature from 30-50 Celsius degree and HPAM concentrations from 500, 1000 and 2000 mg/L. Furthermore, the turbidity, as well as total suspended solids (TSS), are also studied. The results indicated that with an increase in HPAM concentration, the TSS and turbidity increase gradually with the increasing of coagulant dosage under the same temperature. Also, the coagulation-flocculation performance is improved with the increasing temperature. This can be applied to use in the wastewater treatment from oil production before this water can be injected back to the reservoir.Keywords: wastewater treatment, petroleum production, polyaluminium chloride, polyacrylamide
Procedia PDF Downloads 1535581 Effect of Different Commercial Diets and Temperature on the Growth Performance, Feed Intake and Feed Conversion Ratio of Sobaity Seabream Sparidentex hasta
Authors: Seemab Zehra, A. H. W. Mohammed, E. Pantanella, J. L. Q. Laranja, P. H. De Mello, R. Saleh, A. A. Siddik, A. Al Shaikhi, A. M. Al-Suwailem
Abstract:
Two separate feeding trials were conducted to determine the effects of using different commercial diets and water temperatures on the growth performance, feed intake, feed conversion ratio (FCR) and condition factor of sobaity seabream Sparidentex hasta. In experiment I, growth performance, feed intake, protein efficiency ratio (PER), feed conversion ratio (FCR) and survival (%) of sobaity seabream Sparidentex hasta (330.5±2.6 g; 26.9±1.0 cm) were evaluated by four different commercial diets (1, 2, 3 and 4) for 80 days. The daily weight gain was around 3.2 g day-1 with an SGR of 0.7% day-1. Both the FCR and PER in the fish were significantly better in diet 2 that contained 46.36% crude protein and 12.54% crude fat. In experiment II, (99±2.6 g; 17.1±1.0 cm). The fish were cultured in 1m3 tanks supplied with seawater from the Red Sea wherein three different rearing temperatures were set as treatments (24, 28 and 32°C). Fish were fed with a commercial diet based on the results of experiment I (46.4% protein; 20.1 MJ kg-1 energy) to satiation for 96 days. Total weight gain was significantly higher for the fish reared in the 32°C group (158.57 g) followed by the 28°C group (138.25 g), while the lowest weight gain was observed in the 24°C group (116.98 g). The FCR was significantly lower in the 32°C group (1.62) as compared to 28 (1.8) and 24°C (1.85) groups. Based on the results obtained from these preliminary studies (experiment I and II), sobaity seabream can attain better growth performance, FCR and PER at 32°C in the Red Sea by feeding commercial diet 2.Keywords: Sparidentex hasta, nutrition, FCR, Red Sea, growth performance
Procedia PDF Downloads 785580 Repurposing Dairy Manure Solids as a Non- Polluting Fertilizer and the Effects on Nutrient Recovery in Tomatoes (Solanum Lycopersicum)
Authors: Devon Simpson
Abstract:
Recycled Manure Solids (RMS), attained via centrifugation from Canadian dairy farms, were synthesized into a non-polluting fertilizer by bonding micronutrients (Fe, Zn, and Mn) to cellulose fibers and then assessed for the effectiveness of nutrient recovery in tomatoes. Manure management technology is critical for improving the sustainability of agroecosystems and has the capacity to offer a truly circular economy. The ability to add value to manure byproducts offers an opportunity for economic benefits while generating tenable solutions to livestock waste. The dairy industry is under increasing pressure from new environmental protections such as government restrictions on manure applications, limitations on herd size as well as increased product demand from a growing population. Current systems use RMS as bedding, so there is a lack of data pertaining to RMS use as a fertilizer. This is because of nutrient distribution, where most nutrients are retained in the liquid effluent of the solid-liquid separation. A literature review on the physical and chemical properties of dairy manure further revealed more data for raw manure than centrifuged solids. This research offers an innovative perspective and a new avenue of exploration in the use of RMS. Manure solids in this study were obtained directly from dairy farms in Salmon Arm and Abbotsford, British Columbia, and underwent physical, chemical, and biological characterizations pre- and post-synthesis processing. Samples were sent to A&L labs Canada for analysis. Once characterized and bonded to micronutrients, the effect of synthesized RMS on nutrient recovery in tomatoes was studied in a greenhouse environment. The agricultural research package ‘agricolae’ for R was used for experimental design and data analysis. The growth trials consisted of a randomized complete block design (RCBD) that allowed for analysis of variance (ANOVA). The primary outcome was to measure nutrient uptake, and this was done using an Inductively Coupled Plasma Mass Spectrometer (IC-PMS) to analyze the micronutrient content of both the tissue and fruit of the tomatoes. It was found that treatments containing bonded dairy manure solids had an increased micronutrient concentration. Treatments with bonded dairy manure solids also saw an increase in yield, and a brix analysis showed higher sugar content than the untreated control and a grower standard.Keywords: aoecosystems, dairy manure, micronutrient fertilizer, manure management, nutrient recovery, nutrient recycling, recycled manure solids, regenerative agricugrlture, sustainable farming
Procedia PDF Downloads 1935579 Enhancing Sewage Sludge Management through Integrated Hydrothermal Liquefaction and Anaerobic Digestion: A Comparative Study
Authors: Harveen Kaur Tatla, Parisa Niknejad, Rajender Gupta, Bipro Ranjan Dhar, Mohd. Adana Khan
Abstract:
Sewage sludge management presents a pressing challenge in the realm of wastewater treatment, calling for sustainable and efficient solutions. This study explores the integration of Hydrothermal Liquefaction (HTL) and Anaerobic Digestion (AD) as a promising approach to address the complexities associated with sewage sludge treatment. The integration of these two processes offers a complementary and synergistic framework, allowing for the mitigation of inherent limitations, thereby enhancing overall efficiency, product quality, and the comprehensive utilization of sewage sludge. In this research, we investigate the optimal sequencing of HTL and AD within the treatment framework, aiming to discern which sequence, whether HTL followed by AD or AD followed by HTL, yields superior results. We explore a range of HTL working temperatures, including 250°C, 300°C, and 350°C, coupled with residence times of 30 and 60 minutes. To evaluate the effectiveness of each sequence, a battery of tests is conducted on the resultant products, encompassing Total Ammonia Nitrogen (TAN), Chemical Oxygen Demand (COD), and Volatile Fatty Acids (VFA). Additionally, elemental analysis is employed to determine which sequence maximizes energy recovery. Our findings illuminate the intricate dynamics of HTL and AD integration for sewage sludge management, shedding light on the temperature-residence time interplay and its impact on treatment efficiency. This study not only contributes to the optimization of sewage sludge treatment but also underscores the potential of integrated processes in sustainable waste management strategies. The insights gleaned from this research hold promise for advancing the field of wastewater treatment and resource recovery, addressing critical environmental and energy challenges.Keywords: Anaerobic Digestion (AD), aqueous phase, energy recovery, Hydrothermal Liquefaction (HTL), sewage sludge management, sustainability.
Procedia PDF Downloads 815578 Performance Improvement in a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics
Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami
Abstract:
Micro gas turbine (MGT) nowadays has a wide variety of applications from drones to hybrid electric vehicles. As microfabrication technology getting better, the size of MGT is getting smaller. Overall performance of MGT is dependent on the individual components. Each component’s performance is dependent and interrelated with another component. Therefore, careful consideration needs to be given to each and every individual component of MGT. In this study, the focus is on improving the performance of the compressor in order to improve the overall performance of MGT. Computational Fluid Dynamics (CFD) is being performed using the software FLUENT to analyze the design of a micro compressor. Operating parameters like mass flow rate and RPM, and design parameters like inner blade angle (IBA), outer blade angle (OBA), blade thickness and number of blades are varied to study its effect on the performance of the compressor. Pressure ratio is used as a tool to measure the performance of the compressor. Higher the pressure ratio, better the design is. In the study, target mass flow rate is 0.2 g/s and RPM to be less than or equal to 900,000. So far, a pressure ratio of above 3 has been achieved at 0.2 g/s mass flow rate with 5 rotor blades, 0.36 mm blade thickness, 94.25 degrees OBA and 10.46 degrees IBA. The design in this study differs from a regular centrifugal compressor used in conventional gas turbines such that compressor is designed keeping in mind ease of manufacturability. So, this study proposes a compressor design which has a good pressure ratio, and at the same time, it is easy to manufacture using current microfabrication technologies.Keywords: computational fluid dynamics, FLUENT microfabrication, RPM
Procedia PDF Downloads 1625577 A Study on the Quantitative Evaluation Method of Asphalt Pavement Condition through the Visual Investigation
Authors: Sungho Kim, Jaechoul Shin, Yujin Baek
Abstract:
In recent years, due to the environmental impacts and time factor, etc., various type of pavement deterioration is increasing rapidly such as crack, pothole, rutting and roughness degradation. The Ministry of Land, Infrastructure and Transport maintains regular pavement condition of the highway and the national highway using the pavement condition survey equipment and structural survey equipment in Korea. Local governments that maintain local roads, farm roads, etc. are difficult to maintain the pavement condition using the pavement condition survey equipment depending on economic conditions, skills shortages and local conditions such as narrow roads. This study presents a quantitative evaluation method of the pavement condition through the visual inspection to overcome these problems of roads managed by local governments. It is difficult to evaluate rutting and roughness with the naked eye. However, the condition of cracks can be evaluated with the naked eye. Linear cracks (m), area cracks (m²) and potholes (number, m²) were investigated with the naked eye every 100 meters for survey the cracks. In this paper, crack ratio was calculated using the results of the condition of cracks and pavement condition was evaluated by calculated crack ratio. The pavement condition survey equipment also investigated the pavement condition in the same section in order to evaluate the reliability of pavement condition evaluation by the calculated crack ratio. The pavement condition was evaluated through the SPI (Seoul Pavement Index) and calculated crack ratio using results of field survey. The results of a comparison between 'the SPI considering only crack ratio' and 'the SPI considering rutting and roughness either' using the equipment survey data showed a margin of error below 5% when the SPI is less than 5. The SPI 5 is considered the base point to determine whether to maintain the pavement condition. It showed that the pavement condition can be evaluated using only the crack ratio. According to the analysis results of the crack ratio between the visual inspection and the equipment survey, it has an average error of 1.86%(minimum 0.03%, maximum 9.58%). Economically, the visual inspection costs only 10% of the equipment survey and will also help the economy by creating new jobs. This paper advises that local governments maintain the pavement condition through the visual investigations. However, more research is needed to improve reliability. Acknowledgment: The author would like to thank the MOLIT (Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.Keywords: asphalt pavement maintenance, crack ratio, evaluation of asphalt pavement condition, SPI (Seoul Pavement Index), visual investigation
Procedia PDF Downloads 1675576 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws
Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun
Abstract:
Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment method that modifies such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.Keywords: lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology (RSM)
Procedia PDF Downloads 3985575 Finite Element Analysis of Raft Foundation on Various Soil Types under Earthquake Loading
Authors: Qassun S. Mohammed Shafiqu, Murtadha A. Abdulrasool
Abstract:
The design of shallow foundations to withstand different dynamic loads has given considerable attention in recent years. Dynamic loads may be due to the earthquakes, pile driving, blasting, water waves, and machine vibrations. But, predicting the behavior of shallow foundations during earthquakes remains a difficult task for geotechnical engineers. A database for dynamic and static parameters for different soils in seismic active zones in Iraq is prepared which has been collected from geophysical and geotechnical investigation works. Then, analysis of a typical 3-D soil-raft foundation system under earthquake loading is carried out using the database. And a parametric study has been carried out taking into consideration the influence of some parameters on the dynamic behavior of the raft foundation, such as raft stiffness, damping ratio as well as the influence of the earthquake acceleration-time records. The results of the parametric study show that the settlement caused by the earthquake can be decreased by about 72% with increasing the thickness from 0.5 m to 1.5 m. But, it has been noticed that reduction in the maximum bending moment by about 82% was predicted by decreasing the raft thickness from 1.5 m to 0.5 m in all sites model. Also, it has been observed that the maximum lateral displacement, the maximum vertical settlement and the maximum bending moment for damping ratio 0% is about 14%, 20%, and 18% higher than that for damping ratio 7.5%, respectively for all sites model.Keywords: shallow foundation, seismic behavior, raft thickness, damping ratio
Procedia PDF Downloads 148