Search results for: aluminium oxide nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2737

Search results for: aluminium oxide nanoparticles

2107 Microstructural Investigations of Metal Oxides Encapsulated Thermochromic Materials

Authors: Yusuf Emirov, Abdullatif Hakami, Prasanta K Biswas, Elias K Stefanakos, Sesha S Srinivasan

Abstract:

This study is aimed to develop microencapsulated thermochromic materials and the analysis of core-shell formation using high resolution electron microscopy. The candidate metal oxides (e.g., titanium oxide and silicon oxide) used for the microencapsulation of thermochromic materials are based on the microemulsion route that involves the micelle formation using different surfactants. The effectiveness of the core-shell microstructure formationrevealed the influence of surfactants and the metal oxide precursor concentrations. Additionally, a detailed thermal and color chromic behavior of these core-shell microcapsules are evaluated with the pristine thermochromic dye particles.

Keywords: core-shell thermochromic materials, core-shell microstructure formation, thermal and color chromic behavior of core-shell microcapsules, development micro-capsulated thermochromic materials

Procedia PDF Downloads 138
2106 Impact of Temperature Variation on Magnetic Properties of N Doped Spinal Nickel Ferrite with Graphene

Authors: Maryam Kiani, Abdul Basit Kiani

Abstract:

Simple hydrothermal method to synthesize new nanocomposites consisting of nitrogen-doped graphene and NiFe₂O₄. By analyzing the X-Ray Powder Diffraction (XRD) images, we confirmed that the NiFe₂O₄ phase is pure and has a Face Centered Cubic (FCC) structure. The average size of the NiFe₂O₄ nanoparticles is approximately 40±2 nm. Additionally, we used X-ray photoelectron spectroscopy (XPS) to study the surface chemical composition and cation oxidation states of both the NiFe₂O₄ nanoparticles and the nitrogen-doped graphene/NiFe₂O₄ nanocomposites. A magnetic interaction between nitrogen doped graphene/NiFe₂O₄ was studied. Increases in hydrothermal synthesis temperature lead to the improved crystalline structure of NiFe₂O₄ nanoparticles, which improves the magnetic properties.

Keywords: nickel ferrite spinal, nitrogen doped graphene, magnetic nanocomposite, hydrothermal synthesis

Procedia PDF Downloads 96
2105 Structural and Vibrational Studies of Ni Alx Fe2-x O4 Ferrites

Authors: Kamel Taıbı, Abdelmadjid Rais

Abstract:

Nickel–Aluminium ferrites with the general formula Ni Alx Fe2-x O4 (0 ≤ x ≤ 1) were studied using X-ray diffraction, Infra Red and Raman spectroscopy. XRD diffraction patterns and their Reitveld refinements show that all samples have a pure single-phase cubic spinel structure. From these patterns, the lattice parameters of these samples have been calculated and compared with those predicted theoretically. Most of the values were found to decrease with increasing Al content. Infra Red spectra showed two significant absorption bands. The high band corresponds to tetrahedral (A) sites and the lower band to octahedral [B] sites, thus confirming the single phase spinel structure. For all compositions, Raman spectra show the five active modes A1g + E1g + 3 T2g of the motion of O2- ions and both the A-site and B-site ions. The Raman frequencies trend with aluminium concentration show a blue shift for all modes consistent with the replacement of Fe3+ by lower mass Al3+. Composition dependence of the Raman frequency modes is discussed in relationship with the cations distribution among the A-sites and B-sites.

Keywords: Ni-Al ferrites, spinel structure, XRD, Raman spectroscopy

Procedia PDF Downloads 346
2104 EMI Shielding in Carbon Based Nanocomposites

Authors: Mukul Kumar Srivastava, Sumit Basu

Abstract:

Carbon fiber reinforced polymer (CFRP) composites find wide use in the space and aerospace industries primarily due to their favourable strength-to-weight ratios. However, in spite of the impressive mechanical properties, their ability to shield sophisticated electronics from electromagnetic interference (EMI) is rather limited. As a result, metallic wire meshes or metal foils are often embedded in CFRP composites to provide adequate EMI shielding. This comes at additional manufacturing cost, increased weight and, particularly in cases of aluminium, increased risk of galvanic corrosion in the presence of moisture. In this work, we will explore ways of enhancing EMI shielding of CFRP laminates in the 8-12 GHz range (the so-called X-band), without compromising their mechanical and fracture properties, through minimal modifications to their current well-established fabrication protocol. The computational-experimental study of EMI shielding in CFRP laminates will focus on the effects of incorporating multiwalled carbon nanotubes (MWCNT) and conducting nanoparticles in different ways in the resin and/or carbon fibers. We will also explore the possibility of utilising the excellent absorbing properties of MWCNT reinforced polymer foams to enhance the overall EMI shielding capabilities.

Keywords: EMI shielding, X-band, CFRP, MWCNT

Procedia PDF Downloads 56
2103 Synthesis of NiO and ZnO Nanoparticles and Charactiration for the Eradication of Lead (Pb) from Wastewater

Authors: Sadia Ata, Anila Tabassum, Samina ghafoor, Ijaz ul Mohsin, Azam Muktar

Abstract:

Heavy metal ions such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, in wastewater are considered as the serious environmental problem. Among these heavy metals, Lead or Pb (II) is the most toxic heavy metal. Exposure to lead causes damage of nervous system, mental retardation, renal kidney disease, anemia and cancer in human beings. Adsorption is the most widely used method to remove metal ions based on the physical interaction between metal ions and sorbents. With the development of nanotechnology, nano-sized materials are proved to be effective sorbents for the removal of heavy metal ions from wastewater due to their unique structural properties. The present work mainly focuses on the synthesis of NiO and ZnO nanoparticles for the removal of Lead ions, their preparation, characterization by XRD, FTIR, SEM, and TEM, adsorption characteristics and mechanism, along with adsorption isotherm model and adsorption kinetics to understand the adsorption procedure.

Keywords: heavy metal, adsorption isotherms, nanoparticles, wastewater

Procedia PDF Downloads 565
2102 Evaluation of Erosive Wear Resistance of Commercial Hard Coatings with Plasma Nitride and Without Plasma Nitride in Aluminium Die Casting

Authors: A. Mohammed, R. Lewis, M. Marshall

Abstract:

Commonly used coatings to protect tools in die casting were used. A heat treatment and then surface coating can have a large effect on erosion damage. Samples have been tested to evaluate their resistances to erosive wear and to assess how this compares with behaviour seen for untreated material. Five commercial (PN + TiN), (PN + TiAlCN), (TiN X 2), (TiN), and (TiAlCN) coatings have been evaluated for their wear resistance. The objective was to permit an optimized selection of coatings to be used to give good resistance to erosive wear. A test-Rig has been developed to study the erosive wear in aluminium die casting and provide an environment similar to industrial operation that is more practical than using actual machines. These surfaces were analysed using a Scanning Electron Microscope (SEM) and Optical Microscopes each with a different level of resolution. Examination of coating materials revealed an important parameter associated with the failure of the coating materials.This was adhesion of the coating material to the substrate surface. A well-adhered coating withstands wear much better compared to the poorest-adhering coating.

Keywords: solid particle erosion, PVD-coatings, steel, erosion testing

Procedia PDF Downloads 224
2101 Surface Modified Core–Shell Type Lipid–Polymer Hybrid Nanoparticles of Trans-Resveratrol, an Anticancer Agent, for Long Circulation and Improved Efficacy against MCF-7 Cells

Authors: M. R. Vijayakumar, K. Priyanka, Ramoji Kosuru, Lakshmi, Sanjay Singh

Abstract:

Trans resveratrol (RES) is a non-flavonoid poly-phenolic compound proved for its therapeutic and preventive effect against various types of cancer. However, the practical application of RES in cancer treatment is limited because of its higher dose (up to 7.5 g/day in humans), low biological half life, rapid metabolism and faster elimination in mammals. PEGylated core-shell type lipid polymer hybrid nanoparticles are the novel drug delivery systems for long circulation and improved anti cancer effect of its therapeutic payloads. Therefore, the main objective of this study is to extend the biological half life (long circulation) and improve the therapeutic efficacy of RES through core shell type of nanoparticles. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS), a novel surfactant is applied for the preparation of PEGylated lipid polymer hybrid nanoparticles. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Entrapment efficiency and invitro drug release were determined by ultracentrifugation method and dialysis bag method, respectively. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies after i.v administration were performed in sprague dawley rats. The prepared NPs were found to be spherical in shape with smooth surfaces. Particle size and zeta potential of prepared NPs were found to be in the range of 179.2±7.45 to 266.8±9.61 nm and -0.63 to -48.35 mV, respectively. DSC revealed absence of potential interaction. XRD study revealed presence of amorphous form in nanoparticles. Entrapment efficiency was found to be 83.7 % and drug release was found to be in controlled manner. MTT assay showed low MEC and pharmacokinetic studies showed higher AUC of nanoformulaition than its pristine drug. All these studies revealed that the RES loaded PEG modified core-shell type lipid polymer hybrid nanoparticles can be an alternative tool for chemopreventive and therapeutic application of RES in cancer.

Keywords: trans resveratrol, cancer nanotechnology, long circulating nanoparticles, bioavailability enhancement, core shell nanoparticles, lipid polymer hybrid nanoparticles

Procedia PDF Downloads 450
2100 Study the Influence of Zn in Zn-MgFe₂O₄ Nanoparticles for CO₂ Gas Sensors

Authors: Maryam Kiani, Xiaoqin Tian, Yu Du, Abdul Basit Kiani

Abstract:

Zn-doped MgFe₂O₄ nanoparticles (ZMFO) (Zn=0.0, 0.2, 0.35, 0.5,) were prepared by Co-precipitation synthesis route. Structural and morphological analysis confirmed the formation of spinel cubic nanostructure by X-Ray diffraction (XRD) data shows high reactive surface area owing to a small average particle size of about 14 nm, which greatly influences the gas sensing mechanism. The gas sensing property of ZMFO for several gases was obtained by measuring the resistance as a function of different factors, like composition and response time in air and in the presence of gas. The sensitivity of spinel ferrite to gases CO₂, O₂, and O₂ at room temperature has been compared. The nanostructured ZMFO exhibited high sensitivity in the order of CO₂>O₂ and showed a good response time of (~1min) to CO₂, demonstrating that this expanse of research can be used in the field of gas sensors devising high sensitivity and good selectivity at 25°C.

Keywords: MgFe₂O₄ nanoparticles, hydrothermal synthesis, gas sensing properties, XRD

Procedia PDF Downloads 88
2099 Effects of the Fractional Order on Nanoparticles in Blood Flow through the Stenosed Artery

Authors: Mohammed Abdulhameed, Sagir M. Abdullahi

Abstract:

In this paper, based on the applications of nanoparticle, the blood flow along with nanoparticles through stenosed artery is studied. The blood is acted by periodic body acceleration, an oscillating pressure gradient and an external magnetic field. The mathematical formulation is based on Caputo-Fabrizio fractional derivative without singular kernel. The model of ordinary blood, corresponding to time-derivatives of integer order, is obtained as a limiting case. Analytical solutions of the blood velocity and temperature distribution are obtained by means of the Hankel and Laplace transforms. Effects of the order of Caputo-Fabrizio time-fractional derivatives and three different nanoparticles i.e. Fe3O4, TiO4 and Cu are studied. The results highlights that, models with fractional derivatives bring significant differences compared to the ordinary model. It is observed that the addition of Fe3O4 nanoparticle reduced the resistance impedance of the blood flow and temperature distribution through bell shape stenosed arteries as compared to TiO4 and Cu nanoparticles. On entering in the stenosed area, blood temperature increases slightly, but, increases considerably and reaches its maximum value in the stenosis throat. The shears stress has variation from a constant in the area without stenosis and higher in the layers located far to the longitudinal axis of the artery. This fact can be an important for some clinical applications in therapeutic procedures.

Keywords: nanoparticles, blood flow, stenosed artery, mathematical models

Procedia PDF Downloads 239
2098 Electrical and Structural Properties of Solid Electrolyte Systems

Authors: Yasin Polat, Yılmaz Dağdemir, Mehmet Arı

Abstract:

Samarium (III) oxide and Ytterbium (III) oxide doped Bismuth trioxide solid solutions, the nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y ternary system were obtained with x=5, 20 mol %, and y=5, 20 mol % dopant concentrations have been synthesized in air atmosphere with solid state reaction. Temperature dependent electrical conductivity of the samples have been investigated by 4-point probe technique by heating and cooling process. Doped-Bi2O3 materials of solid electrolyte systems are good oxygen anions O2-conductors which have collected much attention as potential solid ceramic electrolytes for solid oxide fuel cells (SOFCs) because of their relatively high oxygen ionic conductivity at lower temperatures.(Bi2O3)-based electrolytes have also wide other technological applications in devices with high economical interest such as oxygen sensors, ceramic membranes for oxygen separation, oxygen pumps, catalyzing of some heterogeneous reactions, partial oxidation of the hydrocarbons, and additive material in paints. In recent years, many experimental researches have mostly focused on improving of the Bi-based electrolytes which have high oxide ionic conductivity at low temperatures and better performance as alternatives to traditional stabilized zirconia has taken place. Generally, these systems are much better solid electrolytes than well-known stabilized zirconia, because some of the bismuth trioxide phases exhibit higher ion conductivity than other oxide ionic conductors. Crystal structure of the Nano ceramic (Bi2O3)1-x-y(Sm2O3)x(Yb2O3)y has been determined by X-Ray powder diffractions (XRD) measurements before and after electrical conductivity measurements of the samples. Surface and grain structure properties of the samples were determined by SEM analysis. The samples which synthesized in this study can be used in industrial applications such as electrolytes of the solid oxide fuel cells (SOFC).

Keywords: 4-point probe technique, bismuth trioxide, solid state reaction, solid oxide fuel cell

Procedia PDF Downloads 275
2097 Nanopriming Potential of Metal Nanoparticles against Internally Seed Borne Pathogen Ustilago triciti

Authors: Anjali Sidhu, Anju Bala, Amit Kumar

Abstract:

Metal nanoparticles have the potential to revolutionize the agriculture owing to sizzling interdisciplinary nano-technological application domain. Numerous patents and products incorporating engineered nanoparticles (NPs) entered into agro-applications with the collective goal to promote proficiency as well as sustainability with lower input and generating meager waste than conventional products and approaches. Loose smut of wheat caused by Ustilago segetum tritici is an internally seed-borne pathogen. It is dormant in the seed unless the seed germinates and its symptoms are expressed at the reproductive stage of the plant only. Various seed treatment agents are recommended for this disease but due to the inappropriate methods of seed treatments used by farmers, each and every seed may not get treated, and the infected seeds escape the fungicidal action. The antimicrobial potential and small size of nanoparticles made them the material of choice as they could enter each seed and restrict the pathogen inside the seed due to the availability of more number of nanoparticles per unit volume of the nanoformulations. Nanoparticles of diverse nature known for their in vitro antimicrobial activity viz. ZnO, MgO, CuS and AgNPs were synthesized, surface modified and characterized by traditional methods. They were applied on infected wheat seeds which were then grown in pot conditions, and their mycelium was tracked in the shoot and leaf region of the seedlings by microscopic staining techniques. Mixed responses of inhibition of this internal mycelium were observed. The time and method of application concluded to be critical for application, which was optimised in the present work. The results implicated that there should be field trails to get final fate of these pot trails up to commercial level. The success of their field trials could be interpreted as a revolution to replace high dose organic fungicides of high residue behaviour.

Keywords: metal nanoparticles, nanopriming, seed borne pathogen, Ustilago segetum tritici

Procedia PDF Downloads 124
2096 Nanotechnology-Based Treatment of Klebsiella pneumoniae Infections

Authors: Lucian Mocan, Teodora Mocan, Matea Cristian, Cornel Iancu

Abstract:

We present method of nanoparticle enhanced laser thermal ablation of Klebsiella pneumoniae infections, using gold nanoparticles combined with a specific growth factor and demonstrate its selective therapeutic efficacy. Ab (antibody solution) bound to GNPs (gold nanoparticles) was administered in vitro and determined the specific delivery of the nano-bioconjugate into the microorganism. The extent of necrosis was considerable following laser therapy, and at the same time, normal cells were not seriously affected. The selective photothermal ablation of the infected tissue was obtained after the selective accumulation of Ab bound to GNPs into bacteria following perfusion. These results may represent a major step in antibiotherapy treatment using nanolocalized thermal ablation by laser heating.

Keywords: gold nanoparticles, Klebsiella pneumoniae, nanoparticle functionalization, laser irradiation, antibody

Procedia PDF Downloads 404
2095 Wettability Alter of a Sandstone Rock by Graphene Oxide Adsorption

Authors: J. Gómez, J. Rodriguez, N. Santos, E. Mejía-Ospino

Abstract:

The wettability of the minerals present in a reservoir is a determining property in the recovery factor. One of the strategies proposed to increase recovery is based on altering the wettability of oil reservoir rocks. Approximately 60% of world crude oil reservoirs have sandstone-type host rocks; for that, it is very important to develop efficient methodologies to alter the wettability of these rocks. In this study, the alteration of the wettability of a sandstone rock due to graphene oxide (GO) adsorption was evaluated. The effect of GO concentration, salinity, Ca2+ ions, and pH on interfacial tension and contact angle was determined. The results show that GO adsorption induces significant changes in rock wettability. For high GO concentrations and low salinity, pH proved to be a determining factor in the alteration of wettability. Under certain conditions, surface wettability changes from highly oleophilic (144,8°) to intermediate oil wettability (91,2°).

Keywords: enhanced oil recovery, graphene oxide, interfacial tension, nanofluid, wettability

Procedia PDF Downloads 90
2094 Development of Superhydrophobic Cotton Fabrics and Their Functional Properties

Authors: Muhammad Zaman Khan, Vijay Baheti, Jiri Militky

Abstract:

The present study is focused on the development of multifunctional cotton fabric while having good physiological comfort properties. The functional properties developed include superhydrophobicity (Lotus effect) and UV protection. For this, TiO₂ nanoparticles along with fluorocarbon and organic-inorganic binder have been used to optimize the multifunctional properties. Deposition of TiO₂ nanoparticles with water repellent finish on cotton fabric has been carried out using the pad dry cure method at fix parameters. The morphology and elemental composition of as-deposited particles have been studied by using SEM and EDS. The chemical composition of nanoparticles was determined using energy dispersive spectroscopy. The treated samples exhibited excellent water repellency and UV protection factor. The study of the comfort properties of fabric showed that it had excellent physiological comfort properties. Optimized concentration of water repellent chemical (50g/l) was used in formulations with TiO₂ nanoparticles and organic-inorganic binder. Four formulations were prepared according to the design of the experiment. The formulations were applied to the cotton fabric by roller padding at room temperature (15–20°C). Surface morphology was investigated via SEM images. EDS analysis was also carried out to analyze the composition and atomic percentage of elements. The water contact angle (WCA) of cotton fabric increases with increase in TiO₂ nanoparticles concentration and reaches its maximum value (157°) when the concentration of TiO₂ is 20g/l. The water sliding angle (WSA) decreases and gains minimum value at the same concentration of TiO₂ at which WCA is highest. It was seen samples treated with formulations of TiO₂ nanoparticles exhibits excellent UPF, UV-A and UV-B blocking. However, there was no significant deterioration of air permeability. The water vapor permeability was also slightly decreased (4%) but is acceptable. It can be concluded that there is no significant change in both air and water vapor permeability after nanoparticles coating on the surface of the cotton fabric. The coated cotton fabric has little effect on the stiffness. The stiffness of coated samples was not increased significantly; thus comfort of cotton fabric is not decreased. This functionalized cotton fabric also exhibits good physiological comfort properties. ''The authors are also thankful to student grant competition 21312 provided at Technical University of Liberec''.

Keywords: comfort, functional, nanoparticles, UV protective

Procedia PDF Downloads 128
2093 Optimizing the Doses of Chitosan/Tripolyphosphate Loaded Nanoparticles of Clodinofop Propargyl and Fenoxaprop-P-Ethyl to Manage Avena Fatua L.: An Environmentally Safer Alternative to Control Weeds

Authors: Muhammad Ather Nadeem, Bilal Ahmad Khan, Hussam F. Najeeb Alawadi, Athar Mahmood, Aneela Nijabat, Tasawer Abbas, Muhammad Habib, Abdullah

Abstract:

The global prevalence of Avena fatua infestation poses a significant challenge to wheat sustainability. While chemical control stands out as an efficient and rapid way to control weeds, concerns over developing resistance in weeds and environmental pollution have led to criticisms of herbicide use. Consequently, this study was designed to address these challenges through the chemical synthesis, characterization, and optimization of chitosan-based nanoparticles containing clodinofop Propargyl and fenoxaprop-P-ethyl for the effective management of A. fatua. Utilizing the ionic gelification technique, chitosan-based nanoparticles of clodinofop Propargyl and fenoxaprop-P-ethyl were prepared. These nanoparticles were applied at the 3-4 leaf stage of Phalaris minor weed, applying seven altered doses. These nanoparticles were applied at the 3-4 leaf stage of Phalaris minor weed, applying seven altered doses (D0 (Check weeds), D1 (Recommended dose of traditional-herbicide (TH), D2 (Recommended dose of Nano-herbicide (NPs-H)), D3 (NPs-H with 05-fold lower dose), D4 ((NPs-H) with 10-fold lower dose), D5 (NPs-H with 15-fold lower dose), and D6 (NPs-H with 20-fold lower dose)). Characterization of the chitosan-containing herbicide nanoparticles (CHT-NPs) was conducted using FT-IR analysis, demonstrating a perfect match with standard parameters. UV–visible spectrum further revealed absorption peaks at 310 nm for NPs of clodinofop propargyl and at 330 nm for NPs of fenoxaprop-p-ethyl. This research aims to contribute to sustainable weed management practices by addressing the challenges associated with chemical herbicide use. The application of chitosan-based nanoparticles (CHT-NPs) containing fenoxaprop-P-ethyl and clodinofop-propargyl at the recommended dose of the standard herbicide resulted in 100% mortality and visible injury to weeds. Surprisingly, when applied at a lower dose with 5-folds, these chitosan-containing nanoparticles of clodinofop Propargyl and fenoxaprop-P-ethyl demonstrated extreme control efficacy. Furthermore, at a 10-fold lower dose compared to standard herbicides and the recommended dose of clodinofop-propargyl and fenoxaprop-P-ethyl, the chitosan-based nanoparticles exhibited comparable effects on chlorophyll content, visual injury (%), mortality (%), plant height (cm), fresh weight (g), and dry weight (g) of A. fatua. This study indicates that chitosan/tripolyphosphate-loaded nanoparticles containing clodinofop-propargyl and fenoxaprop-P-ethyl can be effectively utilized for the management of A. fatua at a 10-fold lower dose, highlighting their potential for sustainable and efficient weed control.

Keywords: mortality, chitosan-based nanoparticles, visual injury, chlorophyl contents, 5-fold lower dose.

Procedia PDF Downloads 37
2092 Surface Roughness of AlSi/10%AlN Metal Matrix Composite Material Using the Taguchi Method

Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Mohd Asri Selamat

Abstract:

This paper presents the surface roughness of the Aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN), with three types of carbide inserts. Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to the Taguchi method, using a standard orthogonal array L27 (34). The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of machining parameters in measuring the surface roughness during the milling operation. The analysis of results, using the Taguchi method concluded that a combination of low feed rate, medium depth of cut, low cutting speed, and insert TiB2 give a better value of surface roughness. From Taguchi method, it was found that cutting speed of 230m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.5mm and type of insert of TiB2 were the optimal machining parameters that gave the optimal value of surface roughness.

Keywords: AlSi/AlN Metal Matrix Composite (MMC), surface roughness, Taguchi method

Procedia PDF Downloads 446
2091 Foslip Loaded and CEA-Affimer Functionalised Silica Nanoparticles for Fluorescent Imaging of Colorectal Cancer Cells

Authors: Yazan S. Khaled, Shazana Shamsuddin, Jim Tiernan, Mike McPherson, Thomas Hughes, Paul Millner, David G. Jayne

Abstract:

Introduction: There is a need for real-time imaging of colorectal cancer (CRC) to allow tailored surgery to the disease stage. Fluorescence guided laparoscopic imaging of primary colorectal cancer and the draining lymphatics would potentially bring stratified surgery into clinical practice and realign future CRC management to the needs of patients. Fluorescent nanoparticles can offer many advantages in terms of intra-operative imaging and therapy (theranostic) in comparison with traditional soluble reagents. Nanoparticles can be functionalised with diverse reagents and then targeted to the correct tissue using an antibody or Affimer (artificial binding protein). We aimed to develop and test fluorescent silica nanoparticles and targeted against CRC using an anti-carcinoembryonic antigen (CEA) Affimer (Aff). Methods: Anti-CEA and control Myoglobin Affimer binders were subcloned into the expressing vector pET11 followed by transformation into BL21 Star™ (DE3) E.coli. The expression of Affimer binders was induced using 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). Cells were harvested, lysed and purified using nickle chelating affinity chromatography. The photosensitiser Foslip (soluble analogue of 5,10,15,20-Tetra(m-hydroxyphenyl) chlorin) was incorporated into the core of silica nanoparticles using water-in-oil microemulsion technique. Anti-CEA or control Affs were conjugated to silica nanoparticles surface using sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo SMCC) chemical linker. Binding of CEA-Aff or control nanoparticles to colorectal cancer cells (LoVo, LS174T and HC116) was quantified in vitro using confocal microscopy. Results: The molecular weights of the obtained band of Affimers were ~12.5KDa while the diameter of functionalised silica nanoparticles was ~80nm. CEA-Affimer targeted nanoparticles demonstrated 9.4, 5.8 and 2.5 fold greater fluorescence than control in, LoVo, LS174T and HCT116 cells respectively (p < 0.002) for the single slice analysis. A similar pattern of successful CEA-targeted fluorescence was observed in the maximum image projection analysis, with CEA-targeted nanoparticles demonstrating 4.1, 2.9 and 2.4 fold greater fluorescence than control particles in LoVo, LS174T, and HCT116 cells respectively (p < 0.0002). There was no significant difference in fluorescence for CEA-Affimer vs. CEA-Antibody targeted nanoparticles. Conclusion: We are the first to demonstrate that Foslip-doped silica nanoparticles conjugated to anti-CEA Affimers via SMCC allowed tumour cell-specific fluorescent targeting in vitro, and had shown sufficient promise to justify testing in an animal model of colorectal cancer. CEA-Affimer appears to be a suitable targeting molecule to replace CEA-Antibody. Targeted silica nanoparticles loaded with Foslip photosensitiser is now being optimised to drive photodynamic killing, via reactive oxygen generation.

Keywords: colorectal cancer, silica nanoparticles, Affimers, antibodies, imaging

Procedia PDF Downloads 219
2090 Synthesis of Ultra-Small Platinum, Palladium and Gold Nanoparticles by Electrochemically Active Biofilms and Their Enhanced Catalytic Activities

Authors: Elaf Ahmed, Shahid Rasul, Ohoud Alharbi, Peng Wang

Abstract:

Ultra-Small Nanoparticles of metals (USNPs) have attracted the attention from the perspective of both basic and developmental science in a wide range of fields. These NPs exhibit electrical, optical, magnetic, and catalytic phenomena. In addition, they are considered effective catalysts because of their enormously large surface area. Many chemical methods of synthesising USNPs are reported. However, the drawback of these methods is the use of different capping agents and ligands in the process of the production such as Polyvinylpyrrolidone, Thiol and Ethylene Glycol. In this research ultra-small nanoparticles of gold, palladium and platinum metal have been successfully produced using electrochemically active biofilm (EAB) after optimising the pH of the media. The production of ultra-small nanoparticles has been conducted in a reactor using a simple two steps method. Initially biofilm was grown on the surface of a carbon paper for 7 days using Shewanella Loihica bacteria. Then, biofilm was employed to synthesise platinum, palladium and gold nanoparticles in water using sodium lactate as electron donor without using any toxic chemicals at mild operating conditions. Electrochemically active biofilm oxidise the electron donor and produces electrons in the solution. Since these electrons are a strong reducing agent, they can reduce metal precursors quite effectively and quickly. The As-synthesized ultra-small nanoparticles have a size range between (2-7nm) and showed excellent catalytic activity on the degradation of methyl orange. The growth of metal USNPs is strongly related to the condition of the EAB. Where using low pH for the synthesis was not successful due to the fact that it might affect and destroy the bacterial cells. However, increasing the pH to 7 and 9, led to the successful formation of USNPs. By changing the pH value, we noticed a change in the size range of the produced NPs. The EAB seems to act as a Nano factory for the synthesis of metal nanoparticles by offering a green, sustainable and toxic free synthetic route without the use of any capping agents or ligands and depending only on their respiration pathway.

Keywords: electrochemically active biofilm, electron donor, shewanella loihica, ultra-small nanoparticles

Procedia PDF Downloads 176
2089 Raman Spectroscopic of Cardioprotective Mechanism During the Metabolic Inhibition of Heart Cells

Authors: A. Almohammedi, A. J. Hudson, N. M. Storey

Abstract:

Following ischaemia/reperfusion injury, as in a myocardial infraction, cardiac myocytes undergo oxidative stress which leads to several potential outcomes including; necrotic or apoptotic cell death or dysregulated calcium homeostasis or disruption of the electron transport chain. Several studies have shown that nitric oxide donors protect cardiomyocytes against ischemia and reperfusion. However until present, the mechanism of cardioprotective effect of nitric oxide donor in isolated ventricular cardiomyocytes is not fully understood and has not been investigated before using Raman spectroscopy. For these reasons, the aim of this study was to develop a novel technique, pre-resonance Raman spectroscopy, to investigate the mechanism of cardioprotective effect of nitric oxide donor in isolated ventricular cardiomyocytes exposed to metabolic inhibition and re-energisation. The results demonstrated the first time that Raman microspectroscopy technique has the capability to monitor the metabolic inhibition of cardiomyocytes and to monitor the effectiveness of cardioprotection by nitric oxide donor prior to metabolic inhibition of cardiomyocytes. Metabolic inhibition and reenergisation were used in this study to mimic the low and high oxygen levels experienced by cells during ischaemic and reperfusion treatments. A laser wavelength of 488 nm used in this study has been found to provide the most sensitive means of observe the cellular mechanisms of myoglobin during nitric oxide donor preconditioning, metabolic inhibition and re-energisation and did not cause any damage to the cells. The data also highlight the considerably different cellular responses to metabolic inhibition to ischaemia. Moreover, the data has been shown the relationship between the release of myoglobin and chemical ischemia where that the release of myoglobin from the cell only occurred if a cell did not recover contractility.

Keywords: ex vivo biospectroscopy, Raman spectroscopy, biophotonics, cardiomyocytes, ischaemia / reperfusion injury, cardioprotection, nitric oxide donor

Procedia PDF Downloads 332
2088 Effect of Alkalinity of Water on the Aggregation of Colloidal Silver Nanoparticles

Authors: Fedda Y. Alzoubi, Ihsan A. Aljarrah

Abstract:

Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in different applications, especially in biomedical applications. Samples of different alkaline water were prepared in order to study the effect of alkalinity of water on the optical properties, size, and morphology of colloidal AgNPs prepared according to the chemical reduction method using the prepared water samples. Ultraviolet-Visible spectrophotometer, Zeta-sizer, and Scanning electron microscope (SEM) have been utilized to carry out this study. Absorption spectra AgNPs in different alkaline water show a surface Plasmon resonance (SPR) peak at the wavelength of 420 nm. The position of this peak is sensitive to the shape of the particles, and in our case, it indicates that the particles are spherical. As the alkalinity increases, the intensity of the SPR peak decreases, indicating the aggregation of particles. Zeta-sizer measurements show that the average diameter for AgNPs in pure water is found to be 53.51 nm, and this value increases as the alkalinity increases. Zeta potential values of samples show that the negatively coated particles are stable in the solution. SEM images insure the spherical shape of the prepared nanoparticles and show that as the alkalinity increases the particles aggregate into larger particles.

Keywords: aggregation, alkalinity, colloid, nanoparticle

Procedia PDF Downloads 107
2087 Electrospun Zinc Oxide Nanowires as Highly Sensitive Piezoelectric Transduction Elements for Nano-Scale Devices

Authors: K. Brince Paul, Nagendra Pratap Singh, Shiv Govind Singh, Siva Rama Krishna Vanjari

Abstract:

In this paper, we report optimized procedure for synthesizing highly oriented, horizontally aligned, Zinc oxide (ZnO) nanowires targeted towards developing highly sensitive piezoelectric transduction elements. The synthesis was carried out using Electrospinning technique, a facile, robust, low cost technique for producing nanowires. The as-synthesized ZnO nanowires were characterized by X-ray powder diffraction (XRD), Field Emission scanning electron microscopy (FESEM) and Energy-dispersive X-ray spectroscopy (EDX).The Piezoelectric behavior of these nanowires was characterized using Peizoelectric Force microscopy (PFM). A very high d33 coefficient of 23.1 pm/V obtained through the PFM measurements is an indicative of its potential application towards developing miniaturized piezoelectric transduction elements for nanoscale devices.

Keywords: electrospinning, piezoelectric, technique, zinc oxide

Procedia PDF Downloads 384
2086 Dynamic Response of Magnetorheological Fluid Tapered Laminated Beams Reinforced with Nano-Particles

Authors: Saman Momeni, Abolghassem Zabihollah, Mehdi Behzad

Abstract:

Non-uniform laminated composite structures are being used in many engineering applications where the structures are subjected to unpredicted vibration. To mitigate the vibration response of these structures, recently, magnetorheological fluid (MR), is added to non-uniform (tapered) thickness laminated composite structures to achieve a new generation of the smart composite as MR tapered beam. However, due to the nature of MR fluid, especially the low stiffness, MR tapered beam exhibit lower stiffness and in turn, lower natural frequencies. To achieve the basic design requirements of the structure without MR fluid, one may need to apply a predefined magnetic energy to the structures, requiring a constant source of energy. In the present work, a passive initial stiffness control of MR tapered beam has been studied. The effects of adding nanoparticles on the dynamic response of MR tapered beam has been investigated. It is observed that adding nanoparticles up to 3% may significantly modify the natural frequencies of the structures and achieve dynamic behavior of the structures before addition of MR fluid. Two Models of tapered structures have been taken into consideration. It is observed that adding only 3% of nanoparticles backs the structures to its initial dynamic behavior.

Keywords: non uniform laminated structures, MR fluid, nanoparticles, vibration, stiffness

Procedia PDF Downloads 218
2085 Analyzing the Evolution of Polythiophene Nanoparticles Optically, Structurally, and Morphologically as a Sers (Surface-Enhanced Raman Spectroscopy) Sensor Pb²⁺ Detection in River Water

Authors: Temesgen Geremew

Abstract:

This study investigates the evolution of polythiophene nanoparticles (PThNPs) as surface-enhanced Raman spectroscopy (SERS) sensors for Pb²⁺ detection in river water. We analyze the PThNPs' optical, structural, and morphological properties at different stages of their development to understand their SERS performance. Techniques like UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) are employed for characterization. The SERS sensitivity towards Pb²⁺ is evaluated by monitoring the peak intensity of a specific Raman band upon increasing metal ion concentration. The study aims to elucidate the relationship between the PThNPs' characteristics and their SERS efficiency for Pb²⁺ detection, paving the way for optimizing their design and fabrication for improved sensing performance in real-world environmental monitoring applications.

Keywords: polythiophene, Pb2+, SERS, nanoparticles

Procedia PDF Downloads 31
2084 Experimental Investigation on Effects of Carrier Solvent and Oxide Fluxes in Activated TIG Welding of Reduced Activation Ferritic/Martensitic Steel

Authors: Jay J. Vora, Vishvesh J. Badheka

Abstract:

This work attempts to investigate the effect of oxide fluxes on 6mm thick Reduced Activation ferritic/martensitic steels (RAFM) during Activated TIG (A-TIG) welding. Six different fluxes Al₂O₃, Co₃O₄, CuO, HgO, MoO₃, and NiO were mixed with methanol for conversion into paste and bead-on-plate experiments were then carried out. This study, systematically investigates the influence of oxide-based flux powder and carrier solvent composition on the weld bead shape, geometric shape of weld bead and dominant depth enhancing mechanism in tungsten inert gas (TIG) welding of reduced activation ferritic/martensitic (RAFM) steel. It was inferred from the study that flux Co₃O₄ and MoO₃ imparted full and secure (more than 6mm) penetration with methanol owing to dual mechanism of reversed Marangoni and arc construction. The use of methanol imparted good spreadabilty and coverability and ultimately higher peak temperatures were observed with its use owing to stronger depth enhancing mechanisms than use of acetone with same oxide fluxes and welding conditions.

Keywords: A-TIG, flux, oxides, penetration, RAFM, temperature, welding

Procedia PDF Downloads 194
2083 Parametric Optimization of Wire Electric Discharge Machining (WEDM) for Aluminium Metal Matrix Composites

Authors: G. Rajyalakhmi, C. Karthik, Gerson Desouza, Rimmie Duraisamy

Abstract:

In this present work, metal matrix composites with combination of aluminium with (Sic/Al2O3) were fabricated using stir casting technique. The objective of the present work is to optimize the process parameters of Wire Electric Discharge Machining (WEDM) composites. Pulse ON Time, Pulse OFF Time, wire feed and sensitivity are considered as input process parameters with responses Material Removal Rate (MRR), Surface Roughness (SR) for optimization of WEDM process. Taguchi L18 Orthogonal Array (OA) is used for experimentation. Grey Relational Analysis (GRA) is coupled with Taguchi technique for multiple process parameters optimization. ANOVA (Analysis of Variance) is used for finding the impact of process parameters individually. Finally confirmation experiments were carried out to validate the predicted results.

Keywords: parametric optimization, particulate reinforced metal matrix composites, Taguchi-grey relational analysis, WEDM

Procedia PDF Downloads 552
2082 Biologically Synthesised Silver Nanoparticles Induces Autophagy and JNK Signaling as a Pro-Survival Response by Abrogating Reactive Oxygen Species Accumulation in Cancer Cells

Authors: Sudeshna Mukherjee, Leena Fageria, R. Venkataramana Dilip, Rajdeep Chowdhury, Jitendra Panwar

Abstract:

Metal nanoparticles in recent years have gained importance in cancer therapy due to their enhanced permeability retention effect. Among various nanomaterials, silver nanoparticles (AgNPs) have received considerable attention due to their unique properties like conductivity, chemical stability, relative lower toxicity and outstanding therapeutic potential, such as anti-inflammatory, antimicrobial and anti-cancerous activities. In this study, we took a greener approach to synthesize silver nanoparticle from fungus and analyze its effects on both epithelial and mesenchymal derived cancer cells. Much research has been done on nanoparticle-induced apoptosis, but little is known about its role in autophagy. In our study, the silver nanoparticles were seen to induce autophagy which was analyzed by studying the expression of several autophagy markers like, LC3B-II and ATG genes. Monodansylcadaverine (MDC) assay also revealed the induction of autophagy upon treatment with AgNPs. Inhibition of autophagy by chloroquine resulted in increased cell death suggesting autophagy as a survival strategy adopted by the cells. In parallel to autophagy induction, silver nanoparticles induced ROS accumulation. Interestingly, autophagy inhibition by chloroquine increased ROS level, resulting in enhanced cell death. We further analyzed MAPK signaling upon AgNP treatment. It was observed that along with autophagy, activation of JNK signaling served as pro-survival while ERK signaling served as a pro-death signal. Our results provide valuable insights into the role of autophagy upon AgNP exposure and provide cues to probabilistic strategies to effectively sensitize cancer cells.

Keywords: autophagy, JNK signalling, reactive oxygen species, silver nanoparticles

Procedia PDF Downloads 342
2081 Catalytic Performance of Fe3O4 Nanoparticles (Fe3O4 NPs) in the Synthesis of Pyrazolines

Authors: Ali Gharib, Leila Vojdanifard, Nader Noroozi Pesyan

Abstract:

Different Pyrazoline derivatives were synthesized by cyclization of substituted chalcone derivatives in presence of hydrazine hydrate. A series of novel 1,3,5-triaryl pyrazoline derivatives has been synthesized by the reaction of chalcone and phenylhydrazine in the presence of the Fe3O4 NPs, in high yields. The structures of compounds obtained were determined by IR and 1H NMR spectra. Fe3O4 NPs was recycled and no appreciable change in activity was noticed after three cycles.

Keywords: pyrazoline, chalcone, nanoparticles, Fe3O4, catalyst, synthesis

Procedia PDF Downloads 375
2080 Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode

Authors: Hyun-Jong Choi, Minjun Kwak, Doo-Won Seo, Sang-Kuk Woo, Sun-Dong Kim

Abstract:

Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃.

Keywords: Co-Sintering, GDC-LSCF, Sintering Aid, solid Oxide Cells

Procedia PDF Downloads 227
2079 Synthesis and Characterization of SnO2: Ti Thin Films Spray-Deposited on Optical Glass

Authors: Demet Tatar, Bahattin Düzgün

Abstract:

In this study, we have newly developed titanium-tin oxide (TiSnO) thin films as the transparent conducting oxides materials by the spray pyrolysis technique. Tin oxide thin films doped with different Ti content were successfully grown by spray pyrolysis and they were characterized as a function of Ti content. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited SnO2:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), atomic force microscopy (AFM), UV-vis spectrometer and photoluminecenc spectrophotometer. The X-ray diffraction patterns taken at room temperature showed that the films are polycrystalline. The preferred directions of crystal growth appeared in the difractogram of SnO2: Ti (TiTO) films were correspond to the reflections from the (110), (200), (211) and (301) planes. The grain size varies from 21.8 to 27.8 nm for (110) preferred plane. SEM and AFM study reveals the surface of TiTO to be made of nanocrystalline particles. The highest visible transmittance (570 nm) of the deposited films is 80 % for 20 wt % titanium doped tin oxide films. The obtained results revealed that the structures and optical properties of the films were greatly affected by doping levels. These films are useful as conducting layers in electro chromic and photovoltaic devices.

Keywords: transparent conducting oxide, gas sensors, SnO2, Ti, optoelectronic, spray pyrolysis

Procedia PDF Downloads 366
2078 Study of TiO2 Nanoparticles as Lubricant Additive in Two-Axial Groove Journal Bearing

Authors: K. Yathish, K. G. Binu, B. S. Shenoy, D. S. Rao, R. Pai

Abstract:

Load carrying capacity of an oil lubricated two-axial groove journal bearing is simulated by taking into account the viscosity variations in lubricant due to the addition of TiO2 nanoparticles as lubricant additive. Shear viscosities of TiO2 nanoparticle dispersions in oil are measured for various nanoparticle additive concentrations. The viscosity model derived from the experimental viscosities is employed in a modified Reynolds equation to obtain the pressure profiles and load carrying capacity of two-axial groove journal bearing. Results reveal an increase in load carrying capacity of bearings operating on nanoparticle dispersions as compared to plain oil

Keywords: journal bearing, TiO2 nanoparticles, viscosity model, Reynold's equation, load carrying capacity

Procedia PDF Downloads 506