Search results for: data disorders
25364 Treatment and Diagnostic Imaging Methods of Fetal Heart Function in Radiology
Authors: Mahdi Farajzadeh Ajirlou
Abstract:
Prior evidence of normal cardiac anatomy is desirable to relieve the anxiety of cases with a family history of congenital heart disease or to offer the option of early gestation termination or close follow-up should a cardiac anomaly be proved. Fetal heart discovery plays an important part in the opinion of the fetus, and it can reflect the fetal heart function of the fetus, which is regulated by the central nervous system. Acquisition of ventricular volume and inflow data would be useful to quantify more valve regurgitation and ventricular function to determine the degree of cardiovascular concession in fetal conditions at threat for hydrops fetalis. This study discusses imaging the fetal heart with transvaginal ultrasound, Doppler ultrasound, three-dimensional ultrasound (3DUS) and four-dimensional (4D) ultrasound, spatiotemporal image correlation (STIC), glamorous resonance imaging and cardiac catheterization. Doppler ultrasound (DUS) image is a kind of real- time image with a better imaging effect on blood vessels and soft tissues. DUS imaging can observe the shape of the fetus, but it cannot show whether the fetus is hypoxic or distressed. Spatiotemporal image correlation (STIC) enables the acquisition of a volume of data concomitant with the beating heart. The automated volume accession is made possible by the array in the transducer performing a slow single reach, recording a single 3D data set conforming to numerous 2D frames one behind the other. The volume accession can be done in a stationary 3D, either online 4D (direct volume scan, live 3D ultrasound or a so-called 4D (3D/ 4D)), or either spatiotemporal image correlation-STIC (off-line 4D, which is a circular volume check-up). Fetal cardiovascular MRI would appear to be an ideal approach to the noninvasive disquisition of the impact of abnormal cardiovascular hemodynamics on antenatal brain growth and development. Still, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the mortal fetus, the lack of conventional cardiac gating styles to attend data accession, and the implicit corruption of MRI data due to motherly respiration and unpredictable fetal movements. Fetal cardiac MRI has the implicit to complement ultrasound in detecting cardiovascular deformations and extracardiac lesions. Fetal cardiac intervention (FCI), minimally invasive catheter interventions, is a new and evolving fashion that allows for in-utero treatment of a subset of severe forms of congenital heart deficiency. In special cases, it may be possible to modify the natural history of congenital heart disorders. It's entirely possible that future generations will ‘repair’ congenital heart deficiency in utero using nanotechnologies or remote computer-guided micro-robots that work in the cellular layer.Keywords: fetal, cardiac MRI, ultrasound, 3D, 4D, heart disease, invasive, noninvasive, catheter
Procedia PDF Downloads 3825363 Epidemiological Patterns of Pediatric Fever of Unknown Origin
Authors: Arup Dutta, Badrul Alam, Sayed M. Wazed, Taslima Newaz, Srobonti Dutta
Abstract:
Background: In today's world, with modern science and contemporary technology, a lot of diseases may be quickly identified and ruled out, but children's fever of unknown origin (FUO) still presents diagnostic difficulties in clinical settings. Any fever that reaches 38 °C and lasts for more than seven days without a known cause is now classified as a fever of unknown origin (FUO). Despite tremendous progress in the medical sector, fever of unknown origin, or FOU, persists as a major health issue and a major contributor to morbidity and mortality, particularly in children, and its spectrum is sometimes unpredictable. The etiology is influenced by geographic location, age, socioeconomic level, frequency of antibiotic resistance, and genetic vulnerability. Since there are currently no known diagnostic algorithms, doctors are forced to evaluate each patient one at a time with extreme caution. A persistent fever poses difficulties for both the patient and the doctor. This prospective observational study was carried out in a Bangladeshi tertiary care hospital from June 2018 to May 2019 with the goal of identifying the epidemiological patterns of fever of unknown origin in pediatric patients. Methods: It was a hospital-based prospective observational study carried out on 106 children (between 2 months and 12 years) with prolonged fever of >38.0 °C lasting for more than 7 days without a clear source. Children with additional chronic diseases or known immunodeficiency problems were not allowed. Clinical practices that helped determine the definitive etiology were assessed. Initial testing included a complete blood count, a routine urine examination, PBF, a chest X-ray, CRP measurement, blood cultures, serology, and additional pertinent investigations. The analysis focused mostly on the etiological results. The standard program SPSS 21 was used to analyze all of the study data. Findings: A total of 106 patients identified as having FUO were assessed, with over half (57.5%) being female and the majority (40.6%) falling within the 1 to 3-year age range. The study categorized the etiological outcomes into five groups: infections, malignancies, connective tissue conditions, miscellaneous, and undiagnosed. In the group that was being studied, infections were found to be the main cause in 44.3% of cases. Undiagnosed cases came in at 31.1%, cancers at 10.4%, other causes at 8.5%, and connective tissue disorders at 4.7%. Hepato-splenomegaly was seen in people with enteric fever, malaria, acute lymphoid leukemia, lymphoma, and hepatic abscesses, either by itself or in combination with other conditions. About 53% of people who were not diagnosed also had hepato-splenomegaly at the same time. Conclusion: Infections are the primary cause of PUO (pyrexia of unknown origin) in children, with undiagnosed cases being the second most common cause. An incremental approach is beneficial in the process of diagnosing a condition. Non-invasive examinations are used to diagnose infections and connective tissue disorders, while invasive investigations are used to diagnose cancer and other ailments. According to this study, the prevalence of undiagnosed diseases is still remarkable, so extensive historical analysis and physical examinations are necessary in order to provide a precise diagnosis.Keywords: children, diagnostic challenges, fever of unknown origin, pediatric fever, undiagnosed diseases
Procedia PDF Downloads 2725362 Determination of Phenolic Contents and Antioxidant Activities of Chenopodium quinoa Willd. Seed Extracts
Authors: Nilgün Öztürk, Hakan Sabahtin Ali, Hülya Tuba Kıyan
Abstract:
The genus Chenopodium belongs to Amaranthaceae, is represented by approximately 250 species in the world and 15 species and three subspecies in Turkey. Chenopodium species are traditionally used to treat chest and abdominal pain, shortness of breath, cough and neurological disorders. Chenopodium quinoa Willd. (Quinoa) is native to Andes region of South America (especially Peru and Bolivia) and cultivated in many countries include also Turkey in the world nowadays. The seeds of quinoa are rich in protein, and the phytochemical composition consists of antioxidant substances such as polyphenolic compounds, flavonoids, vitamins, and minerals; anticancer and neuroprotective compounds such as tocotrienols; anti-inflammatory compounds such as carotenoids and anthocyanins and also saponins and starch. Food products of quinoa such as quinoa cereal bar, pasta and cornflakes are used in the diet made during many disorders like obesity, cardiovascular disorder, hypertension and Celiac disease. Also quinoa seems to have antimicrobial, anti-inflammatory and cholesterol-lowering properties because of its bioactive compounds. In this present study, the aqueous ethanolic extracts of the seeds of three different coloured genotypes of quinoa were investigated for their antioxidant activities using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, ferrous ion-chelating effect, ferric-reducing antioxidant power, ABTS radical cation decolorization assays and total phenolic contents using Folin-Ciocalteu assay. Among the three genotypes of quinoa; the aqueous ethanolic extract of the red genotype had the highest total phenolic content (83.54 ± 2.12 mg gallic acid/100 g extract) whereas the extract of the white genotype had the lowest total phenolic content (70.66 ± 0.25 mg gallic acid/100 g). According to the antioxidant activity results; the extracts showed moderate reducing power effect whereas weak ABTS radical cation decolorization and ferrous ion-chelating effect and also too weak DPPH radical scavenging activity when compared to the positive standards.Keywords: amaranthaceae, antioxidant activity, Chenopodium quinoa willd., total phenolic content
Procedia PDF Downloads 18025361 Pediatric Health Nursing Research in Jordan: Evaluating the State of Knowledge and Determining Future Research Direction
Authors: Inaam Khalaf, Nadin M. Abdel Razeq, Hamza Alduraidi, Suhaila Halasa, Omayyah S. Nassar, Eman Al-Horani, Jumana Shehadeh, Anna Talal
Abstract:
Background: Nursing researchers are responsible for generating knowledge that corresponds to national and global research priorities in order to promote, restore, and maintain the health of individuals and societies. The objectives of this scoping review of Jordanian literature are to assess the existing research on pediatric nursing in terms of evolution, authorship and collaborations, funding sources, methodologies, topics of research, and pediatric subjects' age groups so as to identify gaps in research. Methodology: A search was conducted using related keywords obtained from national and international databases. The reviewed literature included pediatric health articles published through December 2019 in English and Arabic, authored by nursing researchers. The investigators assessed the retrieved studies and extracted data using a data-mining checklist. Results: The review included 265 articles authored by Jordanian nursing researchers concerning children's health, published between 1987 and 2019; 95% were published between 2009 and 2019. The most commonly applied research methodology was the descriptive non-experimental method (76%). The main generic topics were health promotion and disease prevention (23%), chronic physical conditions (19%), mental health, behavioral disorders, and forensic issues (16%). Conclusion: The review findings identified a grave shortage of evidence concerning nursing care issues for children below five years of age, especially those between ages two and five years. The research priorities identified in this review resonate with those identified in international reports. Implications: Nursing researchers are encouraged to conduct more research targeting topics of national-level importance in collaboration with clinically involved nurses and international scholars.Keywords: Jordan, scoping review, children health nursing, pediatric, adolescents
Procedia PDF Downloads 8625360 Application of Artificial Neural Network Technique for Diagnosing Asthma
Authors: Azadeh Bashiri
Abstract:
Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.Keywords: asthma, data mining, Artificial Neural Network, intelligent system
Procedia PDF Downloads 27325359 Analysis of Potential Associations of Single Nucleotide Polymorphisms in Patients with Schizophrenia Spectrum Disorders
Authors: Tatiana Butkova, Nikolai Kibrik, Kristina Malsagova, Alexander Izotov, Alexander Stepanov, Anna Kaysheva
Abstract:
Relevance. The genetic risk of developing schizophrenia is determined by two factors: single nucleotide polymorphisms and gene copy number variations. The search for serological markers for early diagnosis of schizophrenia is driven by the fact that the first five years of the disease are accompanied by significant biological, psychological, and social changes. It is during this period that pathological processes are most amenable to correction. The aim of this study was to analyze single nucleotide polymorphisms (SNPs) that are hypothesized to potentially influence the onset and development of the endogenous process. Materials and Methods It was analyzed 73 single nucleotide polymorphism variants. The study included 48 patients undergoing inpatient treatment at "Psychiatric Clinical Hospital No. 1" in Moscow, comprising 23 females and 25 males. Inclusion criteria: - Patients aged 18 and above. - Diagnosis according to ICD-10: F20.0, F20.2, F20.8, F21.8, F25.1, F25.2. - Voluntary informed consent from patients. Exclusion criteria included: - The presence of concurrent somatic or neurological pathology, neuroinfections, epilepsy, organic central nervous system damage of any etiology, and regular use of medication. - Substance abuse and alcohol dependence. - Women who were pregnant or breastfeeding. Clinical and psychopathological assessment was complemented by psychometric evaluation using the PANSS scale at the beginning and end of treatment. The duration of observation during therapy was 4-6 weeks. Total DNA extraction was performed using QIAamp DNA. Blood samples were processed on Illumina HiScan and genotyped for 652,297 markers on the Infinium Global Chips Screening Array-24v2.0 using the IMPUTE2 program with parameters Ne=20,000 and k=90. Additional filtration was performed based on INFO>0.5 and genotype probability>0.5. Quality control of the obtained DNA was conducted using agarose gel electrophoresis, with each tested sample having a volume of 100 µL. Results. It was observed that several SNPs exhibited gender dependence. We identified groups of single nucleotide polymorphisms with a membership of 80% or more in either the female or male gender. These SNPs included rs2661319, rs2842030, rs4606, rs11868035, rs518147, rs5993883, and rs6269.Another noteworthy finding was the limited combination of SNPs sufficient to manifest clinical symptoms leading to hospitalization. Among all 48 patients, each of whom was analyzed for deviations in 73 SNPs, it was discovered that the combination of involved SNPs in the manifestation of pronounced clinical symptoms of schizophrenia was 19±3 out of 73 possible. In study, the frequency of occurrence of single nucleotide polymorphisms also varied. The most frequently observed SNPs were rs4849127 (in 90% of cases), rs1150226 (86%), rs1414334 (75%), rs10170310 (73%), rs2857657, and rs4436578 (71%). Conclusion. Thus, the results of this study provide additional evidence that these genes may be associated with the development of schizophrenia spectrum disorders. However, it's impossible cannot rule out the hypothesis that these polymorphisms may be in linkage disequilibrium with other functionally significant polymorphisms that may actually be involved in schizophrenia spectrum disorders. It has been shown that missense SNPs by themselves are likely not causative of the disease but are in strong linkage disequilibrium with non-functional SNPs that may indeed contribute to disease predisposition.Keywords: gene polymorphisms, genotyping, single nucleotide polymorphisms, schizophrenia.
Procedia PDF Downloads 8025358 Interpreting Privacy Harms from a Non-Economic Perspective
Authors: Christopher Muhawe, Masooda Bashir
Abstract:
With increased Internet Communication Technology(ICT), the virtual world has become the new normal. At the same time, there is an unprecedented collection of massive amounts of data by both private and public entities. Unfortunately, this increase in data collection has been in tandem with an increase in data misuse and data breach. Regrettably, the majority of data breach and data misuse claims have been unsuccessful in the United States courts for the failure of proof of direct injury to physical or economic interests. The requirement to express data privacy harms from an economic or physical stance negates the fact that not all data harms are physical or economic in nature. The challenge is compounded by the fact that data breach harms and risks do not attach immediately. This research will use a descriptive and normative approach to show that not all data harms can be expressed in economic or physical terms. Expressing privacy harms purely from an economic or physical harm perspective negates the fact that data insecurity may result into harms which run counter the functions of privacy in our lives. The promotion of liberty, selfhood, autonomy, promotion of human social relations and the furtherance of the existence of a free society. There is no economic value that can be placed on these functions of privacy. The proposed approach addresses data harms from a psychological and social perspective.Keywords: data breach and misuse, economic harms, privacy harms, psychological harms
Procedia PDF Downloads 19525357 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 4425356 Prevalence and Risk Factors of Low Back Disorder among Waste Collection Workers: A Systematic Review
Authors: Benedicta Asante, Catherine Trask, Brenna Bath
Abstract:
Background: Waste Collection Workers’ (WCWs) activities contribute greatly to the recycling sector and are an important component of the waste management industry. As the recycling sector evolves, there is the increase in reports of injuries, particularly for common and debilitating musculoskeletal disorders such as low back disorder (LBD). WCWs are likely exposed to diverse work-related hazards that could contribute to LBD. However, there is currently no summary of the state of knowledge on the prevalence and risk factors of LBD within this workforce. Method: A comprehensive search was conducted in Ovid Medline, EMBASE, and Global Health e-publications with search term categories ‘low back disorder’ and ‘waste collection workers’. Two reviewers screened articles at title, abstract, and full-text stages. Data were extracted on study design, sampling strategy, socio-demographics, geographical region, and exposure definition, the definition of LBD, response rate, statistical techniques, LBD prevalence and risk factors. The risk of bias was assessed with a standardized tool. Results: The search of three databases generated 79 studies. Thirty-two studies met the study inclusion criteria for both title and abstract; only thirteen full-text articles met the study criteria and underwent data extraction. The majority of articles reported a 12-month prevalence of LBD between 16-74%. Although none of the included studies quantified relationships between risk factors and LBD, the suggested risk factors for LBD among WCWs included: awkward posture; lifting; pulling; pushing; repetitive motions; work duration; and physical loads. Conclusion: LBD is a major occupational health issue among WCWs. In light of these risks and future growth in this industry, further research should focus on the investigation of risk factors, with more focus on ergonomic exposure assessment, and LBD prevention efforts.Keywords: low back pain, scavenger, waste pickers, waste collection workers
Procedia PDF Downloads 25325355 Data Access, AI Intensity, and Scale Advantages
Authors: Chuping Lo
Abstract:
This paper presents a simple model demonstrating that ceteris paribus countries with lower barriers to accessing global data tend to earn higher incomes than other countries. Therefore, large countries that inherently have greater data resources tend to have higher incomes than smaller countries, such that the former may be more hesitant than the latter to liberalize cross-border data flows to maintain this advantage. Furthermore, countries with higher artificial intelligence (AI) intensity in production technologies tend to benefit more from economies of scale in data aggregation, leading to higher income and more trade as they are better able to utilize global data.Keywords: digital intensity, digital divide, international trade, scale of economics
Procedia PDF Downloads 6825354 Secured Transmission and Reserving Space in Images Before Encryption to Embed Data
Authors: G. R. Navaneesh, E. Nagarajan, C. H. Rajam Raju
Abstract:
Nowadays the multimedia data are used to store some secure information. All previous methods allocate a space in image for data embedding purpose after encryption. In this paper, we propose a novel method by reserving space in image with a boundary surrounded before encryption with a traditional RDH algorithm, which makes it easy for the data hider to reversibly embed data in the encrypted images. The proposed method can achieve real time performance, that is, data extraction and image recovery are free of any error. A secure transmission process is also discussed in this paper, which improves the efficiency by ten times compared to other processes as discussed.Keywords: secure communication, reserving room before encryption, least significant bits, image encryption, reversible data hiding
Procedia PDF Downloads 41225353 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).Keywords: biometrics, genetic data, identity verification, k nearest neighbor
Procedia PDF Downloads 25725352 A Review on Intelligent Systems for Geoscience
Authors: R Palson Kennedy, P.Kiran Sai
Abstract:
This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science
Procedia PDF Downloads 13525351 Exploration of Probiotics and Anti-Microbial Agents in Fermented Milk from Pakistani Camel spp. Breeds
Authors: Deeba N. Baig, Ateeqa Ijaz, Saloome Rafiq
Abstract:
Camel is a religious and culturally significant animal in Asian and African regions. In Pakistan Dromedary and Bactrian are common camel breeds. Other than the transportation use, it is a pivotal source of milk and meat. The quality of its milk and meat is predominantly dependent on the geographical location and variety of vegetation available for the diet. Camel milk (CM) is highly nutritious because of its reduced cholesterol and sugar contents along with enhanced minerals and vitamins level. The absence of beta-lactoglobulin (like human milk), makes CM a safer alternative for infants and children having Cow Milk Allergy (CMA). In addition to this, it has a unique probiotic profile both in raw and fermented form. Number of Lactic acid bacteria (LAB) including lactococcus, lactobacillus, enterococcus, streptococcus, weissella, pediococcus and many other bacteria have been detected. From these LAB Lactobacilli, Bifidobacterium and Enterococcus are widely used commercially for fermentation purpose. CM has high therapeutic value as its effectiveness is known against various ailments like fever, arthritis, asthma, gastritis, hepatitis, Jaundice, constipation, postpartum care of women, anti-venom, dropsy etc. It also has anti-diabetic, anti-microbial, antitumor potential along with its robust efficacy in the treatment of auto-immune disorders. Recently, the role of CM has been explored in brain-gut axis for the therapeutics of neurodevelopmental disorders. In this connection, a lot of grey area was available to explore the probiotics and therapeutics latent in the CM available in Pakistan. Thus, current study was designed to explore the predominant probiotic flora and antimicrobial potential of CM from different local breeds of Pakistan. The probiotics have been identified through biochemical, physiological and ribo-typing methods. In addition to this, bacteriocins (antimicrobial-agents) were screened through PCR-based approach. Results of this study revealed that CM from different breeds of camel depicted a number of similar probiotic candidates along with the range of limited variability. However, the nucleotide sequence analysis of selected anti-listerial bacteriocins exposed least variability. As a conclusion, the CM has sufficient probiotic availability and significant anti-microbial potential.Keywords: bacteriocins, camel milk, probiotics potential, therapeutics
Procedia PDF Downloads 13325350 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh
Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila
Abstract:
Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.Keywords: data culture, data-driven organization, data mesh, data quality for business success
Procedia PDF Downloads 13525349 Mental Health of Caregivers in Public Hospital Intensive Care Department: A Multicentric Cross-Sectional Study
Authors: Lamia Bouzgarrou, Amira Omrane, Naima Bouatay, Chaima Harrathi, Samia Machroughl, Ahmed Mhalla
Abstract:
Background and Aims: Professionals of health care sector are exposed to psychosocial constraints like stress, harassment, violence, which can lead to many mental health problems such as, depression, addictive behavior, and burn-out. Moreover, it’s well established that caregivers affected to intensive care units are more likely to experience such constraints and mental health problems. For these caregivers, the mental health state may affect care quality and patient’s safety. This study aims either to identify occupational psychosocial constraints and their mental health consequences among paramedical and medical caregivers affected to intensive units in Tunisian public hospital. Methods: An exhaustive three months cross-sectional study conducted among medical and paramedical staffs of intensive care units in three Tunisian university hospitals. After informed consent collection, we evaluated work-related stress, workplace harassment, depression, anxious troubles, addictive behavior, and self-esteems through an anonymous self-completed inquiry form. Five validated questionnaires and scales were included in this form: Karasek's Job Content Questionnaire, Negative Acts Questionnaire, Rosenberg, Beck depression inventory and Hamilton Anxiety scale. Results: We included 129 intensive unit caregivers; with a mean age of 36.1 ± 1.1 years and a sex ratio of 0.58. Among these caregivers, 30% were specialist or under-specialization doctors. The average seniority in the intensive care was 6.1 ± 1.2 (extremes=1 to 40 years). Atypical working schedules were noted among 36.7% of the subjects with an imposed choice in 52.4% of cases. During the last 12 months preceding the survey, 51.7% of care workers were absent from work because of a health problem with stops exceeding 15 days in 11.7%. Job strain was objective among 15% of caregivers and 38.33% of them were victims of moral harassment. A low or very low self-esteem was noted among 40% of respondents. Moreover, active smoking was reported by 20% subjects, alcohol consumption by 13.3% and psychotropic substance use by 1.7% of them. According to Beck inventory and Hamilton Anxiety scale, we concluded that 61.7% of intensive care providers were depressed, with 'severe' depression in 13.3% of cases and 49.9% of them present anxious disorders. Multivariate analysis objective that, job strain was correlated with young age (p=0.005) and shorter work seniority (p=0.001). Workplace and moral harassment was more prevalent among females (p=0.009), under-specialization doctor (p=0.021), those affected to atypical schedules (p=0.008). Concerning depression, it was more prevalent among staff in job strain situation (p = 0.004), among smokers caregivers (p = 0.048), and those with no leisure activity (p < 0.001). Anxious disorders were positively correlated to chronic diseases history (p = 0.001) and work-bullying exposure (p = 0.004). Conclusions: Our findings reflected a high frequency of caregivers who are under stress at work and those who are victims of moral harassment. These health professionals were at increased risk for developing psychiatric illness such depressive and anxious disorders and addictive behavior. Our results suggest the necessity of preventive strategies of occupational psychosocial constraints in order to preserve professional’s mental health and maximize patient safety and quality of care.Keywords: health care sector, intensive care units, mental health, psychosocial constraints
Procedia PDF Downloads 15525348 Acute and Subacute Toxicity of the Aqueous Extract of the Bark Stems of Balanites aegyptiaca (L.) Delile in Wistar Rats
Authors: Brahim Sow
Abstract:
Background: Throughout West Africa, Balanites aegyptiaca (BA), or Zygophyllaceae, is widely used in traditional medicine to treat diabetes, hypertension, inflammation, malaria and liver disorders. In our recent research, we found that BA has nephroprotective potential against diabetes mellitus, hypertension and kidney disorders. However, to our knowledge, no systematic studies have been carried out on its derivative (toxicity) profile. Aim of the study: The study was conducted to assess the potential potency of the hydroalcoholic extract of BA bark in rats by the acute and sub-acute oral route. Materials and methods: Male and female rats in the acute depression study received BA extract orally at single doses of 500 mg/kg, 2000 mg/kg, 3000 mg/kg and 5000 mg/kg (n = 6 per group/sex). To assess acute depression, abnormal behaviour, toxic symptoms, weight and death were observed for 14 consecutive days. For the subacute impairment study, Wistar rats received the extract orally at doses of 125, 250 and 500 mg/kg (n=6 per group/sex) per day for 28 days. Behaviour and body weight were monitored daily. At the end of the treatment period, biochemical, haematological and histopathological examinations were performed, and gross and histopathological examinations of several organs were carried out. To determine the presence or absence of phytochemicals, the BA extract was subjected to gage phage chromatographic examination. Results: The absence of absorption chromatography of BA indicates the absence of cyanide groups. This suggests that the BA extract does not contain toxic substances. No mortality or adverse effects were observed at 5000 mg/kg in the acute depression test. With regard to body weight, general behaviour, relative organ weights, haematological and biochemical parameters, BA extract did not induce any mortality or potentially treatment-related effects in the sub-acute study. The normal architecture of the vital organs was revealed by histopathological examination, indicating the absence of morphological alterations. Conclusion: BA extract administered orally for 28 days at doses up to 500 mg/kg did not cause toxicological damage in rats in the present study. The median lethal dose (LD50) of the extract was estimated to be over 5000 mg/kg in an acute hyperglycaemia study.Keywords: Balanites aegyptiaca L Delile, haematology, biochemistry, rat
Procedia PDF Downloads 7825347 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 43725346 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 9325345 A Computerized Tool for Predicting Future Reading Abilities in Pre-Readers Children
Authors: Stephanie Ducrot, Marie Vernet, Eve Meiss, Yves Chaix
Abstract:
Learning to read is a key topic of debate today, both in terms of its implications on school failure and illiteracy and regarding what are the best teaching methods to develop. It is estimated today that four to six percent of school-age children suffer from specific developmental disorders that impair learning. The findings from people with dyslexia and typically developing readers suggest that the problems children experience in learning to read are related to the preliteracy skills that they bring with them from kindergarten. Most tools available to professionals are designed for the evaluation of child language problems. In comparison, there are very few tools for assessing the relations between visual skills and the process of learning to read. Recent literature reports that visual-motor skills and visual-spatial attention in preschoolers are important predictors of reading development — the main goal of this study aimed at improving screening for future reading difficulties in preschool children. We used a prospective, longitudinal approach where oculomotor processes (assessed with the DiagLECT test) were measured in pre-readers, and the impact of these skills on future reading development was explored. The dialect test specifically measures the online time taken to name numbers arranged irregularly in horizontal rows (horizontal time, HT), and the time taken to name numbers arranged in vertical columns (vertical time, VT). A total of 131 preschoolers took part in this study. At Time 0 (kindergarten), the mean VT, HT, errors were recorded. One year later, at Time 1, the reading level of the same children was evaluated. Firstly, this study allowed us to provide normative data for a standardized evaluation of the oculomotor skills in 5- and 6-year-old children. The data also revealed that 25% of our sample of preschoolers showed oculomotor impairments (without any clinical complaints). Finally, the results of this study assessed the validity of the DiagLECT test for predicting reading outcomes; the better a child's oculomotor skills are, the better his/her reading abilities will be.Keywords: vision, attention, oculomotor processes, reading, preschoolers
Procedia PDF Downloads 14725344 Efficient Positioning of Data Aggregation Point for Wireless Sensor Network
Authors: Sifat Rahman Ahona, Rifat Tasnim, Naima Hassan
Abstract:
Data aggregation is a helpful technique for reducing the data communication overhead in wireless sensor network. One of the important tasks of data aggregation is positioning of the aggregator points. There are a lot of works done on data aggregation. But, efficient positioning of the aggregators points is not focused so much. In this paper, authors are focusing on the positioning or the placement of the aggregation points in wireless sensor network. Authors proposed an algorithm to select the aggregators positions for a scenario where aggregator nodes are more powerful than sensor nodes.Keywords: aggregation point, data communication, data aggregation, wireless sensor network
Procedia PDF Downloads 15725343 Spatial Econometric Approaches for Count Data: An Overview and New Directions
Authors: Paula Simões, Isabel Natário
Abstract:
This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data
Procedia PDF Downloads 59325342 A NoSQL Based Approach for Real-Time Managing of Robotics's Data
Authors: Gueidi Afef, Gharsellaoui Hamza, Ben Ahmed Samir
Abstract:
This paper deals with the secret of the continual progression data that new data management solutions have been emerged: The NoSQL databases. They crossed several areas like personalization, profile management, big data in real-time, content management, catalog, view of customers, mobile applications, internet of things, digital communication and fraud detection. Nowadays, these database management systems are increasing. These systems store data very well and with the trend of big data, a new challenge’s store demands new structures and methods for managing enterprise data. The new intelligent machine in the e-learning sector, thrives on more data, so smart machines can learn more and faster. The robotics are our use case to focus on our test. The implementation of NoSQL for Robotics wrestle all the data they acquire into usable form because with the ordinary type of robotics; we are facing very big limits to manage and find the exact information in real-time. Our original proposed approach was demonstrated by experimental studies and running example used as a use case.Keywords: NoSQL databases, database management systems, robotics, big data
Procedia PDF Downloads 35425341 Stress and Marital Satisfaction of Parents to Children Diagnosed with Autism
Authors: Oren Shtayermman
Abstract:
The current investigation expended on research among parents caring for a child who is diagnosed with an autism spectrum disorder (ASD). An online web survey was used to collect data from 253 parents caring for a child with a diagnosis of ASD. Both parents reported on elevated levels of parental stress associated with caring for the child on the spectrum. In addition, lower levels of marital satisfaction were found in both parents. About 13% of the parents in the sample met the diagnostic criteria for Major Depressive Disorder and About 15% of the parents met the diagnostic criteria for Generalized Anxiety Disorder. Although the majority of the sample was females (94%) significant differences were found between males and females in relation to meeting the diagnostic criteria for Major Depressive Disorder and for Generalized Anxiety Disorder. Higher levels of stress were associated with higher number of Generalized Anxiety Disorder symptoms and higher number of Major Depressive Disorder symptoms. Findings from this study indicate how vulnerable parents and especially females are in relation to caring to a child diagnosed with ASD. Educational Objectives: At the conclusion of the paper, the readers should be able to: -Identify levels of stress and marital satisfaction among parents caring for a child diagnosed with autism spectrum disorder, -Recognize the impact of stress on the development of mental health issues, -Name the two most common mood and anxiety related disorders associated with caring for a child diagnosed with an autism spectrum disorder.Keywords: autism, stress, parents, children
Procedia PDF Downloads 31525340 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis
Authors: C. B. Le, V. N. Pham
Abstract:
In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering
Procedia PDF Downloads 18925339 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data
Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim
Abstract:
Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.Keywords: activity pattern, data fusion, smart-card, XGboost
Procedia PDF Downloads 24625338 Assessment of the Standard of Referrals for Extraction of Carious Primary Teeth under General Anaesthetic
Authors: Emma Carr, Jennifer Morrison, Peter Walker
Abstract:
Background: Due to COVID-19, there was a significant reduction in the number of children being treated under general anaesthetic (GA) within the health board, which led to a backlog of referrals. The referrals were being triaged and added to a waiting list in order of priority -determined by the information given. By implementing a checklist, it is anticipated that at least 70% of referrals will have the majority of the information required to effectively prioritise patients. The gold standard, as defined in ‘Guidelines For The Management Of Children Referred For Dental Extractions Under General Anaesthesia’, indicates that all referrals should mention: (i) Inability of the child to cooperate, (ii) Previously tried anxiety management techniques, (iii) Existence of psychological disorders, (iv) Presence of acute dental infection, (v) Requirement for extractions in multiple quadrants. Method: 130 referrals were examined over three months and compared to the recommended standard. A letter was emailed to referring dentists within Ayrshire & Arran outlining the recommended information to be included within the referral. The second round of data collection was then carried out, which involved an examination of 105 referrals. Results: The first round revealed that only 28% of referrals mentioned at least four defined standards outlined above. Following issuing a checklist to all dentists, this increased to 72%. Conclusion: As many of the children referred for extractions under GA have suffered pain and infection because of dental caries, it is important that delay of treatment is minimised, where possible. The implementation of a standardised checklist has enabled more effective prioritisation of patients.Keywords: caries, dentistry, general anaesthetic, paediatrics
Procedia PDF Downloads 10825337 [Keynote Talk]: Mental Health Challenges among Women in Dubai, Mental Health Needs Assessment for Dubai (2015), Public Health and Safety Department - Dubai Health Authority (DHA)
Authors: Kadhim Alabady
Abstract:
Purpose: Mental health problems affect women and men equally, but some are more common among women. To Provide a baseline of the current picture of major mental health challenges among women in Dubai. which can then be used to measure the impact of interventions or service development. Method: We have used mixed methods evaluation approaches. This was used to increase the validity of findings by using a variety of data collection techniques. We have integrated qualitative and quantitative methods in this piece of work. Conducting the two approaches is to explore issues that might not be highlighted enough through one method. Results: The key findings are: The prevalence of people who suffer from different types of mental disorders remains largely unknown, many women are unwilling to seek professional help because of lack of awareness or the stigma attached to it. -It is estimated there were around 2,928–4,392 mothers in Dubai (2014) suffering from postnatal depression of which 858–1,287, early intervention can be effective. -The system for managing health care for women with mental illness is fragmented and contains gaps and duplications. -It is estimated 1,029 girl aged 13–19 years affected with anorexia nervosa and there would be an estimated 1,029 girl aged 13–19 years affected with anorexia nervosa. Recommendations: -Work is required with primary health care in order to identify women with undiagnosed mental illnesses. Further work is undertaken within primary health care to assess disease registries with the aim of helping GP practices to improve their disease registers. -It is important to conduct local psychiatric morbidity surveys in Dubai to obtain data and assess the prevalence of essential mental health symptoms and conditions that are not routinely collected to get a clear sense of what is needed and to assist decision and policy making in getting a complete picture on what services are required. -Emergency Mental Health Care – there is a need for a crisis response team to respond to emergencies in the community. -Continuum of care – a significant gap in the services for women once they diagnosed with mental disorder.Keywords: mental health, depression, schizophrenia, women
Procedia PDF Downloads 20825336 A Normalized Non-Stationary Wavelet Based Analysis Approach for a Computer Assisted Classification of Laryngoscopic High-Speed Video Recordings
Authors: Mona K. Fehling, Jakob Unger, Dietmar J. Hecker, Bernhard Schick, Joerg Lohscheller
Abstract:
Voice disorders origin from disturbances of the vibration patterns of the two vocal folds located within the human larynx. Consequently, the visual examination of vocal fold vibrations is an integral part within the clinical diagnostic process. For an objective analysis of the vocal fold vibration patterns, the two-dimensional vocal fold dynamics are captured during sustained phonation using an endoscopic high-speed camera. In this work, we present an approach allowing a fully automatic analysis of the high-speed video data including a computerized classification of healthy and pathological voices. The approach bases on a wavelet-based analysis of so-called phonovibrograms (PVG), which are extracted from the high-speed videos and comprise the entire two-dimensional vibration pattern of each vocal fold individually. Using a principal component analysis (PCA) strategy a low-dimensional feature set is computed from each phonovibrogram. From the PCA-space clinically relevant measures can be derived that quantify objectively vibration abnormalities. In the first part of the work it will be shown that, using a machine learning approach, the derived measures are suitable to distinguish automatically between healthy and pathological voices. Within the approach the formation of the PCA-space and consequently the extracted quantitative measures depend on the clinical data, which were used to compute the principle components. Therefore, in the second part of the work we proposed a strategy to achieve a normalization of the PCA-space by registering the PCA-space to a coordinate system using a set of synthetically generated vibration patterns. The results show that owing to the normalization step potential ambiguousness of the parameter space can be eliminated. The normalization further allows a direct comparison of research results, which bases on PCA-spaces obtained from different clinical subjects.Keywords: Wavelet-based analysis, Multiscale product, normalization, computer assisted classification, high-speed laryngoscopy, vocal fold analysis, phonovibrogram
Procedia PDF Downloads 26525335 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 143