Search results for: immobilized bacteria
1061 Phospholipid Cationic and Zwitterionic Compounds as Potential Non-Toxic Antifouling Agents: A Study of Biofilm Formation Assessed by Micro-titer Assays with Marine Bacteria and Eco-toxicological Effect on Marine Microalgae
Authors: D. Malouch, M. Berchel, C. Dreanno, S. Stachowski-Haberkorn, P-A. Jaffres
Abstract:
Biofouling is a complex natural phenomenon that involves biological, physical and chemical properties related to the environment, the submerged surface and the living organisms involved. Bio-colonization of artificial structures can cause various economic and environmental impacts. The increase in costs associated with the over-consumption of fuel from biocolonized vessels has been widely studied. Measurement drifts from submerged sensors, as well as obstructions in heat exchangers, and deterioration of offshore structures are major difficulties that industries are dealing with. Therefore, surfaces that inhibit biocolonization are required in different areas (water treatment, marine paints, etc.) and many efforts have been devoted to produce efficient and eco-compatible antifouling agents. The different steps of surface fouling are widely described in literature. Studying the biofilm and its stages provides a better understanding of how to elaborate more efficient antifouling strategies. Several approaches are currently applied, such as the use of biocide anti-fouling paint (mainly with copper derivatives) and super-hydrophobic coatings. While these two processes are proving to be the most effective, they are not entirely satisfactory, especially in a context of a changing legislation. Nowadays, the challenge is to prevent biofouling with non-biocide compounds, offering a cost effective solution, but with no toxic effects on marine organisms. Since the micro-fouling phase plays an important role in the regulation of the following steps of biofilm formation, it is desired to reduce or delate biofouling of a given surface by inhibiting the micro-fouling at its early stages. In our recent works, we reported that some amphiphilic compounds exhibited bacteriostatic or bactericidal properties at a concentration that did not affect mammalian eukaryotic cells. These remarkable properties invited us to assess this type of bio-inspired phospholipids to prevent the colonization of surfaces by marine bacteria. Of note, other studies reported that amphiphilic compounds interacted with bacteria leading to a reduction of their development. An amphiphilic compound is a molecule consisting of a hydrophobic domain and a polar head (ionic or non-ionic). These compounds appear to have interesting antifouling properties: some ionic compounds have shown antimicrobial activity, and zwitterions can reduce nonspecific adsorption of proteins. Herein, we investigate the potential of amphiphilic compounds as inhibitors of bacterial growth and marine biofilm formation. The aim of this study is to compare the efficacy of four synthetic phospholipids that features a cationic charge or a zwitterionic polar-head group to prevent microfouling with marine bacteria. Toxicity of these compounds was also studied in order to identify the most promising compounds that inhibit biofilm development and show low cytotoxicity on two links representative of coastal marine food webs: phytoplankton and oyster larvae.Keywords: amphiphilic phospholipids, biofilm, marine fouling, non-toxique assays
Procedia PDF Downloads 1341060 Synthesis and in vitro Characterization of a Gel-Derived SiO2-CaO-P2O5-SrO-Li2O Bioactive Glass
Authors: Mehrnaz Aminitabar, Moghan Amirhosseinian, Morteza Elsa
Abstract:
Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO2-CaO-P2O5 glass with nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of opposite effect of Sr and Li of the dissolution of BG in the SBF but also, stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S BG exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.Keywords: antibacterial activity, bioactive glass, sol-gel, strontium
Procedia PDF Downloads 1211059 Cold Plasma Surface Modified Electrospun Microtube Array Membrane for Chitosan Immobilization and Their Properties
Authors: Ko-Shao Chen, Yun Tsao, Chia-Hsuan Tsen, Chien-Chung Chen, Shu-Chuan Liao
Abstract:
Electrospun microtube array membranes (MTAMs) made of PLLA (poly-L-lactic acid) have wide potential applications in tissue engineering. However, their surface hydrophobicity and poor biocompatability have limited their further usage. In this study, the surface of PLLA MTAMs were made hydrophilic by introducing extra functional groups, such as peroxide, via an acetic acid plasma (AAP). UV-graft polymerization of acrylic acid (G-AAc) was then used to produce carboxyl group on MTAMs surface, which bonded covalently with chitosan through EDC / NHS crosslinking agents. To evaluate the effects of the surface modification on PLLA MTAMs, water contact angle (WCA) measurement and cell compatibility tests were carried out. We found that AAP treated electrospun PLLA MTAMs grafted with AAc and, finally, with chitosan immobilized via crosslinking agent, exhibited improved hydrophilic and cell compatibility.Keywords: plasma, EDC/NHS, UV grafting, Chitosan, microtube array membrane (MTAMs)
Procedia PDF Downloads 4111058 Probiotics as an Alternative to Antibiotic Use in Pig Production
Authors: Z. C. Dlamini, R. L. S. Langa, A. I. Okoh, O. A. Aiyegoro
Abstract:
The indiscriminate usage of antibiotics in swine production have consequential outcomes; such as development of bacterial resistance to prophylactic antibiotics and possibility of antibiotic residues in animal products. The use of probiotics appears to be the most effective procedure with positive metabolic nutritional implications. The aim of this study was to investigate the efficacy of probiotic bacteria (Lactobacillus reuteri ZJ625, Lactobacillus reuteri VB4, Lactobacillus salivarius ZJ614 and Streptococcus salivarius NBRC13956) administered as direct-fed microorganisms in weaned piglets. 45 weaned piglets blocked by weight were dived into 5 treatments groups: diet with antibiotic, diet with no-antibiotic and no probiotic, and diet with probiotic and diet with combination of probiotics. Piglets performance was monitored during the trials. Faecal and Ileum samples were collected for microbial count analysis. Blood samples were collected from pigs at the end of the trial, for analysis of haematological, biochemical and IgG stimulation. The data was analysed by Split-Plot ANOVA using SAS statistically software (SAS 9.3) (2003). The difference was observed between treatments for daily weight and feed conversion ratio. No difference was observed in analysis of faecal samples in regards with bacterial counts, difference was observed in ileums samples with enteric bacteria colony forming unit being lower in P2 treatment group as compared with lactic acid and total bacteria. With exception of globulin and albumin, biochemistry blood parameters were not affected, likewise for haematology, only basophils and segmented neutrophils were differed by having higher concentration in NC treatment group as compared with other treatment groups. Moreover, in IgG stimulation analysis, difference was also observed, with P2 treatment group having high concentration of IgG in P2 treatment group as compared to other groups. The results of this study suggest that probiotics have a beneficial effect on growth performances, blood parameters and IgG stimulation of pigs, most effective when they are administered in synergy form. This means that it is most likely that these probiotics will offer a significant benefit in pig farming by reducing risk of morbidity and mortality and produce quality meat that is more affordable to poorer communities, and thereby enhance South African pig industry’s economy. In addition, these results indicate that there is still more research need to be done on probiotics in regards with, i.e. dosage, shelf life and mechanism of action.Keywords: antibiotics, biochemistry, haematology, IgG-stimulation, microbial count, probiotics
Procedia PDF Downloads 3011057 Bioremediation Potentials of Some Indigenous Microorganisms Isolated from Auto Mechanic Workshops on Irrigation Water Used in Lokoja Kogi State of Nigeria
Authors: Emmanuel Ekpa, Adaji Andrew, Queen Opaluwa, Isreal Daraobong
Abstract:
Three (3) indigenous bacteria species (Bacillus spp, Acinectobacter spp and Moraxella spp) previously isolated from contaminated soil of some auto mechanic workshops were used for bioremediation studies on some irrigation water used at Sarkin-noma Fadama farms located in Lokoja Kogi State, Nigeria. This was done in order to investigate their bioremediation potentials using a simple pour plate method. The physicochemical parameters and heavy metal analysis (using AAS iCE 3000) of the irrigation water were performed before and after inoculation of the isolated organisms. Nitrate and phosphate concentration were found to be 10.56mg/L and 12.63mg/L prior to inoculation while iron and zinc were 0.9569mg/L and 0.2245mg/L respectively. Other physicochemical parameters were also observed to be high prior to inoculation. After the bioremediation test (inoculation with the isolated organisms), a nitrate and phosphate content of 2.53mg/L and 2.61mg/L were recorded respectively, iron and zinc gave 0.1694mg/L and 0.0174mg/L concentrations while other physicochemical parameters measured were also found to be lower in their respective values. The implication of this present study is that a number of carefully isolated indigenous bacteria species are capable of reducing the amount of heavy metal concentrations in water. Also, non-metallic contaminants like nitrate and phosphate are susceptible to bioremediation in the presence of such efficient system.Keywords: bioremediation, heavy metals, physicochemical parameters, Bacillus spp, Acinectobacter spp and Moraxella spp, AAS, spectrometer 3000
Procedia PDF Downloads 3361056 Separation of Chlorinated Plastics and Immobilization of Heavy Metals in Hazardous Automotive Shredder Residue
Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thi Thanh Truc, Byeong-Kyu Lee
Abstract:
In the present study, feasibility of the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment was evaluated to facilitate the separation from automotive shredder residue (ASR), by the froth flotation. The combination of 60 sec microwave treatment with PAC, a sharp and significant decrease about 16.5° contact angle of PVC was observed in ASR plastic compared with other plastics. The microwave treatment with the addition of PAC resulted in a synergetic effect for the froth flotation, which may be a result of the 90% selective separation of PVC from ASR plastics, with 82% purity. While, simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR soil/residues. The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. Microwave treatment can be a simple and effective method for PVC separation from ASR plastics.Keywords: automotive shredder residue, chlorinated plastics, hazardous waste, heavy metals, immobilization, separation
Procedia PDF Downloads 5211055 Adsorption of Iodine from Aqueous Solution on Modified Silica Gel with Cyclodextrin Derivatives
Authors: Raied, Badr Al-Fulaiti, E. I. El-Shafey
Abstract:
Cyclodextrin (CD) derivatives (αCD, βCD, ϒCD and hp-βCD) were successfully immobilized on silica gel surface via epichlorohydrin as a cross linker. The ratio of silica to CD was optimized in preliminary experiments based on best performance of iodine adsorption capacity. Selected adsorbents with ratios of silica to CD derivatives, in this study, include Si-αCD (3:2), Si-βCD (4:1), Si-ϒCD (4:1) and Si-hp-βCD (4:1). The adsorption of iodine (I2/KI) solution was investigated in terms of initial pH, contact time, iodine concentration and temperature. No significant variations was noticed for iodine adsorption at different pH values, thus, initial pH 6 was selected for further studies. Equilibrium adsorption was reached faster on Si-hp-βCD than other adsorbents with kinetic adsorption data fitting well pseudo second order model. Activation energy (Ea) was found to be in the range of 12.7 - 23.4 kJ/mol. Equilibrium adsorption data were found to fit well the Langmuir adsorption model with lower uptake as temperature rises. Iodine uptake follows the order: Si-hp-βCD (714 mg/g) >Si-αCD (625 mg/g) >Si-βCD (555.6 mg/g)> Si-ϒCD (435 mg/g). Thermodynamic study showed that iodine adsorption is exothermic and spontaneous. Adsorbents reuse exhibited excellent performance for iodine adsorption with a decrease in iodine uptake of ~ 2- 4 % in the third adsorption cycle.Keywords: adsorption, iodine, silica, cyclodextrin, functionalization, epichlorohydrin
Procedia PDF Downloads 1321054 Preservation of Sensitive Biological Products: An Insight into Conventional and Upcoming Drying Techniques
Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik
Abstract:
Several drying techniques are used to preserve sensitive substances such as probiotic lactic acid bacteria. With the aim to better understand differences between these processes, this work gives new insights into structural variations resulting from different preservation methods and their impact on product quality and storage stability. Industrially established methods (freeze drying, spray drying) were compared to upcoming vacuum, microwave-freeze, and microwave-vacuum drying. For freeze and microwave-freeze dried samples, survival and activity maintained 100%, whereas vacuum and microwave-vacuum dried cultures achieved 30-40% survival. Spray drying yielded in lowest viability. The results are directly related to temperature and oxygen content during drying. Interestingly, most storage stable products resulted from vacuum and microwave-vacuum drying due to denser product structures as determined by helium pycnometry and SEM images. Further, lower water adsorption velocities were responsible for lower inactivation rates. Concluding, resulting product structures as well as survival rates and storage stability mainly depend on the type of water removal instead of energy input. Microwave energy compared to conductive heating did not lead to significant differences regarding the examined factors. Correlations could be proven for three investigated microbial strains. The presentation will be completed by an overview on the energy efficiency of the presented methods.Keywords: drying techniques, energy efficiency, lactic acid bacteria, probiotics, survival rates, structure characterization
Procedia PDF Downloads 2391053 Environmental Health Risk Assessment of Hospital Wastewater in Enugu Urban, Nigeria
Authors: C. T. Eze, I. N. E. Onwurah
Abstract:
An important hydrogeologic problem in areas of high faults formations is high environmental health hazard occasioned by microbial and heavy metals contamination of ground waters. Consequently, we examined the microbial load and heavy metals concentration of hospital wastewater discharged into the environment at Park Lane General Hospital Enugu Urban, Nigeria. The microbial counts, characteristics and frequency of occurrences of the isolated microorganisms were determined by cultural, morphological and biochemical characteristics using established procedure while the varying concentrations of the identified heavy metals were determined using the spectrophotometric method. The microbiological analyses showed a mean total aerobic bacteria counts from 13.7 ± 0.65 × 107 to 22.8 ± 1.14 ×1010 CFU/ml, mean total anaerobic bacteria counts from 6.0 ± 1.6 × 103 to 1.7 ± 0.41 ×104 CFU/ml and mean total fungal counts from 0 ± 0 to 2.3 ± 0.16 × 105 CFU/ml. The isolated micro-organisms which included both pathogenic and non-pathogenic organisms were Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Bacillus subtilis, Proteus vulgaris, Klesbsiella pneumonia and bacteriodes sp. The only fungal isolate was Candida albican. The heavy metals identified in the leachate were Arsenic, Cadmium, Lead, Mercury and Chromium and their concentrations ranged from 0.003 ± 0.00082 to 0.14 ± 0.0082 mg/l. These values were above WHO permissible limits while others fall within the limits. Therefore, hospital waste water can pose the environmental health risk when not properly treated before discharge, especially in geologic formations with high fault formations.Keywords: bacterial isolates, fungal isolates, heavy metals, hospital wastewater, microbial counts
Procedia PDF Downloads 3511052 Repeated Batch Production of Biosurfactant from Pseudomonas mendocina NK41 Using Agricultural and Agro-Industrial Wastes as Substate
Authors: Natcha Ruamyat, Nichakorn Khondee
Abstract:
The potential of an alkaliphilic bacteria isolated from soil in Thailand to utilized agro-industrial and agricultural wastes for the production of biosurfactants was evaluated in this study. Among five isolates, Pseudomonas mendocina NK41 used soapstock as substrate showing a high biosurfactant concentration of 7.10 g/L, oil displacement of 97.8 %, and surface tension reduction to 29.45 mN/m. Various agricultural residues were applied as mixed substrates with soapstock to enhance the synthesis of biosurfactants. The production of biosurfactant and bacterial growth was found to be the highest with coconut oil cake as compared to Sacha inchi shell, coconut kernel cake, and durian shell. The biodegradability of agro-industrial wastes was better than agricultural wastes, which allowed higher bacterial growth. The pretreatment of coconut oil cake by combined alkaline and hydrothermal method increased the production of biosurfactant from 12.69 g/L to 13.82 g/L. The higher microbial accessibility was improved by the swelling of the alkali-hydrothermal pretreated coconut oil cake, which enhanced its porosity and surface area. The pretreated coconut oil cake was reused twice in the repeated batch production, showing higher biosurfactant concentration up to 16.94 g/L from the second cycle. These results demonstrated the capability of using lignocellulosic wastes from agricultural and agro-industrial activities to produce a highly valuable biosurfactant. High biosurfactant yield with low-cost substrate reveals its potential towards further commercialization of biosurfactant on large-scale production.Keywords: alkaliphilic bacteria, agricultural/agro-industrial wastes, biosurfactant, combined alkaline-hydrothermal pretreatment
Procedia PDF Downloads 2571051 Isolation and Characterization of Bio-surfactant Producing Alcaligenes sp YLA1 and Its Diesel Degradation Potentials
Authors: Abdulrahman Abdulhamid Arabo, Raji Arabi Bamanga, Mujiburrahman Fadilu, Musa Abubakar, Fatima Abdullahi Shehu, Hafeez Muhammad Yakasai, Nasiru Abdullahi
Abstract:
The aim of this study was to isolate and identify biosurfactant-producing and diesel alkanes degrading bacteria. For this reason, bacteria isolated from the diesel-contaminated site were screened for their potential to produce biosurfactants and degrade diesel alkanes. Primary selection of diesel degraders was carried out by using the conventional enrichment culture technique, where 12 bacterial strains were isolated based on their ability to grow on minimal media supplemented with diesel as the sole carbon source, which was followed by qualitative screening methods for potential biosurfactant production. Isolate B11 was the only candidate that showed positive signs for drop collapse, foaming, hemolytic test, oil displacement of more than 22 ± 0.05 mm, and emulsification (E24) of 14 ± 0.30%. The effect of various culture parameters (incubation time, diesel concentration, nitrogen source, pH and temperature) on the biodegradation of diesel was evaluated. The optimum incubation time was confirmed to be 120 days for isolate B11, and the optimum PH was confirmed as 8.0 for the isolate; similarly, the optimum temperature was confirmed as 35oC. In addition, diesel oil was used as the sole carbon source for the isolates. The favorable diesel concentration was 12.5 % (v/v) for the isolate. The isolate has shown degradative ability towards Tridecane (C13), dodecane, 2, 6, 10-trimethyl- (C15), Tetradecane (C14), 2,6,10-Trimethyltridecane (C16), Pentadecane (C15). It degraded between 0.27% - 9.65% of individual diesel oil alkanes. The strain has exhibited the potential of degrading diesel oil n-alkanes and was identified as Alcaligenes species strain B11 (MZ027604) using the 16S rRNA. Sequencing.Keywords: diesel oil, biosurfactant, Alcaligenes sp, biodegradation
Procedia PDF Downloads 1111050 Screening of Lactobacilli and Bifidobacteria from Bangladeshi Indigenous Poultry for Their Potential Use as Probiotics
Authors: K. B. M. Islam, Syeeda Shiraj-Um-Mahmuda, Afroj Jahan, A. A. Bhuiyan
Abstract:
In Bangladesh, the use of imported probiotics in poultry is gradually being increased. But surprisingly, no probiotic bacteria have been isolated yet in Bangladesh despite the existence of scavenging native poultry as potential source that is seemingly more resistant to GIT infection as well as other diseases. Therefore, the study was undertaken to isolate, identify and characterize the potential probiotic Lactobacillus and Bifidobacteria strains from Bangladeshi indigenous poultry, and to evaluate their suitability to use in poultry industry. Crop and cecal samples from 61 healthy indigenous birds were used to isolate potential probiotics strains following conventional cultural methods. A total of 216 isolates were identified following physical, biochemical and molecular methods that belonged to the genus Lactobacillus and Bifidobacteria. An auto-aggregation test was performed for 180 and 136 isolated lactobacilli and bifidobacteria strains, respectively. Twelve lactobacilli isolates and 7 bifidobacteria isolates were selected because of their convenient aggregation. In vitro tests including antibacterial activity, resistance to low pH, hemolytic activities etc. were performed for evaluation of probiotic potential of each strain. Under the in vitro conditions and with respects to the probiotic traits, three lactobacilli; LS16, LS45, LS133 and two bifidobacteria, BS21 and BS90 were found to be potential probiotic strains. Thus, they are proposed to be evaluated for their in vivo probiotic properties. If the proposed strains are found suitable as the probiotics to be used in commercial poultry industry, it is expected that the local probiotics would be more beneficial and would save the huge amount of money that Bangladesh spends every year for the importation of such materials from abroad.Keywords: Bangladeshi poultry, gut microbiota, lactic acid bacteria, scavenging chicken, GIT health
Procedia PDF Downloads 3031049 Illumina MiSeq Sequencing for Bacteria Identification on Audio-Visual Materials
Authors: Tereza Branyšová, Martina Kračmarová, Kateřina Demnerová, Michal Ďurovič, Hana Stiborová
Abstract:
Microbial deterioration threatens all objects of cultural heritage, including audio-visual materials. Fungi are commonly known to be the main factor in audio-visual material deterioration. However, although being neglected, bacteria also play a significant role. In addition to microbial contamination of materials, it is also essential to analyse air as a possible contamination source. This work aims to identify bacterial species in the archives of the Czech Republic that occur on audio-visual materials as well as in the air in the archives. For sampling purposes, the smears from the materials were taken by sterile polyurethane sponges, and the air was collected using a MAS-100 aeroscope. Metagenomic DNA from all collected samples was immediately isolated and stored at -20 °C. DNA library for the 16S rRNA gene was prepared using two-step PCR and specific primers and the concentration step was included due to meagre yields of the DNA. After that, the samples were sent to the University of Fairbanks, Alaska, for Illumina MiSeq sequencing. Subsequently, the analysis of the sequences was conducted in R software. The obtained sequences were assigned to the corresponding bacterial species using the DADA2 package. The impact of air contamination and the impact of different photosensitive layers that audio-visual materials were made of, such as gelatine, albumen, and collodion, were evaluated. As a next step, we will take a deeper focus on air contamination. We will select an appropriate culture-dependent approach along with a culture-independent approach to observe a metabolically active species in the air. Acknowledgment: This project is supported by grant no. DG18P02OVV062 of the Ministry of Culture of the Czech Republic.Keywords: cultural heritage, Illumina MiSeq, metagenomics, microbial identification
Procedia PDF Downloads 1561048 Antibacterial Wound Dressing Based on Metal Nanoparticles Containing Cellulose Nanofibers
Authors: Mohamed Gouda
Abstract:
Antibacterial wound dressings based on cellulose nanofibers containing different metal nanoparticles (CMC-MNPs) were synthesized using an electrospinning technique. First, the composite of carboxymethyl cellulose containing different metal nanoparticles (CMC/MNPs), such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs), zinc nanoparticles (ZnNPs), cadmium nanoparticles (CdNPs) and cobalt nanoparticles (CoNPs) were synthesized, and finally, these composites were transferred to the electrospinning process. Synthesized CMC-MNPs were characterized using scanning electron microscopy (SEM) coupled with high-energy dispersive X-ray (EDX) and UV-visible spectroscopy used to confirm nanoparticle formation. The SEM images clearly showed regular flat shapes with semi-porous surfaces. All MNPs were well distributed inside the backbone of the cellulose without aggregation. The average particle diameters were 29-39 nm for ZnNPs, 29-33 nm for CdNPs, 25-33 nm for CoNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Surface morphology, water uptake and release of MNPs from the nanofibers in water and antimicrobial efficacy were studied. SEM images revealed that electrospun CMC-MNPs nanofibers are smooth and uniformly distributed without bead formation with average fiber diameters in the range of 300 to 450 nm. Fiber diameters were not affected by the presence of MNPs. TEM images showed that MNPs are present in/on the electrospun CMC-MNPs nanofibers. The diameter of the electrospun nanofibers containing MNPs was in the range of 300–450 nm. The MNPs were observed to be spherical in shape. The CMC-MNPs nanofibers showed good hydrophilic properties and had excellent antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus.Keywords: electrospinning technique, metal nanoparticles, cellulosic nanofibers, wound dressing
Procedia PDF Downloads 3291047 Bacteriophages for Sustainable Wastewater Treatment: Application in Black Water Decontamination with an Emphasis to DRDO Biotoilet
Authors: Sonika Sharma, Mohan G. Vairale, Sibnarayan Datta, Soumya Chatterjee, Dharmendra Dubey, Rajesh Prasad, Raghvendra Budhauliya, Bidisha Das, Vijay Veer
Abstract:
Bacteriophages are viruses that parasitize specific bacteria and multiply in metabolising host bacteria. Bacteriophages hunt for a single or a subset of bacterial species, making them potential antibacterial agents. Utilizing the ability of phages to control bacterial populations has several applications from medical to the fields of agriculture, aquaculture and the food industry. However, harnessing phage based techniques in wastewater treatments to improve quality of effluent and sludge release into the environment is a potential area for R&D application. Phage mediated bactericidal effect in any wastewater treatment process has many controlling factors that lead to treatment performance. In laboratory conditions, titer of bacteriophages (coliphages) isolated from effluent water of a specially designed anaerobic digester of human night soil (DRDO Biotoilet) was successfully increased with a modified protocol of the classical double layer agar technique. Enrichment of the same was carried out and efficacy of the phage enriched medium was evaluated at different conditions (specific media, temperature, storage conditions). Growth optimization study was carried out on different media like soybean casein digest medium (Tryptone soya medium), Luria-Bertani medium, phage deca broth medium and MNA medium (Modified nutrient medium). Further, temperature-phage yield relationship was also observed at three different temperatures 27˚C, 37˚C and 44˚C at laboratory condition. Results showed the higher activity of coliphage 27˚C and at 37˚C. Further, addition of divalent ions (10mM MgCl2, 5mM CaCl2) and 5% glycerol resulted in a significant increase in phage titer. Besides this, effect of antibiotics addition like ampicillin and kanamycin at different concentration on plaque formation was analysed and reported that ampicillin at a concentration of 1mg/ml ampicillin stimulates phage infection and results in more number of plaques. Experiments to test viability of phage showed that it can remain active for 6 months at 4˚C in fresh tryptone soya broth supplemented with fresh culture of coliforms (early log phase). The application of bacteriophages (especially coliphages) for treatment of effluent of human faecal matter contaminated effluent water is unique. This environment-friendly treatment system not only reduces the pathogenic coliforms, but also decreases the competition between nuisance bacteria and functionally important microbial populations. Therefore, the phage based cocktail to treat fecal pathogenic bacteria present in black water has many implication in wastewater treatment processes including ‘DRDO Biotoilet’, which is an ecofriendly appropriate and affordable human faecal matter treatment technology for different climates and situations.Keywords: wastewater, microbes, virus, biotoilet, phage viability
Procedia PDF Downloads 4361046 Effect of Recycled Grey Water on Bacterial Concrete
Authors: T. Deepa, S. R. Inchara, S. V. Venkatesh, Seema Tharannum
Abstract:
Concrete is the most widely used structural material. It is made using locally available materials. However, Concrete has low tensile strength and may crack in the early days with exothermic hydration. Bacillus subtilis bacteria that form endospores is the biological agent considered in this study for Biomineralization or MICP (Microbially Induced Calcite Precipitation) Technique and to address the increased Construction water demand, Recycled Grey Water which is obtained from STP of PES University, opted in place of Potable water. In this work, M30 grade conventional concrete is designed using OPC 53 grade cement, Manufactured Sand, Natural coarse aggregates, and Potable water. Conventional Concrete (CC), Bacterial Concrete with Potable water (BS), and Recycled Grey Water concrete (RGW) are the three different concrete specimens casted. Experimental studies such as the strength test and the surface hardness test are conducted on Conventional and Bacterial concrete samples after 7, 28, and 56 days of curing. Concrete cubes are subjected to a temperature of 50° C to investigate the effect of higher temperature. Cracked cube specimens are observed for Self-healing - as well as microstructure analysis with Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Analysis (EDAX), and X-Ray Diffraction Analysis (XRD).Noticeable Calcium salt deposition is observed on the surface of BS and RGW cracked specimen. Surface hardness and EDAX test gave promising result on the advantage of using spore-forming bacteria in concrete. This is followed by the strength gain in Compression and Flexure. Results also indicate that Recycled Grey Water can be a substitute for Normal water in concrete.Keywords: bacillus subtilis, bacterial concrete, recycled grey water, self-healing, surface hardness of concrete
Procedia PDF Downloads 1331045 The Taxonomic and Functional Diversity in Edaphic Microbial Communities from Antarctic Dry Valleys
Authors: Sean T. S. Wei, Joy D. Van Nostrand, Annapoorna Maitrayee Ganeshram, Stephen B. Pointing
Abstract:
McMurdo Dry Valleys are a largely ice-free polar desert protected by international treaty as an Antarctic special managed area. The terrestrial landscape is dominated by oligotrophic mineral soil with extensive rocky outcrops. Several environmental stresses: low temperature, lack of liquid water, UV exposure and oligotrophic substrates, restrict the major biotic component to microorganisms. The bacterial diversity and the putative physiological capacity of microbial communities of quartz rocks (hypoliths) and soil of a maritime-influenced Dry Valleys were interrogated by two metagenomic approaches: 454 pyro-sequencing and Geochp DNA microarray. The most abundant phylum in hypoliths was Cyanobacteria (46%), whereas in solils Actinobacteria (31%) were most abundant. The Proteobacteria and Bacteriodetes were the only other phyla to comprise >10% of both communities. Carbon fixation was indicated by photoautotrophic and chemoautotrophic pathways for both hypolith and soil communities. The fungi accounted for polymer carbon transformations, particularly for aromatic compounds. The complete nitrogen cycling was observed in both communities. The fungi in particular displayed pathways related to ammonification. Environmental stress response pathways were common among bacteria, whereas the nutrient stress response pathways were more widely present in bacteria, archaea and fungi. The diversity of bacterialphage was also surveyed by Geochip. Data suggested that different substrates supported different viral families: Leviviridae, Myoviridae, Podoviridae and Siphoviridiae were ubiquitous. However, Corticoviridae and Microviridae only occurred in wetter soils.Keywords: Antarctica, hypolith, soil, dry valleys, geochip, functional diversity, stress response
Procedia PDF Downloads 4491044 Principles of Municipal Sewage Sludge Bioconversion into Biomineral Fertilizer
Authors: K. V. Kalinichenko, G. N. Nikovskaya
Abstract:
The efficiency of heavy metals removal from sewage sludge in bioleaching with heterotrophic, chemoautotrophic (sulphur-oxidizing) sludge cenoses and chemical leaching (in distilled water, weakly acidic or alkaline medium) was compared. The efficacy of heavy metals removal from sewage sludge varied from 83 % (Zn) up to 14 % (Cr) and followed the order: Zn > Mn > Cu > Ni > Co > Pb > Cr. The advantages of metals bioleaching process at heterotrophic metabolism was shown. A new process for bioconversation of sewage sludge into fertilizer at middle temperature after partial heavy metals removal was developed. This process is based on enhancing vital ability of heterotrophic microorganisms by adding easily metabolized nutrients and synthesis of metabolites by growing sludge cenoses. These metabolites possess the properties of heavy metals extractants and flocculants which provide sludge flocks sedimentation and concentration. The process results in biomineral fertilizer with immobilized sludge bioelements with prolonged action. The fertilizer obtained satisfied the EU limits for the sewage sludge of agricultural utilization. High efficiency of the biomineral fertilizers obtained has been demonstrated in vegetation experiments.Keywords: fertilizer, heavy metals, leaching, sewage sludge
Procedia PDF Downloads 3891043 Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor
Authors: Jatinder Kumar, Ajay Bansal
Abstract:
Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems.Keywords: simulation, computational fluid dynamics (CFD), annular photocatalytic reactor, titanium dioxide
Procedia PDF Downloads 5851042 Determination of Klebsiella Pneumoniae Susceptibility to Antibiotics Using Infrared Spectroscopy and Machine Learning Algorithms
Authors: Manal Suleiman, George Abu-Aqil, Uraib Sharaha, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman, Mahmoud Huleihel
Abstract:
Klebsiella pneumoniae is one of the most aggressive multidrug-resistant bacteria associated with human infections resulting in high mortality and morbidity. Thus, for an effective treatment, it is important to diagnose both the species of infecting bacteria and their susceptibility to antibiotics. Current used methods for diagnosing the bacterial susceptibility to antibiotics are time-consuming (about 24h following the first culture). Thus, there is a clear need for rapid methods to determine the bacterial susceptibility to antibiotics. Infrared spectroscopy is a well-known method that is known as sensitive and simple which is able to detect minor biomolecular changes in biological samples associated with developing abnormalities. The main goal of this study is to evaluate the potential of infrared spectroscopy in tandem with Random Forest and XGBoost machine learning algorithms to diagnose the susceptibility of Klebsiella pneumoniae to antibiotics within approximately 20 minutes following the first culture. In this study, 1190 Klebsiella pneumoniae isolates were obtained from different patients with urinary tract infections. The isolates were measured by the infrared spectrometer, and the spectra were analyzed by machine learning algorithms Random Forest and XGBoost to determine their susceptibility regarding nine specific antibiotics. Our results confirm that it was possible to classify the isolates into sensitive and resistant to specific antibiotics with a success rate range of 80%-85% for the different tested antibiotics. These results prove the promising potential of infrared spectroscopy as a powerful diagnostic method for determining the Klebsiella pneumoniae susceptibility to antibiotics.Keywords: urinary tract infection (UTI), Klebsiella pneumoniae, bacterial susceptibility, infrared spectroscopy, machine learning
Procedia PDF Downloads 1681041 Enzymatic Synthesis of Olive-Based Ferulate Esters: Optimization by Response Surface Methodology
Authors: S. Mat Radzi, N. J. Abd Rahman, H. Mohd Noor, N. Ariffin
Abstract:
Ferulic acid has widespread industrial potential by virtue of its antioxidant properties. However, it is partially soluble in aqueous media, limiting their usefulness in oil-based processes in food, cosmetic, pharmaceutical, and material industry. Therefore, modification of ferulic acid should be made by producing of more lipophilic derivatives. In this study, a preliminary investigation of lipase-catalyzed trans-esterification reaction of ethyl ferulate and olive oil was investigated. The reaction was catalyzed by immobilized lipase from Candida antarctica (Novozym 435), to produce ferulate ester, a sunscreen agent. A statistical approach of Response surface methodology (RSM) was used to evaluate the interactive effects of reaction temperature (40-80°C), reaction time (4-12 hours), and amount of enzyme (0.1-0.5 g). The optimum conditions derived via RSM were reaction temperature 60°C, reaction time 2.34 hours, and amount of enzyme 0.3 g. The actual experimental yield was 59.6% ferulate ester under optimum condition, which compared well to the maximum predicted value of 58.0%.Keywords: ferulic acid, enzymatic synthesis, esters, RSM
Procedia PDF Downloads 3321040 Selective Immobilization of Fructosyltransferase onto Glutaraldehyde Modified Support and Its Application in the Production of Fructo-Oligosaccharides
Authors: Milica B. Veljković, Milica B. Simović, Marija M. Ćorović, Ana D. Milivojević, Anja I. Petrov, Katarina M. Banjanac, Dejan I. Bezbradica
Abstract:
In recent decades, the scientific community has recognized the growing importance of prebiotics, and therefore, numerous studies are focused on their economic production due to their low presence in natural resources. It has been confirmed that prebiotics is a source of energy for probiotics in the gastrointestinal tract (GIT) and enable their proliferation, consequently leading to the normal functioning of the intestinal microbiota. Also, products of their fermentation are short-chain fatty acids (SCFA), which play a key role in maintaining and improving the health not only of the GIT but also of the whole organism. Among several confirmed prebiotics, fructooligosaccharides (FOS) are considered interesting candidates for use in a wide range of products in the food industry. They are characterized as low-calorie and non-cariogenic substances that represent an adequate sugar substitute and can be considered suitable for use in products intended for diabetics. The subject of this research will be the production of FOS by transforming sucrose using a fructosyltransferase (FTase) present in commercial preparation Pectinex® Ultra SP-L, with special emphasis on the development of adequate FTase immobilization method that would enable selective isolation of the enzyme responsible for the synthesis of FOS from the complex enzymatic mixture. This would lead to considerable enzyme purification and allow its direct incorporation into different sucrose-based products without the fear that the action of the other hydrolytic enzymes may adversely affect the products' functional characteristics. Accordingly, the possibility of selective immobilization of the enzyme using support with primary amino groups, Purolite® A109, which was previously activated and modified using glutaraldehyde (GA), was investigated. In the initial phase of the research, the effects of individual immobilization parameters such as pH, enzyme concentration, and immobilization time were investigated to optimize the process using support chemically activated with 15% and 0.5% GA to form dimers and monomers, respectively. It was determined that highly active immobilized preparations (371.8 IU/g of support - dimer and 213.8 IU/g of support – monomer) were achieved under acidic conditions (pH 4) provided that an enzyme concentration was 50 mg/g of support after 7 h and 3 h, respectively. Bearing in mind the obtained results of the expressed activity, it is noticeable that the formation of dimers showed higher reactivity compared to the form of monomers. Also, in the case of support modification using 15% GA, the value of the ratio of FTase and pectinase (as dominant enzyme mixture component) activity immobilization yields was 16.45, indicating the high feasibility of selective immobilization of FTase on modified polystyrene resin. After obtaining immobilized preparations of satisfactory features, they were tested in a reaction of FOS synthesis under determined optimal conditions. The maximum FOS yields of approximately 50% of total carbohydrates in the reaction mixture were recorded after 21 h. Finally, it can be concluded that the examined immobilization method yielded highly active, stable and, more importantly, refined enzyme preparation that can be further utilized on a larger scale for the development of continual processes for FOS synthesis, as well as for modification of different sucrose-based mediums.Keywords: chemical modification, fructooligosaccharides, glutaraldehyde, immobilization of fructosyltransferase
Procedia PDF Downloads 1861039 Sensitivity of Acanthamoeba castellanii-Grown Francisella to Three Different Disinfectants
Authors: M. Knezevic, V. Marecic, M. Ozanic, I. Kelava, M. Mihelcic, M. Santic
Abstract:
Francisella tularensis is a highly infectious, gram-negative intracellular bacterium and the causative agent of tularemia. The bacterium has been isolated from more than 250 wild species, including protozoa cells. Since Francisella is very virulent and persists in the environment for years, the aim of this study was to investigate whether Acanthamoeba castellanii-grown F. novicida exhibits an alteration in the resistance to disinfectants. It has been shown by other intracellular pathogens, including Legionella pneumophila that bacteria grown in amoeba exhibit more resistance to disinfectants. However, there is no data showing Francisella viability behaviour after intracellular life cycle in A. castellani. In this study, the bacterial suspensions of A. castellanii-grown or in vitro-grown Francisella were treated with three different disinfectants, and the bacterial viability after disinfection treatment was determined by a colony-forming unit (CFU) counting method, transmission electron microscopy (TEM), fluorescence microscopy as well as the leakage of intracellular fluid. Our results have shown that didecyldimethylammonium chloride (DDAC) combined with isopropyl alcohol was the most effective in bacterial killing; all in vitro-grown and A. castellanii-grown F. novicida were killed after only 10s. Surprisingly, in comparison to in vitro-grown bacteria, A. castellanii-grown F. novicida was more sensitive to decontamination by the benzalkonium chloride combined with DDAC and formic acid and the polyhexamethylene biguanide (PHMB). We can conclude that the tested disinfectants exhibit antimicrobial activity by causing a loss of structural organization and integrity of the Francisella cell wall and membrane and the subsequent leakage of the intracellular contents. Finally, the results of this study clearly demonstrate that Francisella grown in A. castellanii had become more susceptible to many disinfectants.Keywords: Acanthamoeba, disinfectant, Francisella, sensitivity
Procedia PDF Downloads 1001038 Functional Aspects of Carbonic Anhydrase
Authors: Bashistha Kumar Kanth, Seung Pil Pack
Abstract:
Carbonic anhydrase is ubiquitously distributed in organisms, and is fundamental to many eukaryotic biological processes such as photosynthesis, respiration, CO2 and ion transport, calcification and acid–base balance. However, CA occurs across the spectrum of prokaryotic metabolism in both the archaea and bacteria domains and many individual species contain more than one class. In this review, various roles of CA involved in cellular mechanism are presented to find out the CA functions applicable for industrial use.Keywords: carbonic anhydrase, mechanism, CO2 sequestration, respiration
Procedia PDF Downloads 4911037 Quality Analysis of Lake Malawi's Diplotaxodon Fish Species Processed in Solar Tent Dryer versus Open Sun Drying
Authors: James Banda, Jupiter Simbeye, Essau Chisale, Geoffrey Kanyerere, Kings Kamtambe
Abstract:
Improved solar tent dryers for processing small fish species were designed to reduce post-harvest fish losses and improve supply of quality fish products in the southern part of Lake Malawi under CultiAF project. A comparative analysis of the quality of Diplotaxodon (Ndunduma) from Lake Malawi processed in solar tent dryer and open sun drying was conducted using proximate analysis, microbial analysis and sensory evaluation. Proximates for solar tent dried fish and open sun dried fish in terms of proteins, fats, moisture and ash were 63.3±0.15% and 63.3±0.34%, 19.6±0.09% and 19.9±0.25%, 8.3±0.12% and 17.0±0.01%, and 15.6±0.61% and 21.9±0.91% respectively. Crude protein and crude fat showed non-significant differences (p = 0.05), while moisture and ash content were significantly different (p = 001). Open sun dried fish had significantly higher numbers of viable bacteria counts (5.2×10⁶ CFU) than solar tent dried fish (3.9×10² CFU). Most isolated bacteria from solar tent dried and open sun dried fish were 1.0×10¹ and 7.2×10³ for Total coliform, 0 and 4.5 × 10³ for Escherishia coli, 0 and 7.5 × 10³ for Salmonella, 0 and 5.7×10² for shigella, 4.0×10¹ and 6.1×10³ for Staphylococcus, 1.0×10¹ and 7.0×10² for vibrio. Qualitative evaluation of sensory properties showed higher acceptability of 3.8 for solar tent dried fish than 1.7 for open sun dried fish. It is concluded that promotion of solar tent drying in processing small fish species in Malawi would support small-scale fish processors to produce quality fish in terms of nutritive value, reduced microbial contamination, sensory acceptability and reduced moisture content.Keywords: diplotaxodon, Malawi, open sun drying, solar tent drying
Procedia PDF Downloads 3361036 Alleviation of Thermal Stress in Pinus ponderosa by Plant-Growth Promoting Rhizobacteria Isolated from Mixed-Conifer Forests
Authors: Kelli G. Thorup, Kristopher A. Blee
Abstract:
Climate change enhances the occurrence of extreme weather: wildfires, drought, rising summer temperatures, all of which dramatically decline forest growth and increase tree mortality in the mixed-conifer forests of Sierra Nevada, California. However, microbiota living in mutualistic relations with plant rhizospheres have been found to mitigate the effects of suboptimal environmental conditions. The goal of this research is to isolate native beneficial bacteria, plant-growth promoting rhizobacteria (PGPR), that can alleviate heat stress in Pinus ponderosa seedlings. Bacteria were isolated from the rhizosphere of Pinus ponderosa juveniles located in mixed-conifer stand and further characterized for PGP potential based on their ability to produce key growth regulatory phytohormones including auxin, cytokinin, and gibberellic acid. Out of ten soil samples taken, sixteen colonies were isolated and qualitatively confirmed to produce indole-3-acetic acid (auxin) using Salkowski’s reagent. Future testing will be conducted to quantitatively assess phytohormone production in bacterial isolates. Furthermore, bioassays will be performed to determine isolates abilities to increase tolerance in heat-stressed Pinus ponderosa seedlings. Upon completion of this research, a PGPR could be utilized to support the growth and transplantation of conifer seedlings as summer temperatures continue to rise due to the effects of climate change.Keywords: conifer, heat-stressed, phytohormones, Pinus ponderosa, plant-growth promoting rhizobacteria
Procedia PDF Downloads 1181035 Smoking Elevates the Risk of Dysbiosis Associated with Dental Decay
Authors: Razia Hossaini, Maryam Hosseini
Abstract:
Background and Objective: The impact of smoking on the shift in oral microbial composition has been questioned. This study aims to compare the oral microbiome between Turkish patients with dental caries and healthy individuals. Materials and Methods: An observational case-control study was conducted from January to June 2024, involving 270 young adults (180 with dental caries and 90 healthy controls). Participants were matched by age, gender, education, sugar consumption, and tooth brushing habits. Oral samples were collected using sterilized swabs and preserved in a PBS-glycerol solution. The cultured bacterial samples were characterized based on their morphological characteristics, Gram staining properties, hemolysis patterns, and biochemical tests including methyl red, sugar fermentation, Simmons citrate utilization, coagulase production, and catalase activity. These tests were conducted to accurately identify the bacterial species present. Subsequently, the relationship between smoking and oral health was evaluated, with a particular focus on assessing the smoking-induced changes in the composition of the oral microbiota using statistical analyses. Results: The study’s results demonstrate a clear association between smoking and an increased risk of dental caries, as well as significant shifts in the oral microbiota of smokers (p=0.04). These findings emphasize the critical need for public health initiatives that target smoking cessation as a means of improving oral health outcomes. Since smokers are 1.28 times more likely to develop dental caries than non-smokers, public health campaigns should incorporate messages that highlight the direct impact of smoking on oral health, alongside the well-established risks such as lung disease and cardiovascular conditions.The observed alterations in the oral microbiota—specifically the higher prevalence of pathogens like Escherichia coli, Pseudomonas aeruginosa, Streptococcus mutans, and Lactobacillus acidophilus in patients with dental caries—suggest that smoking not only predisposes individuals to dental decay but also creates an environment conducive to the growth of harmful bacteria. Public health interventions could therefore focus on the dual benefit of smoking cessation: reducing the incidence of dental caries and restoring a healthier oral microbiome. Additionally, the reduced presence of beneficial or less pathogenic species such as Neisseria and Micrococcus luteus in smokers implies that smoking alters the protective balance of the oral microbiome. This further underscores the importance of preventive oral health strategies tailored to smokers. Conclusion: Smoking significantly impacts oral health by promoting dysbiosis, increasing cariogenic bacteria, and reducing beneficial bacteria, which contributes to the development of dental caries. These findings highlight the need for integrated public health efforts that address both smoking cessation and oral health promotion. By raising awareness of the specific oral health risks associated with smoking, public health initiatives could help reduce the burden of dental caries and other smoking-related oral diseases, ultimately improving quality of life for individuals and reducing healthcare costs.Keywords: smoking, dysbiosis, bacteria, oral health, dental decay
Procedia PDF Downloads 191034 Antimicrobial Activity of 2-Nitro-1-Propanol and Lauric Acid against Gram-Positive Bacteria
Authors: Robin Anderson, Elizabeth Latham, David Nisbet
Abstract:
Propagation and dissemination of antimicrobial resistant and pathogenic microbes from spoiled silages and composts represents a serious public health threat to humans and animals. In the present study, the antimicrobial activity of the short chain nitro-compound, 2-nitro-1-propanol (9 mM) as well as the medium chain fatty acid, lauric acid, and its glycerol monoester, monolaurin, (each at 25 and 17 µmol/mL, respectfully) were investigated against select pathogenic and multi-drug resistant antimicrobial resistant Gram-positive bacteria common to spoiled silages and composts. In an initial study, we found that growth rates of a multi-resistant Enterococcus faecalis (expressing resistance against erythromycin, quinupristin/dalfopristin and tetracycline) and Staphylococcus aureus strain 12600 (expressing resistance against erythromycin, linezolid, penicillin, quinupristin/dalfopristin and vancomycin) were more than 78% slower (P < 0.05) by 2-nitro-1-propanol treatment during culture (n = 3/treatment) in anaerobically prepared ½ strength Brain Heart Infusion broth at 37oC when compared to untreated controls (0.332 ± 0.04 and 0.108 ± 0.03 h-1, respectively). The growth rate of 2-nitro-1-propanol-treated Listeria monocytogenes was also decreased by 96% (P < 0.05) when compared to untreated controls cultured similarly (0.171 ± 0.01 h-1). Maximum optical densities measured at 600 nm were lower (P < 0.05) in 2-nitro-1-propanol-treated cultures (0.053 ± 0.01, 0.205 ± 0.02 and 0.041 ± 0.01, respectively) than in untreated controls (0.483 ± 0.02, 0.523 ± 0.01 and 0.427 ± 0.01, respectively) for E. faecalis, S. aureus and L. monocytogenes, respectively. When tested against mixed microbial populations during anaerobic 24 h incubation of spoiled silage, significant effects of treatment with 1 mg 2-nitro-1-propanol (approximately 9.5 µmol/g) or 5 mg lauric acid/g (approximately 25 µmol/g) on populations of wildtype Enterococcus and Listeria were not observed. Mixed populations treated with 5 mg monolaurin/g (approximately 17 µmol/g) had lower (P < 0.05) viable cell counts of wildtype enterococci than untreated controls after 6 h incubation (2.87 ± 1.03 versus 5.20 ± 0.25 log10 colony forming units/g, respectively) but otherwise significant effects of monolaurin were not observed. These results reveal differential susceptibility of multi-drug resistant enterococci and staphylococci as well as L. monocytogenes to the inhibitory activity of 2-nitro-1-propanol and the medium chain fatty acid, lauric acid and its glycerol monoester, monolaurin. Ultimately, these results may lead to improved treatment technologies to preserve the microbiological safety of silages and composts.Keywords: 2-nitro-1-propanol, lauric acid, monolaurin, gram positive bacteria
Procedia PDF Downloads 1081033 Evaluation of Microbial Community, Biochemical and Physiological Properties of Korean Black Raspberry (Rubus coreanus Miquel) Vinegar Manufacturing Process
Authors: Nho-Eul Song, Sang-Ho Baik
Abstract:
Fermentation characteristics of black raspberry vinegar by using static cultures without any additives were has been investigated to establish of vinegar manufacturing conditions and improve the quality of vinegar by optimization the vinegar manufacturing process. The two vinegar manufacturing conditions were prepared; one-step fermentation condition only using mother vinegar that prepared naturally occurring black raspberry vinegar without starter yeast for alcohol fermentation (traditional method) and two-step fermentation condition using commercial wine yeast and mother vinegar for acetic acid fermentation. Approximately 12% ethanol was produced after 35 days fermentation with log 7.6 CFU/mL of yeast population in one-step fermentation, resulting sugar reduction from 14 to 6oBrix whereas in two-step fermentation, ethanol concentration was reached up to 8% after 27 days with continuous increasing yeast until log 7.0 CFU/mL. In addition, yeast and ethanol were decreased after day 60 accompanied with proliferation of acetic acid bacteria (log 5.8 CFU/mL) and titratable acidity; 4.4% in traditional method and 6% in two-step fermentation method. DGGE analysis showed that S. cerevisiae was detected until 77 days of traditional fermentation and gradually changed to AAB, Acetobacter pasteurianus, as dominant species and Komagataeibacter xylinus at the end of the fermentation. However, S. cerevisiae and A. pasteurianus was dominant in two-step fermentation process. The prepared two-step fermentation showed enhanced total polyphenol and flavonoid content significantly resulting in higher radical scavenging activity. Our studies firstly revealed the microbial community change with chemical change and demonstrated a suitable fermentation system for black raspberry vinegar by the static surface method.Keywords: bacteria, black raspberry, vinegar fermentation, yeast
Procedia PDF Downloads 4501032 Effects of Environmental Parameters on Salmonella Contaminated in Harvested Oysters (Crassostrea lugubris and Crassostrea belcheri)
Authors: Varangkana Thaotumpitak, Jarukorn Sripradite, Saharuetai Jeamsripong
Abstract:
Environmental contamination from wastewater discharges originated from anthropogenic activities introduces the accumulation of enteropathogenic bacteria in aquatic animals, especially in oysters, and in shellfish harvesting areas. The consumption of raw or partially cooked oysters can be a risk for seafood-borne diseases in human. This study aimed to evaluate the relationship between the presence of Salmonella in oyster meat samples, and environmental factors (ambient air temperature, relative humidity, gust wind speed, average wind speed, tidal condition, precipitation and season) by using the principal component analysis (PCA). One hundred and forty-four oyster meat samples were collected from four oyster harvesting areas in Phang Nga province, Thailand from March 2016 to February 2017. The prevalence of Salmonella of each site was ranged from 25.0-36.11% in oyster meat. The results of PCA showed that ambient air temperature, relative humidity, and precipitation were main factors correlated with Salmonella detection in these oysters. Positive relationship was observed between positive Salmonella in the oysters and relative humidity (PC1=0.413) and precipitation (PC1=0.607), while the negative association was found between ambient air temperature (PC1=0.338) and the presence of Salmonella in oyster samples. These results suggested that lower temperature and higher precipitation and higher relative humidity will possibly effect on Salmonella contamination of oyster meat. During the high risk period, harvesting of oysters should be prohibited to reduce pathogenic bacteria contamination and to minimize a hazard of humans from Salmonellosis.Keywords: oyster, Phang Nga Bay, principal component analysis, Salmonella
Procedia PDF Downloads 130