Search results for: volumetric mass density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6695

Search results for: volumetric mass density

215 Forced Immigration to Turkey: The Socio-Spatial Impacts of Syrian Immigrants on Turkish Cities

Authors: Tolga Levent

Abstract:

Throughout the past few decades, forced immigration has been a significant problem for many developing countries. Turkey is one of those countries, which has experienced lots of forced immigration waves in the Republican era. However, the ongoing forced immigration wave of Syrians started with Syrian Civil War in 2011, is strikingly influential due to its intensity. In six years, approximately 3,4 million Syrians have entered to Turkey and presented high-level spatial concentrations in certain cities proximate to the Syrian border. These concentrations make Syrians and their problems relatively visible, especially in those cities. The problems of Syrians in Turkish cities could be associated with all dimensions of daily lives. Within economical dimension, high rates of Syrian unemployment push them to informal jobs offering very low wages. The financial aids they continuously demand from public authorities trigger anti-Syrian behaviors of local communities. Moreover, their relatively limited social adaptation capacities increase integration problems within social dimension day by day. Even, there are problems related to public health dimension such as the reappearance of certain child's illnesses due to the insufficiency of vaccination of Syrian children. These problems are significant but relatively easy to be prevented by using different types of management strategies and structural policies. However, there are other types of problems -urban problems- emerging with socio-spatial impacts of Syrians on Turkish cities in a very short period of time. There are relatively limited amount of studies about these impacts since they are difficult to be comprehended. The aim of the study, in this respect, is to understand these rapidly-emerging impacts and urban problems resulted from this massive immigration influx and to discuss new qualities of urban planning facing them. In the first part, there is a brief historical consideration of forced immigration waves in Turkey. These waves are important to make comparison with the ongoing immigration wave and to understand its significance. The second part is about quantitative and qualitative analyses of the spatial existence of Syrian immigrants in the city of Mersin, as an example of cities where Syrians are highly concentrated. By using official data from public authorities, quantitative statistical analyses are made to detect spatial concentrations of Syrians at neighborhood level. As methods of qualitative research, observations and in-depth interviews are used to define socio-spatial impacts of Syrians. The main results show that there emerges 'cities in cities' though sharp socio-spatial segregations which change density surfaces; produce unforeseen land-use patterns; result in inadequacies of public services and create degradations/deteriorations of urban environments occupied by Syrians. All these problems are significant; however, Turkish planning system does not have a capacity to cope with them. In the final part, there is a discussion about new qualities of urban planning facing these impacts and urban problems. The main point of discussion is the possibility of resilient urban planning under the conditions of uncertainty and unpredictability fostered by immigration crisis. Such a resilient planning approach might provide an option for countries aiming to cope with negative socio-spatial impacts of massive immigration influxes.

Keywords: cities, forced immigration, Syrians, urban planning

Procedia PDF Downloads 229
214 Seismic Response Control of Multi-Span Bridge Using Magnetorheological Dampers

Authors: B. Neethu, Diptesh Das

Abstract:

The present study investigates the performance of a semi-active controller using magneto-rheological dampers (MR) for seismic response reduction of a multi-span bridge. The application of structural control to the structures during earthquake excitation involves numerous challenges such as proper formulation and selection of the control strategy, mathematical modeling of the system, uncertainty in system parameters and noisy measurements. These problems, however, need to be tackled in order to design and develop controllers which will efficiently perform in such complex systems. A control algorithm, which can accommodate un-certainty and imprecision compared to all the other algorithms mentioned so far, due to its inherent robustness and ability to cope with the parameter uncertainties and imprecisions, is the sliding mode algorithm. A sliding mode control algorithm is adopted in the present study due to its inherent stability and distinguished robustness to system parameter variation and external disturbances. In general a semi-active control scheme using an MR damper requires two nested controllers: (i) an overall system controller, which derives the control force required to be applied to the structure and (ii) an MR damper voltage controller which determines the voltage required to be supplied to the damper in order to generate the desired control force. In the present study a sliding mode algorithm is used to determine the desired optimal force. The function of the voltage controller is to command the damper to produce the desired force. The clipped optimal algorithm is used to find the command voltage supplied to the MR damper which is regulated by a semi active control law based on sliding mode algorithm. The main objective of the study is to propose a robust semi active control which can effectively control the responses of the bridge under real earthquake ground motions. Lumped mass model of the bridge is developed and time history analysis is carried out by solving the governing equations of motion in the state space form. The effectiveness of MR dampers is studied by analytical simulations by subjecting the bridge to real earthquake records. In this regard, it may also be noted that the performance of controllers depends, to a great extent, on the characteristics of the input ground motions. Therefore, in order to study the robustness of the controller in the present study, the performance of the controllers have been investigated for fourteen different earthquake ground motion records. The earthquakes are chosen in such a way that all possible characteristic variations can be accommodated. Out of these fourteen earthquakes, seven are near-field and seven are far-field. Also, these earthquakes are divided into different frequency contents, viz, low-frequency, medium-frequency, and high-frequency earthquakes. The responses of the controlled bridge are compared with the responses of the corresponding uncontrolled bridge (i.e., the bridge without any control devices). The results of the numerical study show that the sliding mode based semi-active control strategy can substantially reduce the seismic responses of the bridge showing a stable and robust performance for all the earthquakes.

Keywords: bridge, semi active control, sliding mode control, MR damper

Procedia PDF Downloads 107
213 Soybean Lecithin Based Reverse Micellar Extraction of Pectinase from Synthetic Solution

Authors: Sivananth Murugesan, I. Regupathi, B. Vishwas Prabhu, Ankit Devatwal, Vishnu Sivan Pillai

Abstract:

Pectinase is an important enzyme which has a wide range of applications including textile processing and bioscouring of cotton fibers, coffee and tea fermentation, purification of plant viruses, oil extraction etc. Selective separation and purification of pectinase from fermentation broth and recover the enzyme form process stream for reuse are cost consuming process in most of the enzyme based industries. It is difficult to identify a suitable medium to enhance enzyme activity and retain its enzyme characteristics during such processes. The cost effective, selective separation of enzymes through the modified Liquid-liquid extraction is of current research interest worldwide. Reverse micellar extraction, globally acclaimed Liquid-liquid extraction technique is well known for its separation and purification of solutes from the feed which offers higher solute specificity and partitioning, ease of operation and recycling of extractants used. Surfactant concentrations above critical micelle concentration to an apolar solvent form micelles and addition of micellar phase to water in turn forms reverse micelles or water-in-oil emulsions. Since, electrostatic interaction plays a major role in the separation/purification of solutes using reverse micelles. These interaction parameters can be altered with the change in pH, addition of cosolvent, surfactant and electrolyte and non-electrolyte. Even though many chemical based commercial surfactant had been utilized for this purpose, the biosurfactants are more suitable for the purification of enzymes which are used in food application. The present work focused on the partitioning of pectinase from the synthetic aqueous solution within the reverse micelle phase formed by a biosurfactant, Soybean Lecithin dissolved in chloroform. The critical micelle concentration of soybean lecithin/chloroform solution was identified through refractive index and density measurements. Effect of surfactant concentrations above and below the critical micelle concentration was considered to study its effect on enzyme activity, enzyme partitioning within the reverse micelle phase. The effect of pH and electrolyte salts on the partitioning behavior was studied by varying the system pH and concentration of different salts during forward and back extraction steps. It was observed that lower concentrations of soybean lecithin enhanced the enzyme activity within the water core of the reverse micelle with maximizing extraction efficiency. The maximum yield of pectinase of 85% with a partitioning coefficient of 5.7 was achieved at 4.8 pH during forward extraction and 88% yield with a partitioning coefficient of 7.1 was observed during backward extraction at a pH value of 5.0. However, addition of salt decreased the enzyme activity and especially at higher salt concentrations enzyme activity declined drastically during both forward and back extraction steps. The results proved that reverse micelles formed by Soybean Lecithin and chloroform may be used for the extraction of pectinase from aqueous solution. Further, the reverse micelles can be considered as nanoreactors to enhance enzyme activity and maximum utilization of substrate at optimized conditions, which are paving a way to process intensification and scale-down.

Keywords: pectinase, reverse micelles, soybean lecithin, selective partitioning

Procedia PDF Downloads 345
212 Genetic Polymorphism and Insilico Study Epitope Block 2 MSP1 Gene of Plasmodium falciparum Isolate Endemic Jayapura

Authors: Arsyam Mawardi, Sony Suhandono, Azzania Fibriani, Fifi Fitriyah Masduki

Abstract:

Malaria is an infectious disease caused by Plasmodium sp. This disease has a high prevalence in Indonesia, especially in Jayapura. The vaccine that is currently being developed has not been effective in overcoming malaria. This is due to the high polymorphism in the Plasmodium genome especially in areas that encode Plasmodium surface proteins. Merozoite Surface Protein 1 (MSP1) Plasmodium falciparum is a surface protein that plays a role in the invasion process in human erythrocytes through the interaction of Glycophorin A protein receptors and sialic acid in erythrocytes with Reticulocyte Binding Proteins (RBP) and Duffy Adhesion Protein (DAP) ligands in merozoites. MSP1 can be targeted to be a specific antigen and predicted epitope area which will be used for the development of diagnostic and malaria vaccine therapy. MSP1 consists of 17 blocks, each block is dimorphic, and has been marked as the K1 and MAD20 alleles. Exceptions only in block 2, because it has 3 alleles, among others K1, MAD20 and RO33. These polymorphisms cause allelic variations and implicate the severity of patients infected P. falciparum. In addition, polymorphism of MSP1 in Jayapura isolates has not been reported so it is interesting to be further identified and projected as a specific antigen. Therefore, in this study, we analyzed the allele polymorphism as well as detected the MSP1 epitope antigen candidate on block 2 P. falciparum. Clinical samples of selected malaria patients followed the consecutive sampling method, examining malaria parasites with blood preparations on glass objects observed through a microscope. Plasmodium DNA was isolated from the blood of malarial positive patients. The block 2 MSP1 gene was amplified using PCR method and cloned using the pGEM-T easy vector then transformed to TOP'10 E.coli. Positive colonies selection was performed with blue-white screening. The existence of target DNA was confirmed by PCR colonies and DNA sequencing methods. Furthermore, DNA sequence analysis was done through alignment and formation of a phylogenetic tree using MEGA 6 software and insilico analysis using IEDB software to predict epitope candidate for P. falciparum. A total of 15 patient samples have been isolated from Plasmodium DNA. PCR amplification results show the target gene size about ± 1049 bp. The results of MSP1 nucleotide alignment analysis reveal that block 2 MSP1 genes derived from the sample of malarial patients were distributed in four different allele family groups, K1 (7), MAD20 (1), RO33 (0) and MSP1_Jayapura (10) alleles. The most commonly appears of the detected allele is MSP1_Jayapura single allele. There was no significant association between sex variables, age, the density of parasitemia and alel variation (Mann Whitney, U > 0.05), while symptomatic signs have a significant difference as a trigger of detectable allele variation (U < 0.05). In this research, insilico study shows that there is a new epitope antigen candidate from the MSP1_Jayapura allele and it is predicted to be recognized by B cells with 17 amino acid lengths in the amino acid sequence 187 to 203.

Keywords: epitope candidate, insilico analysis, MSP1 P. falciparum, polymorphism

Procedia PDF Downloads 158
211 An Odyssey to Sustainability: The Urban Archipelago of India

Authors: B. Sudhakara Reddy

Abstract:

This study provides a snapshot of the sustainability of selected Indian cities by employing 70 indicators in four dimensions to develop an overall city sustainability index. In recent years, the concept of ‘urban sustainability’ has become prominent due to its complexity. Urban areas propel growth and at the same time poses a lot of ecological, social and infrastructural problems and risks. In case of developing countries, the high population density of and the continuous in-migration run the highest risk in natural and man-made disasters. These issues combined with the inability of policy makers in providing basic services makes the cities unsustainable. To assess whether any given policy is moving towards or against urban sustainability it is necessary to consider the relationships among its various dimensions. Hence, in recent years, while preparing the sustainability index, an integral approach involving indicators of different dimensions such as ‘economic’, ‘environmental’ and 'social' is being used. It is also important for urban planners, social analysts and other related institutions to identify and understand the relationships in this complex system. The objective of the paper is to develop a city performance index (CPI) to measure and evaluate the urban regions in terms of sustainable performances. The objectives include: i) Objective assessment of a city’s performance, ii) setting achievable goals iii) prioritise relevant indicators for improvement, iv) learning from leaders, iv) assessment of the effectiveness of programmes that results in achieving high indicator values, v) Strengthening of stakeholder participation. Using the benchmark approach, a conceptual framework is developed for evaluating 25 Indian cities. We develop City Sustainability index (CSI) in order to rank cities according to their level of sustainability. The CSI is composed of four dimensions: Economic, Environment, Social, and Institutional. Each dimension is further composed of multiple indicators: (1) Economic that considers growth, access to electricity, and telephone availability; (2) environmental that includes waste water treatment, carbon emissions, (3) social that includes, equity, infant mortality, and 4) institutional that includes, voting share of population, urban regeneration policies. The CSI, consisting of four dimensions disaggregate into 12 categories and ultimately into 70 indicators. The data are obtained from public and non-governmental organizations, and also from city officials and experts. By ranking a sample of diverse cities on a set of specific dimensions the study can serve as a baseline of current conditions and a marker for referencing future results. The benchmarks and indices presented in the study provide a unique resource for the government and the city authorities to learn about the positive and negative attributes of a city and prepare plans for a sustainable urban development. As a result of our conceptual framework, the set of criteria we suggest is somewhat different to any already in the literature. The scope of our analysis is intended to be broad. Although illustrated with specific examples, it should be apparent that the principles identified are relevant to any monitoring that is used to inform decisions involving decision variables. These indicators are policy-relevant and, hence they are useful tool for decision-makers and researchers.

Keywords: benchmark, city, indicator, performance, sustainability

Procedia PDF Downloads 247
210 Towards a Better Understanding of Planning for Urban Intensification: Case Study of Auckland, New Zealand

Authors: Wen Liu, Errol Haarhoff, Lee Beattie

Abstract:

In 2010, New Zealand’s central government re-organise the local governments arrangements in Auckland, New Zealand by amalgamating its previous regional council and seven supporting local government units into a single unitary council, the Auckland Council. The Auckland Council is charged with providing local government services to approximately 1.5 million people (a third of New Zealand’s total population). This includes addressing Auckland’s strategic urban growth management and setting its urban planning policy directions for the next 40 years. This is expressed in the first ever spatial plan in the region – the Auckland Plan (2012). The Auckland plan supports implementing a compact city model by concentrating the larger part of future urban growth and development in, and around, existing and proposed transit centres, with the intention of Auckland to become globally competitive city and achieving ‘the most liveable city in the world’. Turning that vision into reality is operatized through the statutory land use plan, the Auckland Unitary Plan. The Unitary plan replaced the previous regional and local statutory plans when it became operative in 2016, becoming the ‘rule book’ on how to manage and develop the natural and built environment, using land use zones and zone standards. Common to the broad range of literature on urban growth management, one significant issue stands out about intensification. The ‘gap’ between strategic planning and what has been achieved is evident in the argument for the ‘compact’ urban form. Although the compact city model may have a wide range of merits, the extent to which these are actualized largely rely on how intensification actually is delivered. The transformation of the rhetoric of the residential intensification model into reality is of profound influence, yet has enjoyed limited empirical analysis. In Auckland, the establishment of the Auckland Plan set up the strategies to deliver intensification into diversified arenas. Nonetheless, planning policy itself does not necessarily achieve the envisaged objectives, delivering the planning system and high capacity to enhance and sustain plan implementation is another demanding agenda. Though the Auckland Plan provides a wide ranging strategic context, its actual delivery is beholden on the Unitary Plan. However, questions have been asked if the Unitary Plan has the necessary statutory tools to deliver the Auckland Plan’s policy outcomes. In Auckland, there is likely to be continuing tension between the strategies for intensification and their envisaged objectives, and made it doubtful whether the main principles of the intensification strategies could be realized. This raises questions over whether the Auckland Plan’s policy goals can be achieved in practice, including delivering ‘quality compact city’ and residential intensification. Taking Auckland as an example of traditionally sprawl cities, this article intends to investigate the efficacy plan making and implementation directed towards higher density development. This article explores the process of plan development, plan making and implementation frameworks of the first ever spatial plan in Auckland, so as to explicate the objectives and processes involved, and consider whether this will facilitate decision making processes to realize the anticipated intensive urban development.

Keywords: urban intensification, sustainable development, plan making, governance and implementation

Procedia PDF Downloads 529
209 Conceptual and Preliminary Design of Landmine Searching UAS at Extreme Environmental Condition

Authors: Gopalasingam Daisan

Abstract:

Landmines and ammunitions have been creating a significant threat to the people and animals, after the war, the landmines remain in the land and it plays a vital role in civilian’s security. Especially the Children are at the highest risk because they are curious. After all, an unexploded bomb can look like a tempting toy to an inquisitive child. The initial step of designing the UAS (Unmanned Aircraft Systems) for landmine detection is to choose an appropriate and effective sensor to locate the landmines and other unexploded ammunitions. The sensor weight and other components related to the sensor supporting device’s weight are taken as a payload weight. The mission requirement is to find the landmines in a particular area by making a proper path that will cover all the vicinity in the desired area. The weight estimation of the UAV (Unmanned Aerial Vehicle) can be estimated by various techniques discovered previously with good accuracy at the first phase of the design. The next crucial part of the design is to calculate the power requirement and the wing loading calculations. The matching plot techniques are used to determine the thrust-to-weight ratio, and this technique makes this process not only easiest but also precisely. The wing loading can be calculated easily from the stall equation. After these calculations, the wing area is determined from the wing loading equation and the required power is calculated from the thrust to weight ratio calculations. According to the power requirement, an appropriate engine can be selected from the available engine from the market. And the wing geometric parameter is chosen based on the conceptual sketch. The important steps in the wing design to choose proper aerofoil and which will ensure to create sufficient lift coefficient to satisfy the requirements. The next component is the tail; the tail area and other related parameters can be estimated or calculated to counteract the effect of the wing pitching moment. As the vertical tail design depends on many parameters, the initial sizing only can be done in this phase. The fuselage is another major component, which is selected based on the slenderness ratio, and also the shape is determined on the sensor size to fit it under the fuselage. The landing gear is one of the important components which is selected based on the controllability and stability requirements. The minimum and maximum wheel track and wheelbase can be determined based on the crosswind and overturn angle requirements. The minor components of the landing gear design and estimation are not the focus of this project. Another important task is to calculate the weight of the major components and it is going to be estimated using empirical relations and also the mass is added to each such component. The CG and moment of inertia are also determined to each component separately. The sensitivity of the weight calculation is taken into consideration to avoid extra material requirements and also reduce the cost of the design. Finally, the aircraft performance is calculated, especially the V-n (velocity and load factor) diagram for different flight conditions such as not disturbed and with gust velocity.

Keywords: landmine, UAS, matching plot, optimization

Procedia PDF Downloads 147
208 Reliability and Validity of a Portable Inertial Sensor and Pressure Mat System for Measuring Dynamic Balance Parameters during Stepping

Authors: Emily Rowe

Abstract:

Introduction: Balance assessments can be used to help evaluate a person’s risk of falls, determine causes of balance deficits and inform intervention decisions. It is widely accepted that instrumented quantitative analysis can be more reliable and specific than semi-qualitative ordinal scales or itemised scoring methods. However, the uptake of quantitative methods is hindered by expense, lack of portability, and set-up requirements. During stepping, foot placement is actively coordinated with the body centre of mass (COM) kinematics during pre-initiation. Based on this, the potential to use COM velocity just prior to foot off and foot placement error as an outcome measure of dynamic balance is currently being explored using complex 3D motion capture. Inertial sensors and pressure mats might be more practical technologies for measuring these parameters in clinical settings. Objective: The aim of this study was to test the criterion validity and test-retest reliability of a synchronised inertial sensor and pressure mat-based approach to measure foot placement error and COM velocity while stepping. Methods: Trials were held with 15 healthy participants who each attended for two sessions. The trial task was to step onto one of 4 targets (2 for each foot) multiple times in a random, unpredictable order. The stepping target was cued using an auditory prompt and electroluminescent panel illumination. Data was collected using 3D motion capture and a combined inertial sensor-pressure mat system simultaneously in both sessions. To assess the reliability of each system, ICC estimates and their 95% confident intervals were calculated based on a mean-rating (k = 2), absolute-agreement, 2-way mixed-effects model. To test the criterion validity of the combined inertial sensor-pressure mat system against the motion capture system multi-factorial two-way repeated measures ANOVAs were carried out. Results: It was found that foot placement error was not reliably measured between sessions by either system (ICC 95% CIs; motion capture: 0 to >0.87 and pressure mat: <0.53 to >0.90). This could be due to genuine within-subject variability given the nature of the stepping task and brings into question the suitability of average foot placement error as an outcome measure. Additionally, results suggest the pressure mat is not a valid measure of this parameter since it was statistically significantly different from and much less precise than the motion capture system (p=0.003). The inertial sensor was found to be a moderately reliable (ICC 95% CIs >0.46 to >0.95) but not valid measure for anteroposterior and mediolateral COM velocities (AP velocity: p=0.000, ML velocity target 1 to 4: p=0.734, 0.001, 0.000 & 0.376). However, it is thought that with further development, the COM velocity measure validity could be improved. Possible options which could be investigated include whether there is an effect of inertial sensor placement with respect to pelvic marker placement or implementing more complex methods of data processing to manage inherent accelerometer and gyroscope limitations. Conclusion: The pressure mat is not a suitable alternative for measuring foot placement errors. The inertial sensors have the potential for measuring COM velocity; however, further development work is needed.

Keywords: dynamic balance, inertial sensors, portable, pressure mat, reliability, stepping, validity, wearables

Procedia PDF Downloads 116
207 Energy Efficiency of Secondary Refrigeration with Phase Change Materials and Impact on Greenhouse Gases Emissions

Authors: Michel Pons, Anthony Delahaye, Laurence Fournaison

Abstract:

Secondary refrigeration consists of splitting large-size direct-cooling units into volume-limited primary cooling units complemented by secondary loops for transporting and distributing cold. Such a design reduces the refrigerant leaks, which represents a source of greenhouse gases emitted into the atmosphere. However, inserting the secondary circuit between the primary unit and the ‘users’ heat exchangers (UHX) increases the energy consumption of the whole process, which induces an indirect emission of greenhouse gases. It is thus important to check whether that efficiency loss is sufficiently limited for the change to be globally beneficial to the environment. Among the likely secondary fluids, phase change slurries offer several advantages: they transport latent heat, they stabilize the heat exchange temperature, and the formerly evaporators still can be used as UHX. The temperature level can also be adapted to the desired cooling application. Herein, the slurry {ice in mono-propylene-glycol solution} (melting temperature Tₘ of 6°C) is considered for food preservation, and the slurry {mixed hydrate of CO₂ + tetra-n-butyl-phosphonium-bromide in aqueous solution of this salt + CO₂} (melting temperature Tₘ of 13°C) is considered for air conditioning. For the sake of thermodynamic consistency, the analysis encompasses the whole process, primary cooling unit plus secondary slurry loop, and the various properties of the slurries, including their non-Newtonian viscosity. The design of the whole process is optimized according to the properties of the chosen slurry and under explicit constraints. As a first constraint, all the units must deliver the same cooling power to the user. The other constraints concern the heat exchanges areas, which are prescribed, and the flow conditions, which prevent deposition of the solid particles transported in the slurry, and their agglomeration. Minimization of the total energy consumption leads to the optimal design. In addition, the results are analyzed in terms of exergy losses, which allows highlighting the couplings between the primary unit and the secondary loop. One important difference between the ice-slurry and the mixed-hydrate one is the presence of gaseous carbon dioxide in the latter case. When the mixed-hydrate crystals melt in the UHX, CO₂ vapor is generated at a rate that depends on the phase change kinetics. The flow in the UHX, and its heat and mass transfer properties are significantly modified. This effect has never been investigated before. Lastly, inserting the secondary loop between the primary unit and the users increases the temperature difference between the refrigerated space and the evaporator. This results in a loss of global energy efficiency, and therefore in an increased energy consumption. The analysis shows that this loss of efficiency is not critical in the first case (Tₘ = 6°C), while the second case leads to more ambiguous results, partially because of the higher melting temperature.The consequences in terms of greenhouse gases emissions are also analyzed.

Keywords: exergy, hydrates, optimization, phase change material, thermodynamics

Procedia PDF Downloads 109
206 Contrastive Analysis of Parameters Registered in Training Rowers and the Impact on the Olympic Performance

Authors: Gheorghe Braniste

Abstract:

The management of the training process in sports is closely related to the awareness of the close connection between performance and the morphological, functional and psychological characteristics of the athlete's body. Achieving high results in Olympic sports is influenced, on the one hand, by the genetically determined characteristics of the body and, on the other hand, by the morphological, functional and motor abilities of the athlete. Taking into account the importance of properly understanding the evolutionary specificity of athletes to assess their competitive potential, this study provides a comparative analysis of the parameters that characterize the growth and development of the level of adaptation of sweeping rowers, considering the growth interval between 12 and 20 years. The study established that, in the multi-annual training process, the bodies of the targeted athletes register significant adaptive changes while analyzing parameters of the morphological, functional, psychomotor and sports-technical spheres. As a result of the influence of physical efforts, both specific and non-specific, there is an increase in the adaptability of the body, its transfer to a much higher level of functionality within the parameters, useful and economical adaptive reactions influenced by environmental factors, be they internal or external. The research was carried out for 7 years, on a group of 28 athletes, following their evolution and recording the specific parameters of each age stage. In order to determine the level of physical, morpho-functional, psychomotor development and technical training of rowers, the screening data were applied at the State University of Physical Education and Sports in the Republic of Moldova. During the research, measurements were made on the waist, in the standing and sitting position, arm span, weight, circumference and chest perimeter, vital capacity of the lungs, with the subsequent determination of the vital index (tolerance level to oxygen deficiency in venous blood in Stange and Genchi breath-taking tests that characterize the level of oxygen saturation, absolute and relative strength of the hand and back, calculation of body mass and morphological maturity indices (Kettle index), body surface area (body gait), psychomotor tests (Romberg test), test-tepping 10 s., reaction to a moving object, visual and auditory-motor reaction, recording of technical parameters of rowing on a competitive distance of 200 m. At the end of the study it was found that highly performance is sports is to be associated on the one hand with the genetically determined characteristics of the body and, on the other hand, with favorable adaptive reactions and energy saving, as well as morphofunctional changes influenced by internal and external environmental factors. The importance of the results obtained at the end of the study was positively reflected in obtaining the maximum level of training of athletes in order to demonstrate performance in large-scale competitions and mostly in the Olympic Games.

Keywords: olympics, parameters, performance, peak

Procedia PDF Downloads 94
205 Expression of Fibrogenesis Markers after Mesenchymal Stem Cells Therapy for Experimental Liver Cirrhosis

Authors: Tatsiana Ihnatovich, Darya Nizheharodava, Mikalai Halabarodzka, Tatsiana Savitskaya, Marina Zafranskaya

Abstract:

Liver fibrosis is a complex of histological changes resulting from chronic liver disease accompanied by an excessive production and deposition of extracellular matrix components in the hepatic parenchyma. Liver fibrosis is a serious medical and social problem. Hepatic stellate cells (HSCs) make a significant contribution to the extracellular matrix deposition due to liver injury. Mesenchymal stem cells (MSCs) have a pronounced anti-inflammatory, regenerative and immunomodulatory effect; they are able to differentiate into hepatocytes and induce apoptosis of activated HSCs that opens the prospect of their use for preventing the excessive fibro-formation and the development of liver cirrhosis. The aim of the study is to evaluate the effect of MSCs therapy on the expression of fibrogenesis markers genes in liver tissue and HSCs cultures of rats with experimental liver cirrhosis (ELC). Materials and methods: ELC was induced by the common bile duct ligation (CBDL) in female Wistar rats (n = 19) with an average body weight of 250 (220 ÷ 270) g. Animals from the control group (n = 10) were sham-operated. On the 56th day after the CBDL, the rats of the experimental (n = 12) and the control (n = 5) groups received intraportal MSCs in concentration of 1×106 cells/animal (previously obtained from rat’s bone marrow) or saline, respectively. The animals were taken out of the experiment on the 21st day. HSCs were isolated by sequential liver perfusion in situ with following disaggregation, enzymatic treatment and centrifugation of cell suspension on a two-stage density gradient. The expression of collagen type I (Col1a1) and type III (Col3a1), matrix metalloproteinase type 2 (MMP2) and type 9 (MMP9), tissue inhibitor of matrix metalloproteinases type 1 (TIMP1), transforming growth factor β type 1 (TGFβ1) and type 3 (TGFβ3) was determined by real-time polymerase chain reaction. Statistical analysis was performed using Statistica 10.0. Results: In ELC rats compared to sham-operated animals, a significant increase of all studied markers expression was observed. The administration of MSCs led to a significant decrease of all detectable markers in the experimental group compared to rats without cell therapy. In ELC rats, an increased MMP9/TIMP1 ratio after cell therapy was also detected. The infusion of MSCs in the sham-operated animals did not lead to any changes. In the HSCs from ELC animals, the expression of Col1a1 and Col3a1 exceeded the similar parameters of the control group (p <0.05) and statistically decreased after the MSCs administration. The correlation between Col3a1 (Rs = 0.51, p <0.05), TGFβ1 (Rs = 0.6, p <0.01), and TGFβ3 (Rs = 0.75, p <0.001) expression in HSCs cultures and liver tissue has been found. Conclusion: Intraportal administration of MSCs to rats with ELC leads to a decreased Col1a1 and Col3a1, MMP2 and MMP9, TIMP1, TGFβ1 and TGFβ3 expression. The correlation between the expression of Col3a1, TGFβ1 and TGFβ3 in liver tissue and in HSCs cultures indicates the involvement of activated HSCs in the fibrogenesis that allows considering HSCs to be the main cell therapy target in ELC.

Keywords: cell therapy, experimental liver cirrhosis, hepatic stellate cells, mesenchymal stem cells

Procedia PDF Downloads 144
204 Tasting and Touring: Chinese Consumers’ Experiences with Australian Wine and Winery Tour: A Case Study of Sirromet Wines, Queensland

Authors: Ning Niu

Abstract:

The study hinges on consumer taste, food industry (wine production) and cultural consumption (vineyard tourism) which are related to the Chinese market, consumers, and visitors traveling to Australian vineyards. The research topic can be summed up as: the economic importance of the Chinese market on Australian wine production; the economic importance of the Chinese market have an impact on how Australian wine is produced or packaged; the impact of mass Chinese wine tourism on Australian vineyards; the gendered and cultured experience of wine tourism for Chines visitors. This study aims to apply the theories of Pierre Bourdieu into the research in food industry and cultural consumption; investigate Chinese experiences with Australian wine products and vineyard tours; to explore the cultural, gendered and class influences on their experiences. The academic background covers the concepts of habitus, taste, capital proposed by Pierre Bourdieu along with long-lasting concepts within China’s cultural context including mianzi (face, dignity/honor/hierarchy) and guanxi (connections/social network), in order to develop new perspectives to study the tastes of Chinese tourists coming to Australia for wine experiences. The documents cited from Australian government or industries will be interpreted, and the analysis of data will constitute the economic background for this current study. The study applies qualitative research and draws from the fieldwork, choosing ethnographic observation, interviews, personal experiences and discursive analysis of government documents and tourism documents. The expected sample size includes three tourism professionals, two or three local Australian wine producers, and 20 to 30 Chinese wine consumers and visitors travelling to Australian vineyards. An embodied ethnography will be used to observe the Chinese participants’ feelings, thoughts, and experiences of their engagement with Australian wine and vineyards. The researcher will interview with Chinese consumers, tourism professionals, and Australian winemakers to collect primary data. Note-taking, picture-taking, and audio-recording will be adopted with informants’ permissions. Personal or group interview will be last for 30 and 60 minutes respectively. Personal experiences of the researcher have been analyzed to respond to some research questions, and have accumulated part of primary data (e.g., photos and stories) to discover how 'mianzi' and 'guanxi' influence Australian wine and tourism industries to meet the demands’ of Chinese consumers. At current stage, the secondary data from analysis of official and industrial documents has proved the economic importance of Chinese market is influencing Australian wine and tourism industries. And my own experiences related to this study, in some sense, has proved the Chinese cultural concepts (mianzi and guanxi) are influencing the Australian wine production and package along with vineyard tours. Future fieldwork will discover more in this research realm, contribute more to knowledge.

Keywords: habitus, taste, capital, mianzi, guanxi

Procedia PDF Downloads 106
203 Tectono-Stratigraphic Architecture, Depositional Systems and Salt Tectonics to Strike-Slip Faulting in Kribi-Campo-Cameroon Atlantic Margin with an Unsupervised Machine Learning Approach (West African Margin)

Authors: Joseph Bertrand Iboum Kissaaka, Charles Fonyuy Ngum Tchioben, Paul Gustave Fowe Kwetche, Jeannette Ngo Elogan Ntem, Joseph Binyet Njebakal, Ribert Yvan Makosso-Tchapi, François Mvondo Owono, Marie Joseph Ntamak-Nida

Abstract:

Located in the Gulf of Guinea, the Kribi-Campo sub-basin belongs to the Aptian salt basins along the West African Margin. In this paper, we investigated the tectono-stratigraphic architecture of the basin, focusing on the role of salt tectonics and strike-slip faults along the Kribi Fracture Zone with implications for reservoir prediction. Using 2D seismic data and well data interpreted through sequence stratigraphy with integrated seismic attributes analysis with Python Programming and unsupervised Machine Learning, at least six second-order sequences, indicating three main stages of tectono-stratigraphic evolution, were determined: pre-salt syn-rift, post-salt rift climax and post-rift stages. The pre-salt syn-rift stage with KTS1 tectonosequence (Barremian-Aptian) reveals a transform rifting along NE-SW transfer faults associated with N-S to NNE-SSW syn-rift longitudinal faults bounding a NW-SE half-graben filled with alluvial to lacustrine-fan delta deposits. The post-salt rift-climax stage (Lower to Upper Cretaceous) includes two second-order tectonosequences (KTS2 and KTS3) associated with the salt tectonics and Campo High uplift. During the rift-climax stage, the growth of salt diapirs developed syncline withdrawal basins filled by early forced regression, mid transgressive and late normal regressive systems tracts. The early rift climax underlines some fine-grained hangingwall fans or delta deposits and coarse-grained fans from the footwall of fault scarps. The post-rift stage (Paleogene to Neogene) contains at least three main tectonosequences KTS4, KTS5 and KTS6-7. The first one developed some turbiditic lobe complexes considered as mass transport complexes and feeder channel-lobe complexes cutting the unstable shelf edge of the Campo High. The last two developed submarine Channel Complexes associated with lobes towards the southern part and braided delta to tidal channels towards the northern part of the Kribi-Campo sub-basin. The reservoir distribution in the Kribi-Campo sub-basin reveals some channels, fan lobes reservoirs and stacked channels reaching up to the polygonal fault systems.

Keywords: tectono-stratigraphic architecture, Kribi-Campo sub-basin, machine learning, pre-salt sequences, post-salt sequences

Procedia PDF Downloads 23
202 Balancing Biodiversity and Agriculture: A Broad-Scale Analysis of the Land Sparing/Land Sharing Trade-Off for South African Birds

Authors: Chevonne Reynolds, Res Altwegg, Andrew Balmford, Claire N. Spottiswoode

Abstract:

Modern agriculture has revolutionised the planet’s capacity to support humans, yet has simultaneously had a greater negative impact on biodiversity than any other human activity. Balancing the demand for food with the conservation of biodiversity is one of the most pressing issues of our time. Biodiversity-friendly farming (‘land sharing’), or alternatively, separation of conservation and production activities (‘land sparing’), are proposed as two strategies for mediating the trade-off between agriculture and biodiversity. However, there is much debate regarding the efficacy of each strategy, as this trade-off has typically been addressed by short term studies at fine spatial scales. These studies ignore processes that are relevant to biodiversity at larger scales, such as meta-population dynamics and landscape connectivity. Therefore, to better understand species response to agricultural land-use and provide evidence to underpin the planning of better production landscapes, we need to determine the merits of each strategy at larger scales. In South Africa, a remarkable citizen science project - the South African Bird Atlas Project 2 (SABAP2) – collates an extensive dataset describing the occurrence of birds at a 5-min by 5-min grid cell resolution. We use these data, along with fine-resolution data on agricultural land-use, to determine which strategy optimises the agriculture-biodiversity trade-off in a southern African context, and at a spatial scale never considered before. To empirically test this trade-off, we model bird species population density, derived for each 5-min grid cell by Royle-Nicols single-species occupancy modelling, against both the amount and configuration of different types of agricultural production in the same 5-min grid cell. In using both production amount and configuration, we can show not only how species population densities react to changes in yield, but also describe the production landscape patterns most conducive to conservation. Furthermore, the extent of both the SABAP2 and land-cover datasets allows us to test this trade-off across multiple regions to determine if bird populations respond in a consistent way and whether results can be extrapolated to other landscapes. We tested the land sparing/sharing trade-off for 281 bird species across three different biomes in South Africa. Overall, a higher proportion of species are classified as losers, and would benefit from land sparing. However, this proportion of loser-sparers is not consistent and varies across biomes and the different types of agricultural production. This is most likely because of differences in the intensity of agricultural land-use and the interactions between the differing types of natural vegetation and agriculture. Interestingly, we observe a higher number of species that benefit from agriculture than anticipated, suggesting that agriculture is a legitimate resource for certain bird species. Our results support those seen at smaller scales and across vastly different agricultural systems, that land sparing benefits the most species. However, our analysis suggests that land sparing needs to be implemented at spatial scales much larger than previously considered. Species persistence in agricultural landscapes will require the conservation of large tracts of land, and is an important consideration in developing countries, which are undergoing rapid agricultural development.

Keywords: agriculture, birds, land sharing, land sparing

Procedia PDF Downloads 185
201 Interactions between Sodium Aerosols and Fission Products: A Theoretical Chemistry and Experimental Approach

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

Safety requirements for Generation IV nuclear reactor designs, especially the new generation sodium-cooled fast reactors (SFR) require a risk-informed approach to model severe accidents (SA) and their consequences in case of outside release. In SFRs, aerosols are produced during a core disruptive accident when primary system sodium is ejected into the containment and burn in contact with the air; producing sodium aerosols. One of the key aspects of safety evaluation is the in-containment sodium aerosol behavior and their interaction with fission products. The study of the effects of sodium fires is essential for safety evaluation as the fire can both thermally damage the containment vessel and cause an overpressurization risk. Besides, during the fire, airborne fission product first dissolved in the primary sodium can be aerosolized or, as it can be the case for fission products, released under the gaseous form. The objective of this work is to study the interactions between sodium aerosols and fission products (Iodine, toxic and volatile, being the primary concern). Sodium fires resulting from an SA would produce aerosols consisting of sodium peroxides, hydroxides, carbonates, and bicarbonates. In addition to being toxic (in oxide form), this aerosol will then become radioactive. If such aerosols are leaked into the environment, they can pose a danger to the ecosystem. Depending on the chemical affinity of these chemical forms with fission products, the radiological consequences of an SA leading to containment leak tightness loss will also be affected. This work is split into two phases. Firstly, a method to theoretically understand the kinetics and thermodynamics of the heterogeneous reaction between sodium aerosols and fission products: I2 and HI are proposed. Ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package are carried out to develop an understanding of the surfaces of sodium carbonate (Na2CO3) aerosols and hence provide insight on its affinity towards iodine species. A comprehensive study of I2 and HI adsorption, as well as bicarbonate formation on the calculated lowest energy surface of Na2CO3, was performed which provided adsorption energies and description of the optimized configuration of adsorbate on the stable surface. Secondly, the heterogeneous reaction between (I2)g and Na2CO3 aerosols were investigated experimentally. To study this, (I2)g was generated by heating a permeation tube containing solid I2, and, passing it through a reaction chamber containing Na2CO3 aerosol deposit. The concentration of iodine was then measured at the exit of the reaction chamber. Preliminary observations indicate that there is an effective uptake of (I2)g on Na2CO3 surface, as suggested by our theoretical chemistry calculations. This work is the first step in addressing the gaps in knowledge of in-containment and atmospheric source term which are essential aspects of safety evaluation of SFR SA. In particular, this study is aimed to determine and characterize the radiological and chemical source term. These results will then provide useful insights for the developments of new models to be implemented in integrated computer simulation tool to analyze and evaluate SFR safety designs.

Keywords: iodine adsorption, sodium aerosols, sodium cooled reactor, DFT calculations, sodium carbonate

Procedia PDF Downloads 192
200 Lean Comic GAN (LC-GAN): a Light-Weight GAN Architecture Leveraging Factorized Convolution and Teacher Forcing Distillation Style Loss Aimed to Capture Two Dimensional Animated Filtered Still Shots Using Mobile Phone Camera and Edge Devices

Authors: Kaustav Mukherjee

Abstract:

In this paper we propose a Neural Style Transfer solution whereby we have created a Lightweight Separable Convolution Kernel Based GAN Architecture (SC-GAN) which will very useful for designing filter for Mobile Phone Cameras and also Edge Devices which will convert any image to its 2D ANIMATED COMIC STYLE Movies like HEMAN, SUPERMAN, JUNGLE-BOOK. This will help the 2D animation artist by relieving to create new characters from real life person's images without having to go for endless hours of manual labour drawing each and every pose of a cartoon. It can even be used to create scenes from real life images.This will reduce a huge amount of turn around time to make 2D animated movies and decrease cost in terms of manpower and time. In addition to that being extreme light-weight it can be used as camera filters capable of taking Comic Style Shots using mobile phone camera or edge device cameras like Raspberry Pi 4,NVIDIA Jetson NANO etc. Existing Methods like CartoonGAN with the model size close to 170 MB is too heavy weight for mobile phones and edge devices due to their scarcity in resources. Compared to the current state of the art our proposed method which has a total model size of 31 MB which clearly makes it ideal and ultra-efficient for designing of camera filters on low resource devices like mobile phones, tablets and edge devices running OS or RTOS. .Owing to use of high resolution input and usage of bigger convolution kernel size it produces richer resolution Comic-Style Pictures implementation with 6 times lesser number of parameters and with just 25 extra epoch trained on a dataset of less than 1000 which breaks the myth that all GAN need mammoth amount of data. Our network reduces the density of the Gan architecture by using Depthwise Separable Convolution which does the convolution operation on each of the RGB channels separately then we use a Point-Wise Convolution to bring back the network into required channel number using 1 by 1 kernel.This reduces the number of parameters substantially and makes it extreme light-weight and suitable for mobile phones and edge devices. The architecture mentioned in the present paper make use of Parameterised Batch Normalization Goodfellow etc al. (Deep Learning OPTIMIZATION FOR TRAINING DEEP MODELS page 320) which makes the network to use the advantage of Batch Norm for easier training while maintaining the non-linear feature capture by inducing the learnable parameters

Keywords: comic stylisation from camera image using GAN, creating 2D animated movie style custom stickers from images, depth-wise separable convolutional neural network for light-weight GAN architecture for EDGE devices, GAN architecture for 2D animated cartoonizing neural style, neural style transfer for edge, model distilation, perceptual loss

Procedia PDF Downloads 102
199 Configuration of Water-Based Features in Islamic Heritage Complexes and Vernacular Architecture: An Analysis into Interactions of Morphology, Form, and Climatic Performance

Authors: Mustaffa Kamal Bashar Mohd Fauzi, Puteri Shireen Jahn Kassim, Nurul Syala Abdul Latip

Abstract:

It is increasingly realized that sustainability includes both a response to the climatic and cultural context of a place. To assess the cultural context, a morphological analysis of urban patterns from heritage legacies is necessary. While the climatic form is derived from an analysis of meteorological data, cultural patterns and forms must be abstracted from a typological and morphological study. This current study aims to analyzes morphological and formal elements of water-based architectural and urban design of past Islamic vernacular complexes in the hot arid regions and how a vast utilization of water was shaped and sited to act as cooling devices for an entire complex. Apart from its pleasant coolness, water can be used in an aesthetically way such as emphasizing visual axes, vividly enhancing the visual of the surrounding environment and symbolically portraying the act of purity in the design. By comparing 2 case studies based on the analysis of interactions of water features into the form, planning and morphology of 2 Islamic heritage complexes, Fatehpur Sikri (India) and Lahore Fort (Pakistan) with a focus on Shish Mahal of Lahore Fort in terms of their mass, architecture and urban planning, it is agreeable that water plays an integral role in their climatic amelioration via different methods of water conveyance system. Both sites are known for their substantial historical values and prominent for their sustainable vernacular buildings for example; the courtyard of Shish Mahal in Lahore fort are designed to provide continuous coolness by constructing various miniatures water channels that run underneath the paved courtyard. One of the most remarkable features of this system that all water is made dregs-free before it was inducted into these underneath channels. In Fatehpur Sikri, the method of conveyance seems differed from Lahore Fort as the need to supply water to the ridge where Fatehpur Sikri situated is become the major challenges. Thus, the achievement of supplying water to the palatial complexes is solved by placing inhabitable water buildings within the two supply system for raising water. The process of raising the water can be either mechanical or laborious inside the enclosed well and water rising houses. The studies analyzes and abstract the water supply forms, patterns and flows in 3-dimensional shapes through the actions of evaporative cooling and wind-induced ventilation under arid climates. Through the abstraction analytical and descriptive relational morphology of the spatial configurations, the studies can suggest the idealized spatial system that can be used in urban design and complexes which later became a methodological and abstraction tool of sustainability to suit the modern contemporary world.

Keywords: heritage site, Islamic vernacular architecture, water features, morphology, urban design

Procedia PDF Downloads 349
198 Genome-Wide Analysis Identifies Locus Associated with Parathyroid Hormone Levels

Authors: Antonela Matana, Dubravka Brdar, Vesela Torlak, Marijana Popovic, Ivana Gunjaca, Ozren Polasek, Vesna Boraska Perica, Maja Barbalic, Ante Punda, Caroline Hayward, Tatijana Zemunik

Abstract:

Parathyroid hormone (PTH) plays a critical role in the regulation of bone mineral metabolism and calcium homeostasis. Higher PTH levels are associated with heart failure, hypertension, coronary artery disease, cardiovascular mortality and poorer bone health. A twin study estimated that 60% of the variation in PTH concentrations is genetically determined. Only one GWAS of PTH concentration has been reported to date. Identified loci explained 4.5% of the variance in circulating PTH, suggesting that additional genetic variants remain undiscovered. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels in a general population. We have performed a GWAS meta-analysis on 2596 individuals originating from three Croatian cohorts: City of Split and the Islands of Korčula and Vis, within a large-scale project of “10,001 Dalmatians”. A total of 7 411 206 variants, imputed using the 1000 Genomes reference panel, with minor allele frequency ≥ 1% and Rsq ≥ 0.5 were analyzed for the association. GWAS within each data set was performed under an additive model, controlling for age, gender and relatedness. Meta-analysis was conducted using the inverse-variance fixed-effects method. Furthermore, to identify sex-specific effects, we have conducted GWAS meta-analyses analyzing males and females separately. In addition, we have performed biological pathway analysis. Four SNPs, representing one locus, reached genome-wide significance. The most significant SNP was rs11099476 on chromosome 4 (P=1.15x10-8), which explained 1.14 % of the variance in PTH. The SNP is located near the protein-coding gene RASGEF1B. Additionally, we detected suggestive association with SNPs, rs77178854 located on chromosome 2 in the DPP10 gene (P=2.46x10-7) and rs481121 located on chromosome 1 (P=3.58x10-7) near the GRIK1 gene. One of the top hits detected in the main meta-analysis, intron variant rs77178854 located within DPP10 gene, reached genome-wide significance in females (P=2.21x10-9). No single locus was identified in the meta-analysis in males. Fifteen biological pathways were functionally enriched at a P<0.01, including muscle contraction, ion homeostasis and cardiac conduction as the most significant pathways. RASGEF1B is the guanine nucleotide exchange factor, known to be associated with height, bone density, and hip. DPP10 encodes a membrane protein that is a member of the serine proteases family, which binds specific voltage-gated potassium channels and alters their expression and biophysical properties. In conclusion, we identified 2 novel loci associated with PTH levels in a general population, providing us with further insights into the genetics of this complex trait.

Keywords: general population, genome-wide association analysis, parathyroid hormone, single nucleotide polymorphisms.

Procedia PDF Downloads 203
197 Nanocomplexes on the Base of Triterpene Saponins Isolated from Glycyrrhiza glabra and Saponaria officinalis Plants as an Efficient Adjuvants for Influenza Vaccine Use

Authors: Vladimir Berezin, Andrey Bogoyavlenskiy, Pavel Alexyuk, Madina Alexyuk, Aizhan Turmagambetova, Irina Zaitseva, Nadezhda Sokolova, Elmira Omirtaeva

Abstract:

Introduction: Triterpene saponins of plant origin are one of the most promising candidates for elaboration of novel adjuvants. Due to the combination of immunostimulating activity and the capacity interact with amphipathic molecules with formation of highly immunogenic nanocomplexes, triterpene saponins could serve as a good adjuvant/delivery system for vaccine use. In the research presented adjuvants on the base of nanocomplexes contained triterpene saponins isolated from Glycyrrhiza glabra and Saponaria officinalis plants indigenous to Kazakhstan were elaborated for influenza vaccine use. Methods: Purified triterpene saponins 'Glabilox' and 'SO1' with low toxicity and high immunostimulatory activity were isolated from plants Glycyrrhiza glabra L. and Saponaria officinalis L. by high-performance liquid chromatography (HPLC) and identified using electrospray ionization mass spectrometry (ESI-MS). Influenza virus A/St-Petersburg/5/09 (H1N1) propagated in 9-days old chicken embryos was concentrated and purified by centrifugation in sucrose gradient. Nanocomplexes contained lipids, and triterpene saponins Glabilox or SO1 were prepared by dialysis technique. Immunostimulating activity of experimental vaccine preparations was studied in vaccination/challenge experiments in mice. Results: Humoral and cellular immune responses and protection against influenza virus infection were examined after single subcutaneous and intranasal immunization. Mice were immunized subunit influenza vaccine (HA+NA) or whole virus inactivated influenza vaccine in doses 3.0/5.0/10.0 µg antigen/animal mixed with adjuvant in dose 15.0 µg/animal. Sera were taken 14-21 days following single immunization and mice challenged by A/St-Petersburg/5/09 influenza virus in dose 100 EID₅₀. Study of experimental influenza vaccine preparations in animal immunization experiments has shown that subcutaneous and intranasal immunization with subunit influenza vaccine mixed with nanocomplexes contained Glabilox or SO1 saponins stimulated high levels of humoral immune response (IgM, IgA, IgG1, IgG2a, and IgG2b antibody) and cellular immune response (IL-2, IL-4, IL-10, and IFN-γ cytokines) and resulted 80-90% protection against lethal influenza infection. Also, single intranasal and single subcutaneous immunization with whole virus inactivated influenza vaccine mixed with nanoparticulated adjuvants stimulated high levels of humoral and cellular immune responses and provided 100% protection against lethal influenza infection. Conclusion: The results of study have shown that nanocomplexes contained purified triterpene saponins Glabilox and SO1 isolated from plants indigenous to Kazakhstan can stimulate a broad spectrum of humoral and cellular immune responses and induce protection against lethal influenza infection. Both elaborated adjuvants are promising for incorporation to influenza vaccine intended for subcutaneous and intranasal routes of immunization.

Keywords: influenza vaccine, adjuvants, triterpene saponins, immunostimulating activity

Procedia PDF Downloads 106
196 Preparation of Biodegradable Methacrylic Nanoparticles by Semicontinuous Heterophase Polymerization for Drugs Loading: The Case of Acetylsalicylic Acid

Authors: J. Roberto Lopez, Hened Saade, Graciela Morales, Javier Enriquez, Raul G. Lopez

Abstract:

Implementation of systems based on nanostructures for drug delivery applications have taken relevance in recent studies focused on biomedical applications. Although there are several nanostructures as drugs carriers, the use of polymeric nanoparticles (PNP) has been widely studied for this purpose, however, the main issue for these nanostructures is the size control below 50 nm with a narrow distribution size, due to they must go through different physiological barriers and avoid to be filtered by kidneys (< 10 nm) or the spleen (> 100 nm). Thus, considering these and other factors, it can be mentioned that drug-loaded nanostructures with sizes varying between 10 and 50 nm are preferred in the development and study of PNP/drugs systems. In this sense, the Semicontinuous Heterophase Polymerization (SHP) offers the possibility to obtain PNP in the desired size range. Considering the above explained, methacrylic copolymer nanoparticles were obtained under SHP. The reactions were carried out in a jacketed glass reactor with the required quantities of water, ammonium persulfate as initiator, sodium dodecyl sulfate/sodium dioctyl sulfosuccinate as surfactants, methyl methacrylate and methacrylic acid as monomers with molar ratio of 2/1, respectively. The monomer solution was dosed dropwise during reaction at 70 °C with a mechanical stirring of 650 rpm. Nanoparticles of poly(methyl methacrylate-co-methacrylic acid) were loaded with acetylsalicylic acid (ASA, aspirin) by a chemical adsorption technique. The purified latex was put in contact with a solution of ASA in dichloromethane (DCM) at 0.1, 0.2, 0.4 or 0.6 wt-%, at 35°C during 12 hours. According to the boiling point of DCM, as well as DCM and water densities, the loading process is completed when the whole DCM is evaporated. The hydrodynamic diameter was measured after polymerization by quasi-elastic light scattering and transmission electron microscopy, before and after loading procedures with ASA. The quantitative and qualitative analyses of PNP loaded with ASA were measured by infrared spectroscopy, differential scattering calorimetry and thermogravimetric analysis. Also, the molar mass distributions of polymers were determined in a gel permeation chromatograph apparatus. The load capacity and efficiency were determined by gravimetric analysis. The hydrodynamic diameter results for methacrylic PNP without ASA showed a narrow distribution with an average particle size around 10 nm and a composition methyl methacrylate/methacrylic acid molar ratio equal to 2/1, same composition of Eudragit S100, which is a commercial compound widely used as excipient. Moreover, the latex was stabilized in a relative high solids content (around 11 %), a monomer conversion almost 95 % and a number molecular weight around 400 Kg/mol. The average particle size in the PNP/aspirin systems fluctuated between 18 and 24 nm depending on the initial percentage of aspirin in the loading process, being the drug content as high as 24 % with an efficiency loading of 36 %. These average sizes results have not been reported in the literature, thus, the methacrylic nanoparticles here reported are capable to be loaded with a considerable amount of ASA and be used as a drug carrier.

Keywords: aspirin, biocompatibility, biodegradable, Eudragit S100, methacrylic nanoparticles

Procedia PDF Downloads 115
195 Identification of ω-3 Fatty Acids Using GC-MS Analysis in Extruded Spelt Product

Authors: Jelena Filipovic, Marija Bodroza-Solarov, Milenko Kosutic, Nebojsa Novkovic, Vladimir Filipovic, Vesna Vucurovic

Abstract:

Spelt wheat is suitable raw material for extruded products such as pasta, special types of bread and other products of altered nutritional characteristics compared to conventional wheat products. During the process of extrusion, spelt is exposed to high temperature and high pressure, during which raw material is also mechanically treated by shear forces. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and in marginal areas of cultivation. So it can be used for organic and health safe food. Pasta is the most popular foodstuff; its consumption has been observed to rise. Pasta quality depends mainly on the properties of flour raw materials, especially protein content and its quality but starch properties are of a lesser importance. Pasta is characterized by significant amounts of complex carbohydrates, low sodium, total fat fiber, minerals, and essential fatty acids and its nutritional value can be improved with additional functional component. Over the past few decades, wheat pasta has been successfully formulated using different ingredients in pasta to cater health-conscious consumers who prefer having a product rich in protein, healthy lipids and other health benefits. Flaxseed flour is used in the production of bakery and pasta products that have properties of functional foods. However, it should be taken into account that food products retain the technological and sensory quality despite the added flax seed. Flaxseed contains important substances in its composition such as vitamins and minerals elements, and it is also an excellent source of fiber and one of the best sources of ω-3 fatty acids and lignin. In this paper, the quality and identification of spelt extruded product with the addition of flax seed, which is positively contributing to the nutritive and technology changes of the product, is investigated. ω-3 fatty acids are polyunsaturated essential fatty acids, and they must be taken with food to satisfy the recommended daily intake. Flaxseed flour is added in the quantity of 10/100 g of sample and 20/100 g of sample on farina. It is shown that the presence of ω-3 fatty acids in pasta can be clearly distinguished from other fatty acids by gas chromatography with mass spectrometry. Addition of flax seed flour influence chemical content of pasta. The addition of flax seed flour in spelt pasta in the quantities of 20g/100 g significantly increases the share of ω-3 fatty acids, which results in improved ratio of ω-6/ω-3 1:2.4 and completely satisfies minimum daily needs of ω-3 essential fatty acids (3.8 g/100 g) recommended by FDA. Flex flour influenced the pasta quality by increasing of hardness (2377.8 ± 13.3; 2874.5 ± 7.4; 3076.3 ± 5.9) and work of shear (102.6 ± 11.4; 150.8 ± 11.3; 165.0 ± 18.9) and increasing of adhesiveness (11.8 ± 20.6; 9.,98 ± 0.12; 7.1 ± 12.5) of the final product. Presented data point at good indicators of technological quality of spelt pasta with flax seed and that GC-MS analysis can be used in the quality control for flax seed identification. Acknowledgment: The research was financed by the Ministry of Education and Science of the Republic of Serbia (Project No. III 46005).

Keywords: GC-MS analysis, ω-3 fatty acids, flex seed, spelt wheat, daily needs

Procedia PDF Downloads 133
194 Plasma Collagen XVIII in Response to Intensive Aerobic Running and Aqueous Extraction of Black Crataegus Elbursensis in Male Rats

Authors: A. Abdi, A. Abbasi Daloee, A. Barari

Abstract:

Aim: The adaptations that occur in human body after doing exercises training are a factor to help healthy people stay away from certain diseases. One of the main adaptations is a change in blood circulation, especially in vessels. The increase of capillary density is dependent on the balance between angiogenic and angiostatic factors. Most studies show that the changes made to angiogenic developmental factors resulted from physical exercises indicate the low level of stimulators compared with inhibitors. It is believed that the plasma level of VEGF-A, the important angiogenic factor, is reduced after physical exercise. Findings indicate that the extract of crataegus plant reduces the platelet-derived growth factor receptor (PDGFR) autophosphorylation in human's fibroblast. More importantly, crataegus (1 to 100 mg in liter) clearly leads to the inhibition of PDGFR autophosphorylation in vascular smooth muscle cells (VSMCs). Angiogenesis is a process that can be classified into physiological and pathophysiological forms. collagen XVIII is a part of extracellular protein and heparan sulfate proteoglycans in vascular epithelial and endothelial basement membrane cause the release of endostatin from noncollagenous collagen XVIII. Endostatin inhibits the growth of endothelial cells, inhibits angiogenesis, weakens different types of cancer, and the growth of tumors. The purpose of the current study was to investigate the effect of intensive aerobic running with or without aqueous extraction of black Crataegus elbursensis on Collagen XVIII in male rats. Design: Thirty-two Wistar male rats (4-6 weeks old, 125-135 gr weight) were acquired from the Pasteur's Institute (Amol, Mazandaran), and randomly assigned into control (n = 16) and training (n = 16) groups. Rats were further divided into saline-control (SC) (n=8), saline-training (ST) (n=8), crataegus pentaegyna extraction -control (CPEC) (n=8), and crataegus pentaegyna extraction - training (CPET) (n=8). The control (SC and CPEC) groups remained sedentary; whereas the training groups underwent a high running exercise program. plasma were excised and immediately frozen in liquid nitrogen. Statistical analysis was performed using a one way analysis of variance and Tukey test. Significance was accepted at P = 0.05. Results: The results show that aerobic exercise group had the highest concentration collagen XVIII compared to other groups and then respectively black crataegus, training-crataegus and control groups. Conclusion: In general, researchers in this study concluded that the increase of collagen XVIII (albeit insignificant) as a result of physical activity and consumption of black crataegus extract could possibly serve as a regional inhibitor of angiogenesis and another evidence for the anti-cancer effects of physical activities. Since the research has not managed in this study to measure the amount of plasma endostatin, it is suggested that both indices are measured with important angiogenic factors so that we can have a more accurate interpretation of changes to angiogenic and angiostatic factors resulted from physical exercises.

Keywords: aerobic running, Crataegus elbursensis, Collagen XVIII

Procedia PDF Downloads 299
193 Place-Making Theory behind Claremont Court

Authors: Sandra Costa-Santos, Nadia Bertolino, Stephen Hicks, Vanessa May, Camilla Lewis

Abstract:

This paper aims to elaborate the architectural theory on place-making that supported Claremont Court housing scheme (Edinburgh, United Kingdom). Claremont Court (1959-62) is a large post-war mixed development housing scheme designed by Basil Spence, which included ‘place-making’ as one of its founding principles. Although some stylistic readings of the housing scheme have been published, the theory on place-making that allegedly ruled the design has yet to be clarified. The architecture allows us to mark or make a place within space in order to dwell. Under the framework of contemporary philosophical theories of place, this paper aims to explore the relationship between place and dwelling through a cross-disciplinary reading of Claremont Court, with a view to develop an architectural theory on place-making. Since dwelling represents the way we are immersed in our world in an existential manner, this theme is not just relevant for architecture but also for philosophy and sociology. The research in this work is interpretive-historic in nature. It examines documentary evidence of the original architectural design, together with relevant literature in sociology, history, and architecture, through the lens of theories of place. First, the paper explores how the dwelling types originally included in Claremont Court supported ideas of dwelling or meanings of home. Then, it traces shared space and social ties in order to study the symbolic boundaries that allow the creation of a collective identity or sense of belonging. Finally, the relation between the housing scheme and the supporting theory is identified. The findings of this research reveal Scottish architect Basil Spence’s exploration of the meaning of home, as he changed his approach to the mass housing while acting as President of the Royal Incorporation of British Architects (1958-60). When the British Government was engaged in various ambitious building programmes, he sought to drive architecture to a wider socio-political debate as president of the RIBA, hence moving towards a more ambitious and innovative socio-architectural approach. Rather than trying to address the ‘genius loci’ with an architectural proposition, as has been stated, the research shows that the place-making theory behind the housing scheme was supported by notions of community-based on shared space and dispositions. The design of the housing scheme was steered by a desire to foster social relations and collective identities, rather than by the idea of keeping the spirit of the place. This research is part of a cross-disciplinary project funded by the Arts and Humanities Research Council. The findings present Claremont Court as a signifier of Basil Spence’s attempt to address the post-war political debate on housing in United Kingdom. They highlight the architect’s theoretical agenda and challenge current purely stylistic readings of Claremont Court as they fail to acknowledge its social relevance.

Keywords: architectural theory, dwelling, place-making, post-war housing

Procedia PDF Downloads 239
192 Wood Dust and Nanoparticle Exposure among Workers during a New Building Construction

Authors: Atin Adhikari, Aniruddha Mitra, Abbas Rashidi, Imaobong Ekpo, Jefferson Doehling, Alexis Pawlak, Shane Lewis, Jacob Schwartz

Abstract:

Building constructions in the US involve numerous wooden structures. Woods are routinely used in walls, framing floors, framing stairs, and making of landings in building constructions. Cross-laminated timbers are currently being used as construction materials for tall buildings. Numerous workers are involved in these timber based constructions, and wood dust is one of the most common occupational exposures for them. Wood dust is a complex substance composed of cellulose, polyoses and other substances. According to US OSHA, exposure to wood dust is associated with a variety of adverse health effects among workers, including dermatitis, allergic respiratory effects, mucosal and nonallergic respiratory effects, and cancers. The amount and size of particles released as wood dust differ according to the operations performed on woods. For example, shattering of wood during sanding operations produces finer particles than does chipping in sawing and milling industries. To our knowledge, how shattering, cutting and sanding of woods and wood slabs during new building construction release fine particles and nanoparticles are largely unknown. General belief is that the dust generated during timber cutting and sanding tasks are mostly large particles. Consequently, little attention has been given to the generated submicron ultrafine and nanoparticles and their exposure levels. These data are, however, critically important because recent laboratory studies have demonstrated cytotoxicity of nanoparticles on lung epithelial cells. The above-described knowledge gaps were addressed in this study by a novel newly developed nanoparticle monitor and conventional particle counters. This study was conducted in a large new building construction site in southern Georgia primarily during the framing of wooden side walls, inner partition walls, and landings. Exposure levels of nanoparticles (n = 10) were measured by a newly developed nanoparticle counter (TSI NanoScan SMPS Model 3910) at four different distances (5, 10, 15, and 30 m) from the work location. Other airborne particles (number of particles/m3) including PM2.5 and PM10 were monitored using a 6-channel (0.3, 0.5, 1.0, 2.5, 5.0 and 10 µm) particle counter at 15 m, 30 m, and 75 m distances at both upwind and downwind directions. Mass concentration of PM2.5 and PM10 (µg/m³) were measured by using a DustTrak Aerosol Monitor. Temperature and relative humidity levels were recorded. Wind velocity was measured by a hot wire anemometer. Concentration ranges of nanoparticles of 13 particle sizes were: 11.5 nm: 221 – 816/cm³; 15.4 nm: 696 – 1735/cm³; 20.5 nm: 879 – 1957/cm³; 27.4 nm: 1164 – 2903/cm³; 36.5 nm: 1138 – 2640/cm³; 48.7 nm: 938 – 1650/cm³; 64.9 nm: 759 – 1284/cm³; 86.6 nm: 705 – 1019/cm³; 115.5 nm: 494 – 1031/cm³; 154 nm: 417 – 806/cm³; 205.4 nm: 240 – 471/cm³; 273.8 nm: 45 – 92/cm³; and 365.2 nm: Keywords: wood dust, industrial hygiene, aerosol, occupational exposure

Procedia PDF Downloads 163
191 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging

Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie

Abstract:

To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.

Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction

Procedia PDF Downloads 156
190 Fibroblast Compatibility of Core-Shell Coaxially Electrospun Hybrid Poly(ε-Caprolactone)/Chitosan Scaffolds

Authors: Hilal Turkoglu Sasmazel, Ozan Ozkan, Seda Surucu

Abstract:

Tissue engineering is the field of treating defects caused by injuries, trauma or acute/chronic diseases by using artificial scaffolds that mimic the extracellular matrix (ECM), the natural biological support for the tissues and cells within the body. The main aspects of a successful artificial scaffold are (i) large surface area in order to provide multiple anchorage points for cells to attach, (ii) suitable porosity in order to achieve 3 dimensional growth of the cells within the scaffold as well as proper transport of nutrition, biosignals and waste and (iii) physical, chemical and biological compatibility of the material in order to obtain viability throughout the healing process. By hybrid scaffolds where two or more different materials were combined with advanced fabrication techniques into complex structures, it is possible to combine the advantages of individual materials into one single structure while eliminating the disadvantages of each. Adding this to the complex structure provided by advanced fabrication techniques enables obtaining the desired aspects of a successful artificial tissue scaffold. In this study, fibroblast compatibility of poly(ε-caprolactone) (PCL)/chitosan core-shell electrospun hybrid scaffolds with proper mechanical, chemical and physical properties successfully developed in our previous study was investigated. Standard 7-day cell culture was carried out with L929 fibroblast cell line. The viability of the cells cultured with the scaffolds was monitored with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay for every 48 h starting with 24 h after the initial seeding. In this assay, blank commercial tissue culture polystyrene (TCPS) Petri dishes, single electrospun PCL and single electrospun chitosan mats were used as control in order to compare and contrast the performance of the hybrid scaffolds. The adhesion, proliferation, spread and growth of the cells on/within the scaffolds were observed visually on the 3rd and the 7th days of the culture period with confocal laser scanning microscopy (CSLM) and scanning electron microscopy (SEM). The viability assay showed that the hybrid scaffolds caused no toxicity for fibroblast cells and provided a steady increase in cell viability, effectively doubling the cell density for every 48 h for the course of 7 days, as compared to TCPS, single electrospun PCL or chitosan mats. The cell viability on the hybrid scaffold was ~2 fold better compared to TCPS because of its 3D ECM-like structure compared to 2D flat surface of commercially cell compatible TCPS, and the performance was ~2 fold and ~10 fold better compared to single PCL and single chitosan mats, respectively, even though both fabricated similarly with electrospinning as non-woven fibrous structures, because single PCL and chitosan mats were either too hydrophobic or too hydrophilic to maintain cell attachment points. The viability results were verified with visual images obtained with CSLM and SEM, in which cells found to achieve characteristic spindle-like fibroblast shape and spread on the surface as well within the pores successfully at high densities.

Keywords: chitosan, core-shell, fibroblast, electrospinning, PCL

Procedia PDF Downloads 147
189 Study of Formation and Evolution of Disturbance Waves in Annular Flow Using Brightness-Based Laser-Induced Fluorescence (BBLIF) Technique

Authors: Andrey Cherdantsev, Mikhail Cherdantsev, Sergey Isaenkov, Dmitriy Markovich

Abstract:

In annular gas-liquid flow, liquid flows as a film along pipe walls sheared by high-velocity gas stream. Film surface is covered by large-scale disturbance waves which affect pressure drop and heat transfer in the system and are necessary for entrainment of liquid droplets from film surface into the core of gas stream. Disturbance waves are a highly complex and their properties are affected by numerous parameters. One of such aspects is flow development, i.e., change of flow properties with the distance from the inlet. In the present work, this question is studied using brightness-based laser-induced fluorescence (BBLIF) technique. This method enables one to perform simultaneous measurements of local film thickness in large number of points with high sampling frequency. In the present experiments first 50 cm of upward and downward annular flow in a vertical pipe of 11.7 mm i.d. is studied with temporal resolution of 10 kHz and spatial resolution of 0.5 mm. Thus, spatiotemporal evolution of film surface can be investigated, including scenarios of formation, acceleration and coalescence of disturbance waves. The behaviour of disturbance waves' velocity depending on phases flow rates and downstream distance was investigated. Besides measuring the waves properties, the goal of the work was to investigate the interrelation between disturbance waves properties and integral characteristics of the flow such as interfacial shear stress and flow rate of dispersed phase. In particular, it was shown that the initial acceleration of disturbance waves, defined by the value of shear stress, linearly decays with downstream distance. This lack of acceleration which may even lead to deceleration is related to liquid entrainment. Flow rate of disperse phase linearly grows with downstream distance. During entrainment events, liquid is extracted directly from disturbance waves, reducing their mass, area of interaction to the gas shear and, hence, velocity. Passing frequency of disturbance waves at each downstream position was measured automatically with a new algorithm of identification of characteristic lines of individual disturbance waves. Scenarios of coalescence of individual disturbance waves were identified. Transition from initial high-frequency Kelvin-Helmholtz waves appearing at the inlet to highly nonlinear disturbance waves with lower frequency was studied near the inlet using 3D realisation of BBLIF method in the same cylindrical channel and in a rectangular duct with cross-section of 5 mm by 50 mm. It was shown that the initial waves are generally two-dimensional but are promptly broken into localised three-dimensional wavelets. Coalescence of these wavelets leads to formation of quasi two-dimensional disturbance waves. Using cross-correlation analysis, loss and restoration of two-dimensionality of film surface with downstream distance were studied quantitatively. It was shown that all the processes occur closer to the inlet at higher gas velocities.

Keywords: annular flow, disturbance waves, entrainment, flow development

Procedia PDF Downloads 230
188 The Effect of Rheological Properties and Spun/Meltblown Fiber Characteristics on “Hotmelt Bleed through” Behavior in High Speed Textile Backsheet Lamination Process

Authors: Kinyas Aydin, Fatih Erguney, Tolga Ceper, Serap Ozay, Ipar N. Uzun, Sebnem Kemaloglu Dogan, Deniz Tunc

Abstract:

In order to meet high growth rates in baby diaper industry worldwide, the high-speed textile backsheet lamination lines have recently been introduced to the market for non-woven/film lamination applications. It is a process where two substrates are bonded to each other via hotmelt adhesive (HMA). Nonwoven (NW) lamination system basically consists of 4 components; polypropylene (PP) nonwoven, polyethylene (PE) film, HMA and applicator system. Each component has a substantial effect on the process efficiency of continuous line and final product properties. However, for a precise subject cover, we will be addressing only the main challenges and possible solutions in this paper. The NW is often produced by spunbond method (SSS or SMS configuration) and has a 10-12 gsm (g/m²) basis weight. The NW rolls can have a width and length up to 2.060 mm and 30.000 linear meters, respectively. The PE film is the 2ⁿᵈ component in TBS lamination, which is usually a 12-14 gsm blown or cast breathable film. HMA is a thermoplastic glue (mostly rubber based) that can be applied in a large range of viscosity ranges. The main HMA application technology in TBS lamination is the slot die application in which HMA is spread on the top of the NW along the whole width at high temperatures in the melt form. Then, the NW is passed over chiller rolls with a certain open time depending on the line speed. HMAs are applied at certain levels in order to provide a proper de-lamination strength in cross and machine directions to the entire structure. Current TBS lamination line speed and width can be as high as 800 m/min and 2100 mm, respectively. They also feature an automated web control tension system for winders and unwinders. In order to run a continuous trouble-free mass production campaign on the fast industrial TBS lines, rheological properties of HMAs and micro-properties of NWs can have adverse effects on the line efficiency and continuity. NW fiber orientation and fineness, as well as spun/melt blown composition fabric micro-level properties, are the significant factors to affect the degree of “HMA bleed through.” As a result of this problem, frequent line stops are observed to clean the glue that is being accumulated on the chiller rolls, which significantly reduces the line efficiency. HMA rheology is also important and to eliminate any bleed through the problem; one should have a good understanding of rheology driven potential complications. So, the applied viscosity/temperature should be optimized in accordance with the line speed, line width, NW characteristics and the required open time for a given HMA formulation. In this study, we will show practical aspects of potential preventative actions to minimize the HMA bleed through the problem, which may stem from both HMA rheological properties and NW spun melt/melt blown fiber characteristics.

Keywords: breathable, hotmelt, nonwoven, textile backsheet lamination, spun/melt blown

Procedia PDF Downloads 331
187 Exploring Fluoroquinolone-Resistance Dynamics Using a Distinct in Vitro Fermentation Chicken Caeca Model

Authors: Bello Gonzalez T. D. J., Setten Van M., Essen Van A., Brouwer M., Veldman K. T.

Abstract:

Resistance to fluoroquinolones (FQ) has evolved increasingly over the years, posing a significant challenge for the treatment of human infections, particularly gastrointestinal tract infections caused by zoonotic bacteria transmitted through the food chain and environment. In broiler chickens, a relatively high proportion of FQ resistance has been observed in Escherichia coli indicator, Salmonella and Campylobacter isolates. We hypothesize that flumequine (Flu), used as a secondary choice for the treatment of poultry infections, could potentially be associated with a high proportion of FQ resistance. To evaluate this hypothesis, we used an in vitro fermentation chicken caeca model. Two continuous single-stage fermenters were used to simulate in real time the physiological conditions of the chicken caeca microbial content (temperature, pH, caecal content mixing, and anoxic environment). A pool of chicken caecal content containing FQ-resistant E. coli obtained from chickens at slaughter age was used as inoculum along with a spiked FQ-susceptible Campylobacter jejuni strain isolated from broilers. Flu was added to one of the fermenters (Flu-fermenter) every 24 hours for two days to evaluate the selection and maintenance of FQ resistance over time, while the other served as a control (C-Fermenter). The experiment duration was 5 days. Samples were collected at three different time points: before, during and after Flu administration. Serial dilutions were plated on Butzler culture media with and without Flu (8mg/L) and enrofloxacin (4mg/L) and on MacConkey culture media with and without Flu (4mg/L) and enrofloxacin (1mg/L) to determine the proportion of resistant strains over time. Positive cultures were identified by mass spectrometry and matrix-assisted laser desorption/ionization (MALDI). A subset of the obtained isolates were used for Whole Genome Sequencing analysis. Over time, E. coli exhibited positive growth in both fermenters, while C. jejuni growth was detected up to day 3. The proportion of Flu-resistant E. coli strains recovered remained consistent over time after antibiotic selective pressure, while in the C-fermenter, a decrease was observed at day 5; a similar pattern was observed in the enrofloxacin-resistant E. coli strains. This suggests that Flu might play a role in the selection and persistence of enrofloxacin resistance, compared to C-fermenter, where enrofloxacin-resistant E. coli strains appear at a later time. Furthermore, positive growth was detected from both fermenters only on Butzler plates without antibiotics. A subset of C. jejuni strains from the Flu-fermenter revealed that those strains were susceptible to ciprofloxacin (MIC < 0.12 μg/mL). A selection of E. coli strains from both fermenters revealed the presence of plasmid-mediated quinolone resistance (PMQR) (qnr-B19) in only one strain from the C-fermenter belonging to sequence type (ST) 48, and in all from Flu-fermenter belonged to ST189. Our results showed that Flu selective impact on PMQR-positive E. coli strains, while no effect was observed in C. jejuni. Maintenance of Flu-resistance was correlated with antibiotic selective pressure. Further studies into antibiotic resistance gene transfer among commensal and zoonotic bacteria in the chicken caeca content may help to elucidate the resistance spread mechanisms.

Keywords: fluoroquinolone-resistance, escherichia coli, campylobacter jejuni, in vitro model

Procedia PDF Downloads 32
186 Characterizing the Spatially Distributed Differences in the Operational Performance of Solar Power Plants Considering Input Volatility: Evidence from China

Authors: Bai-Chen Xie, Xian-Peng Chen

Abstract:

China has become the world's largest energy producer and consumer, and its development of renewable energy is of great significance to global energy governance and the fight against climate change. The rapid growth of solar power in China could help achieve its ambitious carbon peak and carbon neutrality targets early. However, the non-technical costs of solar power in China are much higher than at international levels, meaning that inefficiencies are rooted in poor management and improper policy design and that efficiency distortions have become a serious challenge to the sustainable development of the renewable energy industry. Unlike fossil energy generation technologies, the output of solar power is closely related to the volatile solar resource, and the spatial unevenness of solar resource distribution leads to potential efficiency spatial distribution differences. It is necessary to develop an efficiency evaluation method that considers the volatility of solar resources and explores the mechanism of the influence of natural geography and social environment on the spatially varying characteristics of efficiency distribution to uncover the root causes of managing inefficiencies. The study sets solar resources as stochastic inputs, introduces a chance-constrained data envelopment analysis model combined with the directional distance function, and measures the solar resource utilization efficiency of 222 solar power plants in representative photovoltaic bases in northwestern China. By the meta-frontier analysis, we measured the characteristics of different power plant clusters and compared the differences among groups, discussed the mechanism of environmental factors influencing inefficiencies, and performed statistical tests through the system generalized method of moments. Rational localization of power plants is a systematic project that requires careful consideration of the full utilization of solar resources, low transmission costs, and power consumption guarantee. Suitable temperature, precipitation, and wind speed can improve the working performance of photovoltaic modules, reasonable terrain inclination can reduce land cost, and the proximity to cities strongly guarantees the consumption of electricity. The density of electricity demand and high-tech industries is more important than resource abundance because they trigger the clustering of power plants to result in a good demonstration and competitive effect. To ensure renewable energy consumption, increased support for rural grids and encouraging direct trading between generators and neighboring users will provide solutions. The study will provide proposals for improving the full life-cycle operational activities of solar power plants in China to reduce high non-technical costs and improve competitiveness against fossil energy sources.

Keywords: solar power plants, environmental factors, data envelopment analysis, efficiency evaluation

Procedia PDF Downloads 61