Search results for: C3 and C4 plants
1906 The Role of Microbes in Organic Sustainable Agriculture and Plant Protection
Authors: Koppula Prawan, Kehinde D. Oyeyemi, Kushal P. Singh
Abstract:
As people become more conscious of the detrimental consequences of conventional agricultural practices on the environment and human health, organic, sustainable agriculture and plant protection employing microorganisms have grown in importance. Although the use of microorganisms in agriculture is a centuries-old tradition, it has recently attracted renewed interest as a sustainable alternative to chemical-based plant protection and fertilization. Healthy soil is the cornerstone of sustainable agriculture, and microbes are essential to this process. Synthetic fertilizers and pesticides can destroy the beneficial microorganisms in the soil, upsetting the ecosystem's equilibrium. By utilizing organic farming's natural practices, such as the usage of microbes, it aims to maintain and improve the health of the soil. Microbes have several functions in agriculture, including nitrogen fixation, phosphorus solubilization, and disease suppression. Nitrogen fixation is the process by which certain microbes, such as rhizobia and Azotobacter, convert atmospheric nitrogen into a form that plants can use. Phosphorus solubilization involves the conversion of insoluble phosphorus into a soluble form that plants can absorb. Disease suppression involves the use of microbes to control plant diseases by competing with pathogenic organisms for resources or by producing antimicrobial compounds. Microbes can be applied to plants through seed coatings, foliar sprays, or soil inoculants. Seed coatings involve applying a mixture of microbes and nutrients to the surface of seeds before planting. Foliar sprays involve applying microbes and nutrients to the leaves of plants during the growing season. Soil inoculants involve adding microbes to the soil before planting. The use of microbes in plant protection and fertilization has several advantages over conventional methods. Firstly, microbes are natural and non-toxic, making them safe for human health and the environment. Secondly, microbes have the ability to adapt to changing environmental conditions, making them more resilient to drought and other stressors. Finally, the use of microbes can reduce the need for synthetic fertilizers and pesticides, reducing costs and minimizing environmental impact. In conclusion, organic, sustainable agriculture and plant protection using microbes are an effective and sustainable alternatives to conventional farming practices. The use of microbes can help to preserve and enhance soil health, increase plant productivity, and reduce the need for synthetic fertilizers and pesticides. As the demand for organic and sustainable agriculture continues to grow, the use of microbes is likely to become more widespread, providing a more environmentally friendly and sustainable future for agriculture.Keywords: microbes, inoculants, fertilization, soil health, conventional.
Procedia PDF Downloads 831905 In Vitro Assessment of Anti-microbial Properties of Murraya Koenigii Extract
Authors: Kinza Khan, Dad Muhmmad, Asif Saleem, Nadia Mukhtar, Tahir Yaqub
Abstract:
Ethomedicines are more commonly used in underdeveloped and developing countries. These medicines are sometimes more potent in controlling microbial infections than conventional medicines. Medicinal plants have been common practice to cure many diseases for centuries. Murraya koenigii is one of these plants and is commonly used in South Asian countries as a flavoring agent in food. To evaluate its anti-microbial activity, six different bacterial strains (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi, Bacillus cereus and Klebsiella pneumonia were used. N-hexane extract of Murraya koenigii leaves shows maximum activity against Bacillus cereus. Acetone extract of Murraya koenigii shoots showed more efficient activity against Pseudomonas aeruginosa Dichloromethane extracts showed maximum activity against Bacillus cereus. Ethanol extract exhibited maximum activity against Pseudomonas aeruginosa and Klebsiella pneumoniae. The methanol extract of Murraya koenigii shoots displayed maximum antibacterial activity against Bacillus cereus. Antifungal activity Ethanol extract was more effective against Candida albicans.Keywords: ethnomedicines, bacteria, fungi, murraya koenigii, antimicrobial activity
Procedia PDF Downloads 931904 Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification
Authors: Pradeep Lamichhane, Nima Pourali, E. V. Rebrov, Volker Hessel
Abstract:
Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques.Keywords: nitrogen fixation, fast-modulated, surface-confined, sustainable
Procedia PDF Downloads 1071903 Data Analysis Tool for Predicting Water Scarcity in Industry
Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse
Abstract:
Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.Keywords: data mining, industry, machine Learning, shortage, water resources
Procedia PDF Downloads 1211902 Eradication of Apple mosaic virus from Corylus avellana L. via Cryotherapy and Confirmation of Virus-Free Plants via Reverse Transcriptase Polymerase Chain Reaction
Authors: Ergun Kaya
Abstract:
Apple mosaic virus (ApMV) is an ilarvirus causing harmful damages and product loses in many plant species. Because of xylem and phloem vessels absence, plant meristem tissues used for meristem cultures are virus-free, but sometimes only meristem cultures are not sufficient for virus elimination. Cryotherapy, a new method based on cryogenic techniques, is used for virus elimination. In this technique, 0.1-0.3mm meristems are excised from organized shoot apex of a selected in vitro donor plant and these meristems are frozen in liquid nitrogen (-196 °C) using suitable cryogenic technique. The aim of this work was to develop an efficient procedure for ApMV-free hazelnut via cryotherapy technique and confirmation of virus-free plants using Reverse Transcriptase-PCR technique. 100% virus free plantlets were obtained using droplet-vitrification method involved cold hardening in vitro cultures of hazelnut, 24 hours sucrose preculture of meristems on MS medium supplemented with 0.4M sucrose, and a 90 min PVS2 treatment in droplets.Keywords: droplet vitrification, hazelnut, liquid nitrogen, PVS2
Procedia PDF Downloads 1601901 In Vitro Study of Antioxidant Capacity of Chrysanthemum Indicum Extract
Authors: Puchita Chokcharoenying
Abstract:
Polyphenols are the most abundant antioxidants found in plants, and they are highly effective at scavenging oxidative free radicals. Antioxidants are substances found in medicinal plants to help prevent heart disease, stroke, and some cancers. This study focused on evaluating the flavonoids content of Chrysanthemum Indicum and determine their antioxidant capacity by using DPPH and ABTS radical scavenging capacity assay. The total flavonoid content of C. indicumextract was determined and expressed as quercetin equivalents (QE)/g measured by an aluminiumchloride colorimetric method. The results showed that the IC50 of C. indicum extract were 83.57μg/mL ± 0.875 and52.57μg/mL ± 0.632for DPPH and ABTS, respectively. C. indicumextract exhibited antioxidant activities as a concentration dependent manner. In the DPPH assay, vitamin C was used as a positive control, whereas Trolox was used as a positive control in the ABTS assay. In summary, C. indicum extract is rich in flavonoids, which have potent antioxidant properties. Thus, C. indicum extract is a good source of antioxidants and can be developed for medicinal purposes. Nevertheless, more research on the antioxidant activity of C. indicum extract and in vivo antioxidant studies are still needed.Keywords: ABTS assay, antioxidant, chrysanthemum indicum, DPPH assay, total flavonoid content
Procedia PDF Downloads 2581900 Phytochemical and Vitamin Composition of Wild Edible Plants Consumed in South West Ethiopia
Authors: Abebe Yimer, Sirawdink Fikereyesus Forsido, Getachew Addis, Abebe Ayelign
Abstract:
Background: Oxidative stress has been an important health problem as itinduceschronic diseases such as cancer, cardiovascular, diabetics, and neurodegenerative disease. Plant source natural antioxidant has gained attention as synthetic antioxidant negatively impact human health. Wild edible plants arecheap source of dietary-medicine in mainly rural communityin south-west Ethiopia and elsewhere the country. Thus, the study aimed to determine total pheneol,flavoinoids, antioxidant, vitamin C, and beta-carotene content from wild edible plants Solanum nigrum L., Vigna membranacea A. Rich, Dioscorea praehensilis Benth., Trilepisium madagascariense D.C.andCleome gynandra L. Methods: Methanol was used to extract samples of oven-dried edible plants. Total phenolic compound (TPC) was determined using a Folin Ciocalteu method, whereas total flavonoid content (TFC) was determined using the Aluminium chloride colorimetric method. By using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) tests, antioxidant activities were evaluated in vitro. Additionally, beta-carotene was assessed using a spectrophotometric technique, whilst vitamin C was determined using a titration approach. Results: Total flavonoid contentranged from 0.85±0.03 to 11.25±0.01 mg CE/g in D. praehensilis Benth. tuber and C. gynandra L, respectively. Total phenolic compounds varied from 0.25±0.06 GAE/g in D. praehensilis Benth tuber to 35.73±2.52 GAE/g in S.nigrum L. leaves. In the DPPH test, the highest antioxidant value (87.65%) was obtained in the S.nigrum L. leaves, whereas the smallest amount of antioxidant (50.12%)was contained in D. praehensilis Benth tuber. Similarly in FRAP assay,D. praehensilis Benth tuber showed the least reducing potential(49.16± 2.13mM Fe2+/100 g)whilst the highest reducing potential was presented in the S.nigrum L. leaves(188.12±1.13 mM Fe2+/100 g). The beta-carotene content was found between 11.81±0.00 mg/100g in D. praehensilis Benth tubers to 34.49±0.95 mg/100g in V. membranacea A. Rich leaves. The concentration of vitamin C ranged from 10.00±0.61 in D. praehensilis Benth tubers to 45±1.80 mg/100g in V. membranacea A. Rich leaves. The results showed that high positive linear correlations between TPC and TFC of WEPs (r=0.828), as well as between FRAP and total phenolic contents (r = 0.943) and FRAP and vitamin C (r= 0.928). Conclusion: These findings showed the total phenolic and flavonoid contents of Solanum nigrum L. and Cleome gynandra L, respectively, are abundant. The outcome may be used as a natural supply of dietary antioxidants, which may be useful in preventing oxidative stress. The study's findings also showed that Vigna membranacea A. Rich leaves were cheap source of vitamin C and beta-carotene for people who consumed these wild green. Additional research on the in vivo antioxidant activity, toxicological analysis, and promotion of these wild food plants for agricultural production should be taken into consideration.Keywords: antioxidant activity, beta-carotene, flavonoids, phenolic content, and vitamin c
Procedia PDF Downloads 1021899 Performance and Nutritional Evaluation of Moringa Leaves Dried in a Solar-Assisted Heat Pump Dryer Integrated with Thermal Energy Storage
Authors: Aldé Belgard Tchicaya Loemba, Baraka Kichonge, Thomas Kivevele, Juma Rajabu Selemani
Abstract:
Plants used for medicinal purposes are extremely perishable, owing to moisture-enhanced enzymatic and microorganism activity, climate change, and improper handling and storage. Experiments have shown that drying the medicinal plant without affecting the active nutrients and controlling the moisture content as much as possible can extend its shelf life. Different traditional and modern drying techniques for preserving medicinal plants have been developed, with some still being improved in Sub-Saharan Africa. However, many of these methods fail to address the most common issues encountered when drying medicinal plants, such as nutrient loss, long drying times, and a limited capacity to dry during the evening or cloudy hours. Heat pump drying is an alternate drying method that results in no nutritional loss. Furthermore, combining a heat pump dryer with a solar energy storage system appears to be a viable option for all-weather drying without affecting the nutritional values of dried products. In this study, a solar-assisted heat pump dryer integrated with thermal energy storage is developed for drying moringa leaves. The study also discusses the performance analysis of the developed dryer as well as the proximate analysis of the dried moringa leaves. All experiments were conducted from 11 a.m. to 4 p.m. to assess the dryer's performance in “daytime mode”. Experiment results show that the drying time was significantly reduced, and the dryer demonstrated high performance in preserving all of the nutrients. In 5 hours of the drying process, the moisture content was reduced from 75.7 to 3.3%. The average COP value was 3.36, confirming the dryer's low energy consumption. The findings also revealed that after drying, the content of protein, carbohydrates, fats, fiber, and ash greatly increased.Keywords: heat pump dryer, efficiency, moringa leaves, proximate analysis
Procedia PDF Downloads 821898 Inhibition of Crystallization Lithiasis Phosphate (Struvite) by Extracts Zea mays
Authors: N. Benahmed, A. Cheriti
Abstract:
Kidney stones of infectious origin, in particular, the phosphate amoniaco-magnesian hexahydrate or struvite are one of the risk factors that most often leads of renal insufficiency. Many plants species, described in pharmacopoeias of several countries is used as a remedy for urinary stones, the latter is a disease resulting from the presence of stones in the kidneys or urinary tract. Our research is based on the existing relationship between the effect of extracts of medicinal plant used for the cure of urinary tract diseases in the region of Algeria south-west on urolithiasis especially Ammonium-Magnesium Phosphate Hexahydrate (Struvite). We have selected Zea mays L. (POACEAE) for this study. On the first stage, we have studied the crystallisation of struvite 'in vitro' without inhibitors, after we have compared to crystallization with inhibitors. Most of The organic and aqueous extracts of this plant give an effect on the crystal size of struvite. It is a very significant reduction in the size of the crystals of struvite in the presence of hexane and ethanol extract (12 to 5-6 μm). We’ve observed a decrease in the size of the aggregates in the presence of all the extracts. This reduction is important for the aqueous, acetone and chloroform extract (45 to 10-16μm). Finally, a deep study was conducted on the effective extract of Zea mays L.; for determine the influence of inhibitory phytochemical compounds.Keywords: medicinal plants, struvite, urolithiasis, zea mays
Procedia PDF Downloads 4491897 Exploring Emerging Viruses From a Protected Reserve
Authors: Nemat Sokhandan Bashir
Abstract:
Threats from viruses to agricultural crops could be even larger than the losses caused by the other pathogens because, in many cases, the viral infection is latent but crucial from an epidemic point of view. Wild vegetation can be a source of many viruses that eventually find their destiny in crop plants. Although often asymptomatic in wild plants due to adaptation, they can potentially cause serious losses in crops. Therefore, exploring viruses in wild vegetation is very important. Recently, omics have been quite useful for exploring plant viruses from various plant sources, especially wild vegetation. For instance, we have discovered viruses such as Ambrossia asymptomatic virus I (AAV-1) through the application of metagenomics from Oklahoma Prairie Reserve. Accordingly, extracts from randomly-sampled plants are subjected to high speed and ultracentrifugation to separated virus-like particles (VLP), then nucleic acids in the form of DNA or RNA are extracted from such VLPs by treatment with phenol—chloroform and subsequent precipitation by ethanol. The nucleic acid preparations are separately treated with RNAse or DNAse in order to determine the genome component of VLPs. In the case of RNAs, the complementary cDNAs are synthesized before submitting to DNA sequencing. However, for VLPs with DNA contents, the procedure would be relatively straightforward without making cDNA. Because the length of the nucleic acid content of VPLs can be different, various strategies are employed to achieve sequencing. Techniques similar to so-called "chromosome walking" may be used to achieve sequences of long segments. When the nucleotide sequence data were obtained, they were subjected to BLAST analysis to determine the most related previously reported virus sequences. In one case, we determined that the novel virus was AAV-l because the sequence comparison and analysis revealed that the reads were the closest to the Indian citrus ringspot virus (ICRSV). AAV—l had an RNA genome with 7408 nucleotides in length and contained six open reading frames (ORFs). Based on phylogenies inferred from the replicase and coat protein ORFs of the virus, it was placed in the genus Mandarivirus.Keywords: wild, plant, novel, metagenomics
Procedia PDF Downloads 801896 Biodiversity Conservation: A Path to a Healthy Afghanistan
Authors: Nadir Sidiqi
Abstract:
Biodiversity conservation is humanity’s building block to sustain lives - ultimately allowing all living and nonliving creatures to interact in a balanced proportion. Humanity’s challenge in the 21st century is to maintain biodiversity without harming the natural habitat of plants, animals and beneficial microorganisms. There are many good reasons to consider why biodiversity is important to every nation around the world, especially for a nation like Afghanistan. One of the major values of biodiversity is its economic value: biodiversity provides goods and services to the Afghan nation directly through links and components such as the maintenance of traditional crops, medicine, fruits, animals, grazing, fuel, timber, harvesting, fishing, hunting and related supplies. Biodiversity is the variety of the living components, such as humans, plants, animals, and microorganisms, and nonliving components interaction, including air, water, sunlight, soil, humidity and environmental factors in an area. There are many ways of gauging the value of biodiversity. As an ecosystem, biodiversity includes such benefits as soil fertility, erosion control, crop pollination, crop rotation, and pest control. The conservation of biodiversity is crucial for these benefits, which would be impossible to replace. Biodiversity conservation also has heritage values; this wealth of genetic diversity provides backup to rural people living close together.Keywords: Afghanistan, biodiversity, conservation, economy, environment
Procedia PDF Downloads 5281895 Isoflavonoid Dynamic Variation in Red Clover Genotypes
Authors: Andrés Quiroz, Emilio Hormazábal, Ana Mutis, Fernando Ortega, Loreto Méndez, Leonardo Parra
Abstract:
Red clover root borer, Hylastinus obscurus Marsham (Coleoptera: Curculionidae), is the main insect pest associated to red clover, Trifolium pratense L. An average of 1.5 H. obscurus per plant can cause 5.5% reduction in forage yield in pastures of two to three years old. Moreover, insect attack can reach 70% to 100% of the plants. To our knowledge, there is no a chemical strategy for controlling this pest. Therefore alternative strategies for controlling H. obscurus are a high priority for red clover producers. One of this alternative is related to the study of secondary metabolites involved in intrinsic chemical defenses developed by plants, such as isoflavonoids. The isoflavonoids formononetin and daidzein have elicited an antifeedant and phagostimult effect on H. obscurus respectively. However, we do not know how is the dynamic variation of these isoflavonoids under field conditions. The main objective of this work was to evaluate the variation of the antifeedant isoflavonoids formononetin, the phagostimulant isoflavonoids daidzein, and their respective glycosides over time in different ecotypes of red clover. Fourteen red clover ecotypes (8 cultivars and 6 experimental lines), were collected at INIA-Carillanca (La Araucanía, Chile). These plants were established in October 2015 under irrigated conditions. The cultivars were distributed in a randomized complete block with three replicates. The whole plants were sampled in four times: 15th October 2016, 12th December 2016, 27th January 2017 and 16th March 2017 with sufficient amount of soil to avoid root damage. A polar fraction of isoflavonoid was obtained from 20 mg of lyophilized root tissue extracted with 2 mL of 80% MeOH for 16 h using an orbital shaker in the dark at room temperature. After, an aliquot of 1.4 mL of the supernatant was evaporated, and the residue was resuspended in 300 µL of 45% MeOH. The identification and quantification of isoflavonoid root extracts were performed by the injection of 20 µL into a Shimadzu HPLC equipped with a C-18 column. The sample was eluted with a mobile phase composed of AcOH: H₂O (1:9 v/v) as solvent A and CH₃CN as solvent B. The detection was performed at 260 nm. The results showed that the amount of aglycones was higher than the respective glycosides. This result is according to the biosynthetic pathway of flavonoids, where the formation of glycoside is further to the glycosides biosynthesis. The amount of formononetin was higher than daidzein. In roots, where H. obscurus spent the most part of its live cycle, the highest content of formononetin was found in G 27, Pawera, Sabtoron High, Redqueli-INIA and Superqueli-INIA cvs. (2.1, 1.8, 1.8, 1.6 and 1.0 mg g⁻¹ respectively); and the lowest amount of daidzein were found Superqueli-INIA (0.32 mg g⁻¹) and in the experimental line Sel Syn Int4 (0.24 mg g⁻¹). This ecotype showed a high content of formononetin (0.9 mg g⁻¹). This information, associated with cultural practices, could help farmers and breeders to reduce H. obscurus in grassland, selecting ecotypes with high content of formononetin and low amount of daidzein in the roots of red clover plants. Acknowledgements: FONDECYT 1141245 and 11130715.Keywords: daidzein, formononetin, isoflavonoid glycosides, trifolium pratense
Procedia PDF Downloads 2171894 Genetic Variability Studies of Some Quantitative Traits in Cowpea (Vigna unguiculata L. [Walp.] ) under Water Stress
Authors: Auwal Ibrahim Magashi, Lawan Dan Larai Fagwalawa, Muhammad Bello Ibrahim
Abstract:
A research was conducted to study genetic variability of some quantitative traits in varieties of cowpea (Vigna unguiculata L. [Walp]) under water stressed from Zaria, Nigeria. Seeds of seven varieties of cowpea (Sampea 1, Sampea 2, IAR1074, Sampea 7, Sampea 8, Sampea 10 and Sampea 12) collected from Institute for Agricultural Research (IAR), Samaru, Zaria were screened for water stressed tolerance. The seeds were then sown in poly bags containing sandy-loam arranged in Completely Randomized Design with three replications for quantitative traits evaluation. The nutritional composition of the seeds obtained from the water stress tolerant varieties of cowpea were analyzed. The result obtained revealed highly significant difference (P ≤ 0.01) in the effects of water stress on the number of wilted and dead plants at 40 days after sowing (DAS) and significant (P ≤ 0.05) 34 DAS. However, sampea 10 has the highest mean performance in terms of number of wilted plants at 34 DAS while sampea 2 and IAR 1074 has the lowest mean performance. However, sampea 7 was found to have the highest mean performance for the number of wilted plants at 40 DAS and sampea 2 is lowest. The result for quantitative traits study indicated highly significant difference (P ≤ 0.01) in the plant height, number of days to 50% flowering, number of days to maturity, number of pods per plant, pod length, number of seeds per plant and 100 seed weight; and significant (P ≤ 0.05) at seedling height and number of branches per plant. Similarly, IAR1074 was found to have high performance in terms of most of the quantitative traits under study. However, sampea 8 has the highest mean performance at nutritional level. It was therefore concluded that, all the seven cowpea genotypes were water stress tolerant and produced considerable yield that contained significant nutrients. It was recommended that IAR1074 should be grown for yield while sampea 8 should be grown for protein supplements.Keywords: cowpea, genetic variability, quantitative traits, water stress
Procedia PDF Downloads 1571893 Tomato Quality Produced in Saline Soils Using Irrigation with Treated Electromagnetic Water
Authors: Angela Vacaro de Souza, Fernando Ferrari Putti
Abstract:
One of the main plants cultivated in protected environment is tomato crop, which presents significant growth in its demand, because it is a tasty fruit, rich in nutrients and of high added value, however, poor management of fertilizers induces the process of soil salinization, causing several consequences, from reduced productivity to even soil infertility. These facts are derived from the increased concentration of salts, which hampers the process of water absorption by the plant, resulting in a biochemical and nutritional imbalance in the plant. Thus, this study aimed to investigate the effects of untreated and electromagnetically treated water in salinized soils on physical, physicochemical, and biochemical parameters in tomato fruits. The experiment was conducted at the Faculty of Science and Engineering, Tupã Campus (FCE/UNESP). A randomized complete block design with two types of treated water was adopted, with five different levels of initial salinity (0; 1.5; 2.5; 4; 5.5; 7 dS m⁻¹) by fertigation. Although the effects of salinity on fruit quality parameters are evident, no beneficial effects on increasing or maintaining postharvest quality of fruits whose plants were treated with electromagnetized water were evidenced.Keywords: Solanum lycopersicum, soil salinization, protected environment, fertigation
Procedia PDF Downloads 1171892 EDTA Assisted Phytoremediation of Cadmium by Enhancing Growth and Antioxidant Defense System in Brassica napus L.
Authors: Mujahid Farid, Shafaqat Ali, Muhammad Bilal Shakoor
Abstract:
Heavy metals pollution of soil is a prevalent global problem and oilseed rape (Brassica napus L.) are considered useful for the restoration of metal contaminated soils. Phytoextraction is an in-situ environment-friendly technique for the clean-up of contaminated soils. Response to cadmium (Cd) toxicity in combination with a chelator, Ethylenediamminetetraacetic acid (EDTA) was studied in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cd decreased plant growth, biomass and chlorophyll concentrations while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Significant decrease in photosynthetic parameters was found by the Cd alone. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) and a significant reduction was observed in the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase under Cd stress plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. Oilseed rape (Brassica napus L.) actively accumulated Cd in roots, stems and leaves and the addition of EDTA boosted the uptake and accumulation of Cd in oil seed rape by dissociating Cd in culture media. The present results suggest that under 8 weeks Cd-induced stress, application of EDTA significantly improve plant growth, chlorophyll content, photosynthetic, gas exchange capacity, improving enzymes activities and increased the metal uptake in roots, stems and leaves of oilseed rape (Brassica napus L.) respectively.Keywords: antioxidant enzymes, cadmium, chelator, EDTA, growth, oilseed rape
Procedia PDF Downloads 3921891 The Evaluation of Costs and Greenhouse Gas Reduction by Using Technologies for Energy from Sewage Sludge
Authors: Futoshi Kakuta, Takashi Ishida
Abstract:
Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gasses. In Japan, 'The National Plan for the Promotion of Biomass Utilization' and 'The Priority Plan for Social Infrastructure Development' were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Costs were estimated on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. Greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.Keywords: global warming countermeasure, energy technology, solid fuel production, biogas
Procedia PDF Downloads 3861890 Inhibition of Escherichia coli and Salmonella spp. By Traditional Phytomedicines That Are Commonly Used to Treat Gastroenteritis in Zimbabwe
Authors: Constance Chivengwa, Tinashe Mandimutsira, Jephris Gere, Charles Magogo, Irene Chikanza, Jerneja Vidmar, Walter Chingwaru
Abstract:
The use of traditional methods in the management of diarrhoea has remained a common practice among the indigenous African tribes of Southern Africa. Despite the widespread use of traditional medicines in Zimbabwe, very little research validating the activities of phytomedicines against diarrhoea, as claimed by the Shona people of Zimbabwe, has been reported. This study sought to determine the efficacies of the plants that are frequently used to treat stomach complaints, namely Dicoma anomala, Cassia abbreviata, Lannea edulis and Peltophorum africanum against Escherichia coli (an indicator of faecal contamination of water, and whose strains such as EHEC (O157), ETEC and EPEC, are responsible for a number of outbreaks of diarrhoea) and Salmonella spp. Ethanol and aqueous extracts from these plants were obtained, evaporated, dried and stored. The dried extracts were reconstituted and diluted 10-fold in nutrient broth (from 100 to 0.1 microgram/mL) and tested for inhibition against the bacteria. L. edulis exhibited the best antimicrobial effect (minimum inhibition concentration = 10 microgram/mL for both extracts and microorganisms). Runners up to L. edulis were C. abbreviata (20 microgram/mL for both microorganisms) and P. africanum (20 and 30 microgram/mL respectively). Interestingly, D. anomala, which is widely considered panacea in African medicinal practices, showed low antimicrobial activity (60 and 100 microgram/mL respectively). The high antimicrobial activity of L. edulis can be explained by its content of flavonoids, tannins, alkylphenols (cardonol 7 and cardonol 13) and dihydroalkylhexenones. The antimicrobial activities of C. abbreviata can be linked to its content of anthraquinones and triterpenoids. P. africanum is known to contain benzenoids, flavanols, flavonols, terpenes, xanthone and coumarins. This study therefore demonstrated that, among the plants that are used against diarrhoea in African traditional medicine, L. edulis is a clear winner against E. coli and Salmonella spp. Activity guided extraction is encouraged to establish the complement of compounds that have antimicrobial activities.Keywords: diarrhoea, Escherichia coli, Salmonella, phytomedicine, MIC, Zimbabwe
Procedia PDF Downloads 3741889 Evaluation of the Gas Exchange Characteristics of Selected Plant Species of Universiti Tun Hussein Onn Malaysia, UTHM
Authors: Yunusa Audu, Alona Cuevas Linatoc, Aisha Idris
Abstract:
The maximum carboxylation rate of Rubisco (Vcmax) and the maximum electron transport rate (Jmax), light compensation point (LCP), light saturation point (LSP), maximum photosynthesis (Amax), and apparent quantum yield (Aqy) are gas exchange characteristics that are derived from the carbon dioxide (CO2) and light response curves. This characteristics can be affected by the level of CO2 and light received by the plant. Moreover, the characteristics determines the photosynthetic capacity of the plant. The objective of the study is to evaluate the gas exchange characteristics of selected plant species of UTHM. Photosynthetic carbon dioxide (A\Ci) and light (A/Q) response curves were measured using portable photosynthesis system (LICOR). The results shows that both A/Ci and A/Q curves increases as CO2 and light increases, but reach to a certain point where the curves will become saturated. Spathodea campanulata was having the highest Vcmax (52.14±0.005 µmolCO2 m-2s-1), Jmax (104.461±0.011 µmolCO2 m-2s-1) and Aqy (0.072±0.001 mol CO2 mol-1 photons). The highest LCP was observed in Rhaphis excelsa (69.60±0.067 µmol photons m-2s-1) while the highest LSP was recorded for Costus spicatus (1576.69±0.173 µmol photons m-2s-1). It was concluded that the plants need high light intensity and CO2 for their maximum assimilation rate.Keywords: Gas, Co2, Exchange, Plants
Procedia PDF Downloads 141888 Ethnobotanical Medicines for Treating Snakebites among the Indigenous Maya Populations of Belize
Authors: Kerry Hull, Mark Wright
Abstract:
This paper brings light to ethnobotanical medicines used by the Maya of Belize to treat snake bites. The varying ecological zones of Belize boast over fifty species of snakes, nine of which are poisonous and dangerous to humans. Two distinct Maya groups occupy neighboring regions of Belize, the Q’eqchi’ and the Mopan. With Western medical care often far from their villages, what traditional methods are used to treat poisonous snake bites? Based primarily on data gathered with native consultants during the authors’ fieldwork with both groups, this paper details the ethnobotanical resources used by the Q’eqchi’ and Mopan traditional healers. The Q’eqchi’ and Mopan most commonly rely on traditional ‘bush doctors’ (ilmaj in Mopan), both male and female, and specialized ‘snake doctors’ to heal bites from venomous snakes. First, this paper presents each plant employed by healers for bites for the nine poisonous snakes in Belize along with the specific botanical recipes and methods of application for each remedy. Individual chemical and therapeutic qualities of some of those plants are investigated in an effort to explain their possible medicinal value for different toxins or the symptoms caused by those toxins. In addition, this paper explores mythological associations with certain snakes that inform local understanding regarding which plants are considered efficacious in each case, arguing that numerous oral traditions (recorded by the authors) help to link botanical medicines to episodes within their mythic traditions. Finally, the use of plants to counteract snakebites brought about through sorcery is discussed inasmuch as some snakes are seen as ‘helpers’ of sorcerers. Snake bites given under these circumstances can only be cured by those who know both the proper corresponding plant(s) and ritual prayer(s). This paper provides detailed documentation of traditional ethnomedicines and practices from the dying art of traditional Maya healers and argues for multi-faceted diagnostic techniques to determine toxin severity, the presence or absence of sorcery, and the appropriate botanical remedy.Keywords: ethnobotany, Maya, medicine, snake bites
Procedia PDF Downloads 2371887 Electrospinning Preparation of Superhydrophobic Polydimethylsiloxane/Polystyrene Nanofibrous Membranes for Carbon Dioxide Capture
Authors: Chia-Yu Chang, Yi-Feng Lin
Abstract:
CO2 capture has attracted significant research attention due to global warming. Among the various CO2 capture methods, membrane technology has proven to be highly efficient in capturing CO2 due to the ease at which this technology can be scaled up, its low energy consumptions, small area requirements and overall environmental friendliness for use by industrial plants. Capturing CO2 is to use a membrane contactor with a combination of water-repellent porous membranes and chemical absorption processes. In a CO2 membrane contactor system, CO2 passes through a hydrophobic porous membrane in the gas phase to contact the amine absorbent in the liquid phase. Consequently, additional CO2 gas is absorbed by amine absorbents. This study examines highly porous Polydimethylsiloxane (PDMS)/Polystyrene (PS) Nanofibrous Membranes and successfully coated onto a macroporous Al2O3 membrane. The performance of these materials in a membrane contactor system for CO2 absorption is also investigated. Compared with pristine PS nanofibrous membranes, the PDMS/PS nanofibrous membranes exhibit greater solvent resistance and mechanical strength, making them more suitable for use in CO2 capture by the membrane contactor. The resulting hydrophobic membrane contactor also demonstrates the potential for large-scale CO2 absorption during post-combustion processes in power plants.Keywords: CO2 capture, polystyrene, polydimethylsiloxane, superhydrophobic
Procedia PDF Downloads 3881886 Control of Pipeline Gas Quality to Extend Gas Turbine Life
Authors: Peter J. H. Carnell, Panayiotis Theophanous
Abstract:
Natural gas due to its cleaner combustion characteristics is expected to be the most widely used fuel in the move towards less polluting and renewable energy sources. Thus, the developed world is supplied by a complex network of gas pipelines and natural gas is becoming a major source of fuel. Natural gas delivered directly from the well will differ in composition from gas derived from LNG or produced by anaerobic digestion processes. Each will also have specific contaminants and properties although gas from all sources is likely to enter the distribution system and be blended to provide the desired characteristics such as Higher Heating Value and Wobbe No. The absence of a standard gas composition poses problems when the gas is used as a chemical feedstock, in specialised furnaces or on gas turbines. The chemical industry has suffered in the past as a result of variable gas composition. Transition metal catalysts used in ammonia, methanol and hydrogen plants were easily poisoned by sulphur, chlorides and mercury reducing both activity and catalyst expected lives from years to months. These plants now concentrate on purification and conditioning of the natural gas feed using fixed bed technologies, allowing them to run for several years and having transformed their operations. Similar technologies can be applied to the power industry reducing maintenance requirements and extending the operating life of gas turbines.Keywords: gas composition, gas conditioning, gas turbines, power generation, purification
Procedia PDF Downloads 2861885 Effect of Plowing the Soil of Faba Bean on Soil Productivity and Quality Improvement
Authors: Khattab E. A., Gehan A. Amin
Abstract:
The aim of the experiment was to investigate yield and yield components under effect of three different tillage systems and three faba bean varieties on clay-loamy soils. The experiment was conducted as split plot design having tillage systems in main plot and varieties in subplot. A field trial was conducted during the winter seasons of 2021-2022 and 2022-2-23, respectively in private of the agricultural lands of Shobra Beddin village, which belongs to Mansoura District of Dakahlia Province 31°, (04457)- N latitude and 31°4757- E longitude. The soil was prepared. The Seeds covered with a thin layer of soil, sown and watered. Three weeks later, the developed plants were thinned. Finally, the plants collected after 110 days of growth. Growth, yield and chemical contents determined. The results showed that the highest yield in the traditional tillage system corresponds to the superior to other tillage systems. In addition, In the variety comparison, the Sakha 1 variety was characterized by the highest yield as well as the highest values of plant growth properties among the three varieties. Conclusion: The traditional tillage system is increase grain yield of variety Sakha 1 compared with other varieties.Keywords: yield, tillage system, varieties, faba bean
Procedia PDF Downloads 671884 The Genotoxic Effect of Coal Fly Ash of Thermal Power Plant on Raphanus sativus L. (Radish)
Authors: Patel Kailash P, Patel Parimal M
Abstract:
The effect of coal fly ash treatment on the chromosomes of Raphanus sativus L. was investigated. The seeds of Raphanus sativusL. were placed in petri dishes in three replicates and allowed to germinate for five days in different concentration of coal fly ash solution. The root was treated with the diluted, semidiluted, and concentrated solution of fly ash while the control group had distilled water.The total aberration were examined. The mitotic index was calculated and the results were statically evaluated by the analysis of variance 5% significant level. The mitotic index decreased as the concentration increased. The highest mitotic index value was diluted fly ash solution while the least was concentrated fly ash treatment. The results show the most frequent chromosomal abnormalities observed included: chromatid bridge, c-mitosis, and stickiness. Concentrated fly ash solution is much more genotoxic than semidiluted fly ash solution, as it induced more aberrations having percentage abnormalities for the highest concentration tested. Increased fly ash pollution can lead to some irreversible cytogenetic effect in plants. The study is an attempt to corroborate the toxic effect of coal fly ash of thermal power plant on the chromosome of plants. These results will be useful in environmental monitoring of the cytotoxicity of coal fly ash.Keywords: coal fly-ash, genotoxic, cytogenetic, mitotic index, Raphanus sativus L.
Procedia PDF Downloads 3101883 An Experimental Study on Greywater Reuse for Irrigating a Green Wall System
Authors: Mishadi Herath, Amin Talei, Andreas Hermawan, Clarina Chua
Abstract:
Green walls are vegetated structures on building’s wall that are considered as part of sustainable urban design. They are proved to have many micro-climate benefits such as reduction in indoor temperature, noise attenuation, and improvement in air quality. On the other hand, several studies have also been conducted on potential reuse of greywater in urban water management. Greywater is relatively clean when compared to blackwater; therefore, this study was aimed to assess the potential reuse of it for irrigating a green wall system. In this study, the campus of Monash University Malaysia located in Selangor state was considered as the study site where total 48 samples of greywater were collected from 7 toilets hand-wash and 5 pantries during 3 months period. The samples were tested to characterize the quality of greywater in the study site and compare it with local standard for irrigation water. PH and concentration of heavy metals, nutrients, Total Suspended Solids (TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), total Coliform and E.coli were measured. Results showed that greywater could be directly used for irrigation with minimal treatment. Since the effluent of the system was supposed to be drained to stormwater drainage system, the effluent needed to meet certain quality requirement. Therefore, a biofiltration system was proposed to host the green wall plants and also treat the greywater (which is used as irrigation water) to the required level. To assess the performance of the proposed system, an experimental setup consisting of Polyvinyl Chloride (PVC) soil columns with sand-based filter media were prepared. Two different local creeper plants were chosen considering several factors including fast growth, low maintenance requirement, and aesthetic aspects. Three replicates of each plants were used to ensure the validity of the findings. The growth of creeping plants and their survivability was monitored for 6 months while monthly sampling and testing of effluent was conducted to evaluate effluent quality. An analysis was also conducted to estimate the potential cost and benefit of such system considering water and energy saving in the system. Results showed that the proposed system can work efficiently throughout a long period of time with minimal maintenance requirement. Moreover, the biofiltration-green wall system was found to be successful in reusing greywater as irrigating water while the effluent was meeting all the requirements for being drained to stormwater drainage system.Keywords: biofiltration, green wall, greywater, sustainability
Procedia PDF Downloads 2141882 Cloning of Strawberry’s Malonyltransferase Genes and Characterisation of Their Enzymes
Authors: Xiran Wang, Johanna Trinkl, Thomas Hoffmann, Wilfried Schwab
Abstract:
Malonyltransferases (MATs) are enzymes that play a key role in the biosynthesis of secondary metabolites in plants, such as flavonoids and anthocyanins. As a kind of flavonoid-rich fruit, strawberries are an ideal model to study MATs. From Goodberry metabolome data, in the hybrid generation of 2 strawberries various, Fragaria × ananassa cv. 'Senga Sengana' and 'Candonga', we found the malonylated flavonoid concentration is significantly higher in 'Senga Sengana' compared with 'Candonga'. Therefore, we aimed to identify and characterize the malonyltransferases responsible for the different malonylated flavonoid concentrations in two different strawberry cultivars. In this study, we have found 6 MATs via genome mapping, metabolome analysis, gene cloning, and enzyme assay from strawberries, which catalyzed the malonylation of flavonoid substrates: quercetin-3-glucoside, kaempferol-3-glucoside, pelargonidin-3-glucoside, and cyanidin-3-glucoside. All four compounds reacted with FaMATs to varying degrees. These MATs have important implication into strawberries’ flavonoid biosynthesis, and also provide insights into insights into flavonoid biosynthesis, potential applications in agriculture, plant science, and pharmacy, and information on the regulation of secondary metabolism in plants.Keywords: malonyltransferase, strawberry, flavonoid biosynthesis, enzyme assay
Procedia PDF Downloads 1341881 A Hybrid of BioWin and Computational Fluid Dynamics Based Modeling of Biological Wastewater Treatment Plants for Model-Based Control
Authors: Komal Rathore, Kiesha Pierre, Kyle Cogswell, Aaron Driscoll, Andres Tejada Martinez, Gita Iranipour, Luke Mulford, Aydin Sunol
Abstract:
Modeling of Biological Wastewater Treatment Plants requires several parameters for kinetic rate expressions, thermo-physical properties, and hydrodynamic behavior. The kinetics and associated mechanisms become complex due to several biological processes taking place in wastewater treatment plants at varying times and spatial scales. A dynamic process model that incorporated the complex model for activated sludge kinetics was developed using the BioWin software platform for an Advanced Wastewater Treatment Plant in Valrico, Florida. Due to the extensive number of tunable parameters, an experimental design was employed for judicious selection of the most influential parameter sets and their bounds. The model was tuned using both the influent and effluent plant data to reconcile and rectify the forecasted results from the BioWin Model. Amount of mixed liquor suspended solids in the oxidation ditch, aeration rates and recycle rates were adjusted accordingly. The experimental analysis and plant SCADA data were used to predict influent wastewater rates and composition profiles as a function of time for extended periods. The lumped dynamic model development process was coupled with Computational Fluid Dynamics (CFD) modeling of the key units such as oxidation ditches in the plant. Several CFD models that incorporate the nitrification-denitrification kinetics, as well as, hydrodynamics was developed and being tested using ANSYS Fluent software platform. These realistic and verified models developed using BioWin and ANSYS were used to plan beforehand the operating policies and control strategies for the biological wastewater plant accordingly that further allows regulatory compliance at minimum operational cost. These models, with a little bit of tuning, can be used for other biological wastewater treatment plants as well. The BioWin model mimics the existing performance of the Valrico Plant which allowed the operators and engineers to predict effluent behavior and take control actions to meet the discharge limits of the plant. Also, with the help of this model, we were able to find out the key kinetic and stoichiometric parameters which are significantly more important for modeling of biological wastewater treatment plants. One of the other important findings from this model were the effects of mixed liquor suspended solids and recycle ratios on the effluent concentration of various parameters such as total nitrogen, ammonia, nitrate, nitrite, etc. The ANSYS model allowed the abstraction of information such as the formation of dead zones increases through the length of the oxidation ditches as compared to near the aerators. These profiles were also very useful in studying the behavior of mixing patterns, effect of aerator speed, and use of baffles which in turn helps in optimizing the plant performance.Keywords: computational fluid dynamics, flow-sheet simulation, kinetic modeling, process dynamics
Procedia PDF Downloads 2081880 Formation of Mg-Silicate Scales and Inhibition of Their Scale Formation at Injection Wells in Geothermal Power Plant
Authors: Samuel Abebe Ebebo
Abstract:
Scale precipitation causes a major issue for geothermal power plants because it reduces the production rate of geothermal energy. Each geothermal power plant's different chemical and physical conditions can cause the scale to precipitate under a particular set of fluid-rock interactions. Depending on the mineral, it is possible to have scale in the production well, steam separators, heat exchangers, reinjection wells, and everywhere in between. The scale consists mainly of smectite and trace amounts of chlorite, magnetite, quartz, hematite, dolomite, aragonite, and amorphous silica. The smectite scale is one of the difficult scales at injection wells in geothermal power plants. X-ray diffraction and chemical composition identify this smectite as Stevensite. The characteristics and the scale of each injection well line are different depending on the fluid chemistry. The smectite scale has been widely distributed in pipelines and surface plants. Mineral water equilibrium showed that the main factors controlling the saturation indices of smectite increased pH and dissolved Mg concentration due to the precipitate on the equipment surface. This study aims to characterize the scales and geothermal fluids collected from the Onuma geothermal power plant in Akita Prefecture, Japan. Field tests were conducted on October 30–November 3, 2021, at Onuma to determine the pH control methods for preventing magnesium silicate scaling, and as exemplified, the formation of magnesium silicate hydrates (M-S-H) with MgO to SiO2 ratios of 1.0 and pH values of 10 for one day has been studied at 25 °C. As a result, M-S-H scale formation could be suppressed, and stevensite formation could also be suppressed when we can decrease the pH of the fluid by less than 8.1, 7.4, and 8 (at 97 °C) in the fluid from O-3Rb and O-6Rb, O-10Rg, and O-12R, respectively. In this context, the scales and fluids collected from injection wells at a geothermal power plant in Japan were analyzed and characterized to understand the formation conditions of Mg-silicate scales with on-site synthesis experiments. From the results of the characterizations and on-site synthesis experiments, the inhibition method of their scale formation is discussed based on geochemical modeling in this study.Keywords: magnesium silicate, scaling, inhibitor, geothermal power plant
Procedia PDF Downloads 641879 Synergistic Interactions between Secondary Metabolites in Rosmarinus officinalis L.
Authors: Ruta Mickiene, Audrius Maruska, Ona Ragazinskiene
Abstract:
This research focuses on phytochemistry and antimicrobial activities of compounds isolated and identified from species Rosmarinus officinalis L. This is a study of synergistic effects between phenolic fraction and essential oils. The antimicrobial activity of extracts from Rosmarinus officinalis L. originated from the sector of medicinal plants, Kaunas botanical garden of Vytautas Magnus University Lithuania, were tested by the method of series dilutions, against different bacteria species. Investigated microorganisms were Escherichia coli, Proteus vulgaris and Staphylococcus aureus with and without antibiotic resistances originating from livestock. The antimicrobial activities of extracts were described by determination of the Minimal Inhibitory Concentration (MIC). Preliminary results show that the MIC range between 9.0 % and 12.0 % for the different Rosmarinus officinalis L. extracts and bacterial species. The total amounts of phenolic compounds and total amounts of flavonoids were tested in the methanolic extracts of the plants. The chemical composition for essential oils analysed by GC/MS. Predominant components were alpha pinene (20%), camphor (10%), 1.8‐cineole (5%), phellandrene (6%), camphene (5%), beta pinene (4%), bornylacetate (4%), limonene (2%), borneol (3%), alpha terpineol (3%), cymene (2%), caryophyllene (15%), verbenone (7%), alpha terpinene (3%), eucalyptol (11%).Keywords: antimicrobial activity, essential oil, Rosmarinus officinalis L., escherichia coli
Procedia PDF Downloads 3841878 Systems of Liquid Organic Fertilizer Application with Respect to Environmental Impact
Authors: Hidayatul Fitri, Petr Šařec
Abstract:
The use of organic fertilizer is increasing nowadays, and the application must be conducted accurately to provide the right benefits for plants and maintain soil health. Improper application of fertilizers can cause problems for both plants and the environment. This study investigated the liquid organic fertilizer application, particularly digestate, varied into different application doses concerning mitigation of adverse environmental impacts, improving water infiltration ability, and crop yields. The experiment was established into eight variants with different digestate doses, conducted on emission monitoring and soil physical properties. As a result, the digestate application with shallow injection (5 cm in depth) was confirmed as an appropriate technique for applying liquid fertilizer into the soil. Gas emissions resulted in low concentration and declined gradually over time, obviously proved from the experiment conducted under two measurements immediately after application and the next day. Applied various doses of liquid digestate fertilizer affected the emission concentrations of NH3 volatilization, differing significantly and decreasing about 40% from the first to second measurement. In this study, winter wheat crop production significantly increases under digestate application with additional N fertilizer. This study suggested the long-term application of digestate to obtain more alteration of soil properties such as bulk density, penetration resistance, and hydraulic conductivity.Keywords: liquid organic fertilizer, digestate, application, ammonia, emission
Procedia PDF Downloads 2871877 A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods
Authors: Akbar Rahmani Nejad, Pejman Rahmani Nejad, Ahmad Rahmani Nejad
Abstract:
we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical designKeywords: hydrogen gas, lightning energy, power plant, resistive element
Procedia PDF Downloads 141