Search results for: weight of element
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6741

Search results for: weight of element

351 Acrylamide Concentration in Cakes with Different Caloric Sweeteners

Authors: L. García, N. Cobas, M. López

Abstract:

Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar.

Keywords: beet sugar, cane sugar, panela, yogurt cake

Procedia PDF Downloads 66
350 Investigation of Fluid-Structure-Seabed Interaction of Gravity Anchor Under Scour, and Anchor Transportation and Installation (T&I)

Authors: Vinay Kumar Vanjakula, Frank Adam

Abstract:

The generation of electricity through wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, the installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis of the oil and gas industry. For such a floating system, stabilization in harsh conditions is a challenging task. For that, a robust heavy-weight gravity anchor is needed. Transportation of such anchor requires a heavy vessel that increases the cost. To lower the cost, the gravity anchor is designed with ballast chambers that allow the anchor to float while towing and filled with water when lowering to the planned seabed location. The presence of such a large structure may influence the flow field around it. The changes in the flow field include, formation of vortices, turbulence generation, waves or currents flow breaking and pressure differentials around the seabed sediment. These changes influence the installation process. Also, after installation and under operating conditions, the flow around the anchor may allow the local seabed sediment to be carried off and results in Scour (erosion). These are a threat to the structure's stability. In recent decades, rapid developments of research work and the knowledge of scouring on fixed structures (bridges and monopiles) in rivers and oceans have been carried out, and very limited research work on scouring around a bluff-shaped gravity anchor. The objective of this study involves the application of different numerical models to simulate the anchor towing under waves and calm water conditions. Anchor lowering involves the investigation of anchor movements at certain water depths under wave/current. The motions of anchor drift, heave, and pitch is of special focus. The further study involves anchor scour, where the anchor is installed in the seabed; the flow of underwater current around the anchor induces vortices mainly at the front and corners that develop soil erosion. The study of scouring on a submerged gravity anchor is an interesting research question since the flow not only passes around the anchor but also over the structure that forms different flow vortices. The achieved results and the numerical model will be a basis for the development of other designs and concepts for marine structures. The Computational Fluid Dynamics (CFD) numerical model will build in OpenFOAM and other similar software.

Keywords: anchor lowering, anchor towing, gravity anchor, computational fluid dynamics, scour

Procedia PDF Downloads 169
349 Cycle-Oriented Building Components and Constructions Made from Paper Materials

Authors: Rebecca Bach, Evgenia Kanli, Nihat Kiziltoprak, Linda Hildebrand, Ulrich Knaack, Jens Schneider

Abstract:

The building industry has a high demand for resources and at the same time is responsible for a significant amount of waste created worldwide. Today's building components need to contribute to the protection of natural resources without creating waste. This is defined in the product development phase and impacts the product’s degree of being cycle-oriented. Paper-based materials show advantage due to their renewable origin and their ability to incorporate different functions. Besides the ecological aspects like renewable origin and recyclability the main advantages of paper materials are its light-weight but stiff structure, the optimized production processes and good insulation values. The main deficits from building technology’s perspective are the material's vulnerability to humidity and water as well as inflammability. On material level, those problems can be solved by coatings or through material modification. On construction level intelligent setup and layering of a building component can improve and also solve these issues. The target of the present work is to provide an overview of developed building components and construction typologies mainly made from paper materials. The research is structured in four parts: (1) functions and requirements, (2) preselection of paper-based materials, (3) development of building components and (4) evaluation. As part of the research methodology at first the needs of the building sector are analyzed with the aim to define the main areas of application and consequently the requirements. Various paper materials are tested in order to identify to what extent the requirements are satisfied and determine potential optimizations or modifications, also in combination with other construction materials. By making use of the material’s potentials and solving the deficits on material and on construction level, building components and construction typologies are developed. The evaluation and the calculation of the structural mechanics and structural principals will show that different construction typologies can be derived. Profiles like paper tubes can be used at best for skeleton constructions. Massive structures on the other hand can be formed by plate-shaped elements like solid board or honeycomb. For insulation purposes corrugated cardboard or cellulose flakes have the best properties, while layered solid board can be applied to prevent inner condensation. Enhancing these properties by material combinations for instance with mineral coatings functional constructions mainly out of paper materials were developed. In summary paper materials offer a huge variety of possible applications in the building sector. By these studies a general base of knowledge about how to build with paper was developed and is to be reinforced by further research.

Keywords: construction typologies, cycle-oriented construction, innovative building material, paper materials, renewable resources

Procedia PDF Downloads 279
348 Developing a Roadmap by Integrating of Environmental Indicators with the Nitrogen Footprint in an Agriculture Region, Hualien, Taiwan

Authors: Ming-Chien Su, Yi-Zih Chen, Nien-Hsin Kao, Hideaki Shibata

Abstract:

The major component of the atmosphere is nitrogen, yet atmospheric nitrogen has limited availability for biological use. Human activities have produced different types of nitrogen related compounds such as nitrogen oxides from combustion, nitrogen fertilizers from farming, and the nitrogen compounds from waste and wastewater, all of which have impacted the environment. Many studies have indicated the N-footprint is dominated by food, followed by housing, transportation, and goods and services sectors. To solve the impact issues from agricultural land, nitrogen cycle research is one of the key solutions. The study site is located in Hualien County, Taiwan, a major rice and food production area of Taiwan. Importantly, environmentally friendly farming has been promoted for years, and an environmental indicator system has been established by previous authors based on the concept of resilience capacity index (RCI) and environmental performance index (EPI). Nitrogen management is required for food production, as excess N causes environmental pollution. Therefore it is very important to develop a roadmap of the nitrogen footprint, and to integrate it with environmental indicators. The key focus of the study thus addresses (1) understanding the environmental impact caused by the nitrogen cycle of food products and (2) uncovering the trend of the N-footprint of agricultural products in Hualien, Taiwan. The N-footprint model was applied, which included both crops and energy consumption in the area. All data were adapted from government statistics databases and crosschecked for consistency before modeling. The actions involved with agricultural production were evaluated and analyzed for nitrogen loss to the environment, as well as measuring the impacts to humans and the environment. The results showed that rice makes up the largest share of agricultural production by weight, at 80%. The dominant meat production is pork (52%) and poultry (40%); fish and seafood were at similar levels to pork production. The average per capita food consumption in Taiwan is 2643.38 kcal capita−1 d−1, primarily from rice (430.58 kcal), meats (184.93 kcal) and wheat (ca. 356.44 kcal). The average protein uptake is 87.34 g capita−1 d−1, and 51% is mainly from meat, milk, and eggs. The preliminary results showed that the nitrogen footprint of food production is 34 kg N per capita per year, congruent with the results of Shibata et al. (2014) for Japan. These results provide a better understanding of the nitrogen demand and loss in the environment, and the roadmap can furthermore support the establishment of nitrogen policy and strategy. Additionally, the results serve to develop a roadmap of the nitrogen cycle of an environmentally friendly farming area, thus illuminating the nitrogen demand and loss of such areas.

Keywords: agriculture productions, energy consumption, environmental indicator, nitrogen footprint

Procedia PDF Downloads 302
347 Examination of Corrosion Durability Related to Installed Environments of Steel Bridges

Authors: Jin-Hee Ahn, Seok-Hyeon Jeon, Young-Bin Lee, Min-Gyun Ha, Yu-Chan Hong

Abstract:

Corrosion durability of steel bridges can be generally affected by atmospheric environments of bridge installation, since corrosion problem is related to environmental factors such as humidity, temperature, airborne salt, chemical components as SO₂, chlorides, etc. Thus, atmospheric environment condition should be measured to estimate corrosion condition of steel bridges as well as measurement of actual corrosion damage of structural members of steel bridge. Even in the same atmospheric environment, the corrosion environment may be different depending on the installation direction of structural members. In this study, therefore, atmospheric corrosion monitoring was conducted using atmospheric corrosion monitoring sensor, hygrometer, thermometer and airborne salt collection device to examine the corrosion durability of steel bridges. As a target steel bridge for corrosion durability monitoring, a cable-stayed bridge with truss steel members was selected. This cable-stayed bridge was located on the coast to connect the islands with the islands. Especially, atmospheric corrosion monitoring was carried out depending on structural direction of a cable-stayed bridge with truss type girders since it consists of structural members with various directions. For atmospheric corrosion monitoring, daily average electricity (corrosion current) was measured at each monitoring members to evaluate corrosion environments and corrosion level depending on structural members with various direction which have different corrosion environment in the same installed area. To compare corrosion durability connected with monitoring data depending on corrosion monitoring members, monitoring steel plate was additionally installed in same monitoring members. Monitoring steel plates of carbon steel was fabricated with dimension of 60mm width and 3mm thickness. And its surface was cleaned for removing rust on the surface by blasting, and its weight was measured before its installation on each structural members. After a 3 month exposure period on real atmospheric corrosion environment at bridge, surface condition of atmospheric corrosion monitoring sensors and monitoring steel plates were observed for corrosion damage. When severe deterioration of atmospheric corrosion monitoring sensors or corrosion damage of monitoring steel plates were found, they were replaced or collected. From 3month exposure tests in the actual steel bridge with various structural member with various direction, the rust on the surface of monitoring steel plate was found, and the difference in the corrosion rate was found depending on the direction of structural member from their visual inspection. And daily average electricity (corrosion current) was changed depending on the direction of structural member. However, it is difficult to identify the relative differences in corrosion durability of steel structural members using short-term monitoring results. After long exposure tests in this corrosion environments, it can be clearly evaluated the difference in corrosion durability depending on installed conditions of steel bridges. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028755).

Keywords: corrosion, atmospheric environments, steel bridge, monitoring

Procedia PDF Downloads 361
346 Polymer Nanocomposite Containing Silver Nanoparticles for Wound Healing

Authors: Patrícia Severino, Luciana Nalone, Daniele Martins, Marco Chaud, Classius Ferreira, Cristiane Bani, Ricardo Albuquerque

Abstract:

Hydrogels produced with polymers have been used in the development of dressings for wound treatment and tissue revitalization. Our study on polymer nanocomposites containing silver nanoparticles shows antimicrobial activity and applications in wound healing. The effects are linked with the slow oxidation and Ag⁺ liberation to the biological environment. Furthermore, bacterial cell membrane penetration and metabolic disruption through cell cycle disarrangement also contribute to microbial cell death. The silver antimicrobial activity has been known for many years, and previous reports show that low silver concentrations are safe for human use. This work aims to develop a hydrogel using natural polymers (sodium alginate and gelatin) combined with silver nanoparticles for wound healing and with antimicrobial properties in cutaneous lesions. The hydrogel development utilized different sodium alginate and gelatin proportions (20:80, 50:50 and 80:20). The silver nanoparticles incorporation was evaluated at the concentrations of 1.0, 2.0 and 4.0 mM. The physico-chemical properties of the formulation were evaluated using ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric (TG) analysis. The morphological characterization was made using transmission electron microscopy (TEM). Human fibroblast (L2929) viability assay was performed with a minimum inhibitory concentration (MIC) assessment as well as an in vivo cicatrizant test. The results suggested that sodium alginate and gelatin in the (80:20) proportion with 4 mM of AgNO₃ in the (UV-Vis) exhibited a better hydrogel formulation. The nanoparticle absorption spectra of this analysis showed a maximum band around 430 - 450 nm, which suggests a spheroidal form. The TG curve exhibited two weight loss events. DSC indicated one endothermic peak at 230-250 °C, due to sample fusion. The polymers acted as stabilizers of a nanoparticle, defining their size and shape. Human fibroblast viability assay L929 gave 105 % cell viability with a negative control, while gelatin presented 96% viability, alginate: gelatin (80:20) 96.66 %, and alginate 100.33 % viability. The sodium alginate:gelatin (80:20) exhibited significant antimicrobial activity, with minimal bacterial growth at a ratio of 1.06 mg.mL⁻¹ in Pseudomonas aeruginosa and 0.53 mg.mL⁻¹ in Staphylococcus aureus. The in vivo results showed a significant reduction in wound surface area. On the seventh day, the hydrogel-nanoparticle formulation reduced the total area of injury by 81.14 %, while control reached a 45.66 % reduction. The results suggest that silver-hydrogel nanoformulation exhibits potential for wound dressing therapeutics.

Keywords: nanocomposite, wound healing, hydrogel, silver nanoparticle

Procedia PDF Downloads 101
345 Sequential Pulsed Electric Field and Ultrasound Assisted Extraction of Bioactive Enriched Fractions from Button Mushroom Stalks

Authors: Bibha Kumari, Nigel P. Brunton, Dilip K. Rai, Brijesh K. Tiwari

Abstract:

Edible mushrooms possess numerous functional components like homo- and hetero- β-glucans [β(1→3), β(1→4) and β(1→6) glucosidic linkages], chitins, ergosterols, bioactive polysaccharides and peptides imparting health beneficial properties to mushrooms. Some of the proven biological activities of mushroom extracts are antioxidant, antimicrobial, immunomodulatory, cholesterol lowering activity by inhibiting a key cholesterol metabolism enzyme i.e. 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR), angiotensin I-converting enzyme (ACE) inhibition. Application of novel extraction technologies like pulsed electric field (PEF) and high power ultrasound offers clean, green, faster and efficient extraction alternatives with enhanced and good quality extracts. Sequential PEF followed by ultrasound assisted extraction (UAE) were applied to recover bioactive enriched fractions from industrial white button mushroom (Agaricus bisporus) stalk waste using environmentally friendly and GRAS solvents i.e. water and water/ethanol combinations. The PEF treatment was carried out at 60% output voltage, 2 Hz frequency for 500 pulses of 20 microseconds pulse width, using KCl salt solution of 0.6 mS/cm conductivity by the placing 35g of chopped fresh mushroom stalks and 25g of salt solution in the 4x4x4cm3 treatment chamber. Sequential UAE was carried out on the PEF pre-treated samples using ultrasonic-water-bath (USB) of three frequencies (25 KHz, 35 KHz and 45 KHz) for various treatment times (15-120 min) at 80°C. Individual treatment using either PEF or UAE were also investigation to compare the effect of each treatment along with the combined effect on the recovery and bioactivity of the crude extracts. The freeze dried mushroom stalk powder was characterised for proximate compositional parameters (dry weight basis) showing 64.11% total carbohydrate, 19.12% total protein, 7.21% total fat, 31.2% total dietary fiber, 7.9% chitin (as glucosamine equivalent) and 1.02% β-glucan content. The total phenolic contents (TPC) were determined by the Folin-Ciocalteu procedure and expressed as gallic-acid-equivalents (GAE). The antioxidant properties were ascertained using DPPH and FRAP assays and expressed as trolox-equivalents (TE). HMGCR activity and molecular mass of β-glucans will be measured using the commercial HMG-CoA Reductase Assay kit (Sigma-Aldrich) and size exclusion chromatography (HPLC-SEC), respectively. Effects of PEF, UAE and their combination on the antioxidant capacity, HMGCR inhibition and β-glucans content will be presented.

Keywords: β-glucan, mushroom stalks, pulsed electric field (PEF), ultrasound assisted extraction (UAE)

Procedia PDF Downloads 292
344 Resistance Training and Ginger Consumption on Cytokines Levels

Authors: Alireza Barari, Ahmad Abdi

Abstract:

Regular body trainings cause adaption in various system in body. One of the important effect of body training is its effect on immune system. It seems that cytokines usually release after long period exercises or some exercises which cause skeletal muscular damages. If some of the cytokines which cause responses such as inflammation of cells in skeletal muscles, with manipulating of training program, it can be avoided or limited from those exercises which induct cytokines release. Ginger plant is a kind of medicinal plants which is known as a anti inflammation plant. This plant is as most precedence medicinal plants in medicine science especially in inflammation cure. The aim of the present study was the effect of selected resistance training and consumption of ginger extract on IL-1α and TNFα untrained young women. The population includes young women interested in participating in the study with the average of 30±2 years old from Abbas Abad city among which 32 participants were chosen randomly and divided into 4 four groups, resistance training (R), resistance training and ginger consumption(RG), Ginger consumption(G)and Control group(C). The training groups performed circuit resistance training at the intensity of 65-75% one repeat maximum, 3 days a week for 6 weeks. Besides resistance training, subjects were given either ginseng (5 mg/kg per day) or placebo. Prior to and 48 hours after interventions body composition was measured and blood samples were taken in order to assess serum levels of IL-1α and TNFα. Plasma levels of cytokines were measured with commercially available ELISA Kits.IL-1α kit and TNFα kit were used in this research. To demonstrate the effectiveness of the independent variable and the comparison between groups, t-test and ANOVA were used. To determine differences between the groups, the Scheffe test was used that showed significant changes in any of the variables. we observed that circuit resistance training in R and RG groups can significant decreased in weight and body mass index in untrained females (p<0.05). The results showed a significant decreased in the mean level of IL-1α levels before and after the training period in G group (p=0.046) and RG group (p=0.022). Comparison between groups also showed there was significant difference between groups R-RG and RG-C. Intergroup comparison results showed that the mean levels of TNFα before and after the training in group G (p=0.044) and RG (p=0.037), significantly decreased. Comparison between groups also showed there was significant difference between groups R–RG , R-G ,RG-C and G-C. The research shows that circuit resistance training with reducing overload method results in systemic inflammation had significant effect on IL-1α levels and TNFα. Of course, Ginger can counteract the negative effects of resistance training exercise on immune function and stability of the mast cell membrane. Considerable evidence supported the anti-inflammatory properties of ginger for several constituents, especially gingerols, shogaols, paradols, and zingerones, through decreased cytokine gene TNF α and IL-1Α expression and inhibition of cyclooxygenase 1 and 2. These established biological actions suggest that ingested ginger could block the increase in IL-1α.

Keywords: resistance training, ginger, IL-1α , TNFα

Procedia PDF Downloads 428
343 Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis

Authors: Anton G. Kalmykov, Andrew Yu. Bychkov, Georgy A. Kalmykov

Abstract:

Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action.

Keywords: Bazhenov formation, fossil fuels, hydropyrolysis, synthetic oil

Procedia PDF Downloads 114
342 Evaluating Urban City Indices: A Study for Investigating Functional Domains, Indicators and Integration Methods

Authors: Fatih Gundogan, Fatih Kafali, Abdullah Karadag, Alper Baloglu, Ersoy Pehlivan, Mustafa Eruyar, Osman Bayram, Orhan Karademiroglu, Wasim Shoman

Abstract:

Nowadays many cities around the world are investing their efforts and resources for the purpose of facilitating their citizen’s life and making cities more livable and sustainable by implementing newly emerged phenomena of smart city. For this purpose, related research institutions prepare and publish smart city indices or benchmarking reports aiming to measure the city’s current ‘smartness’ status. Several functional domains, various indicators along different selection and calculation methods are found within such indices and reports. The selection criteria varied for each institution resulting in inconsistency in the ranking and evaluating. This research aims to evaluate the impact of selecting such functional domains, indicators and calculation methods which may cause change in the rank. For that, six functional domains, i.e. Environment, Mobility, Economy, People, Living and governance, were selected covering 19 focus areas and 41 sub-focus (variable) areas. 60 out of 191 indicators were also selected according to several criteria. These were identified as a result of extensive literature review for 13 well known global indices and research and the ISO 37120 standards of sustainable development of communities. The values of the identified indicators were obtained from reliable sources for ten cities. The values of each indicator for the selected cities were normalized and standardized to objectively investigate the impact of the chosen indicators. Moreover, the effect of choosing an integration method to represent the values of indicators for each city is investigated by comparing the results of two of the most used methods i.e. geometric aggregation and fuzzy logic. The essence of these methods is assigning a weight to each indicator its relative significance. However, both methods resulted in different weights for the same indicator. As a result of this study, the alternation in city ranking resulting from each method was investigated and discussed separately. Generally, each method illustrated different ranking for the selected cities. However, it was observed that within certain functional areas the rank remained unchanged in both integration method. Based on the results of the study, it is recommended utilizing a common platform and method to objectively evaluate cities around the world. The common method should provide policymakers proper tools to evaluate their decisions and investments relative to other cities. Moreover, for smart cities indices, at least 481 different indicators were found, which is an immense number of indicators to be considered, especially for a smart city index. Further works should be devoted to finding mutual indicators representing the index purpose globally and objectively.

Keywords: functional domain, urban city index, indicator, smart city

Procedia PDF Downloads 147
341 Prominent Lipid Parameters Correlated with Trunk-to-Leg and Appendicular Fat Ratios in Severe Pediatric Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

The examination of both serum lipid fractions and body’s lipid composition are quite informative during the evaluation of obesity stages. Within this context, alterations in lipid parameters are commonly observed. The variations in the fat distribution of the body are also noteworthy. Total cholesterol (TC), triglycerides (TRG), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C) are considered as the basic lipid fractions. Fat deposited in trunk and extremities may give considerable amount of information and different messages during discrete health states. Ratios are also derived from distinct fat distribution in these areas. Trunk-to-leg fat ratio (TLFR) and trunk-to-appendicular fat ratio (TAFR) are the most recently introduced ratios. In this study, lipid fractions and TLFR, as well as TAFR, were evaluated, and the distinctions among healthy, obese (OB), and morbid obese (MO) groups were investigated. Three groups [normal body mass index (N-BMI), OB, MO] were constituted from a population aged 6 to 18 years. Ages and sexes of the groups were matched. The study protocol was approved by the Non-interventional Ethics Committee of Tekirdag Namik Kemal University. Written informed consent forms were obtained from the parents of the participants. Anthropometric measurements (height, weight, waist circumference, hip circumference, head circumference, neck circumference) were obtained and recorded during the physical examination. Body mass index values were calculated. Total, trunk, leg, and arm fat mass values were obtained by TANITA Bioelectrical Impedance Analysis. These values were used to calculate TLFR and TAFR. Systolic (SBP) and diastolic blood pressures (DBP) were measured. Routine biochemical tests including TC, TRG, LDL-C, HDL-C, and insulin were performed. Data were evaluated using SPSS software. p value smaller than 0.05 was accepted as statistically significant. There was no difference among the age values and gender ratios of the groups. Any statistically significant difference was not observed in terms of DBP, TLFR as well as serum lipid fractions. Higher SBP values were measured both in OB and MO children than those with N-BMI. TAFR showed a significant difference between N-BMI and OB groups. Statistically significant increases were detected between insulin values of N-BMI group and OB as well as MO groups. There were bivariate correlations between LDL and TLFR (r=0.396; p=0.037) as well as TAFR values (r=0.413; p=0.029) in MO group. When adjusted for SBP and DBP, partial correlations were calculated as (r=0.421; p=0.032) and (r=0.438; p=0.025) for LDL-TLFR as well as LDL-TAFR, respectively. Much stronger partial correlations were obtained for the same couples (r=0.475; p=0.019 and r=0.473; p=0.020, respectively) upon controlling for TRG and HDL-C. Much stronger partial correlations observed in MO children emphasize the potential transition from morbid obesity to metabolic syndrome. These findings have concluded that LDL-C may be suggested as a discriminating parameter between OB and MO children.

Keywords: children, lipid parameters, obesity, trunk-to-leg fat ratio, trunk-to-appendicular fat ratio

Procedia PDF Downloads 111
340 Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method

Authors: Takoua Soltani, Imen Soltani, Taoufik Aguili

Abstract:

The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport’s integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor.

Keywords: active integrated antenna, current density, input impedance, MESFET transistor, MOM-GEC method

Procedia PDF Downloads 198
339 Decentralized Peak-Shaving Strategies for Integrated Domestic Batteries

Authors: Corentin Jankowiak, Aggelos Zacharopoulos, Caterina Brandoni

Abstract:

In a context of increasing stress put on the electricity network by the decarbonization of many sectors, energy storage is likely to be the key mitigating element, by acting as a buffer between production and demand. In particular, the highest potential for storage is when connected closer to the loads. Yet, low voltage storage struggles to penetrate the market at a large scale due to the novelty and complexity of the solution, and the competitive advantage of fossil fuel-based technologies regarding regulations. Strong and reliable numerical simulations are required to show the benefits of storage located near loads and promote its development. The present study was restrained from excluding aggregated control of storage: it is assumed that the storage units operate independently to one another without exchanging information – as is currently mostly the case. A computationally light battery model is presented in detail and validated by direct comparison with a domestic battery operating in real conditions. This model is then used to develop Peak-Shaving (PS) control strategies as it is the decentralized service from which beneficial impacts are most likely to emerge. The aggregation of flatter, peak- shaved consumption profiles is likely to lead to flatter and arbitraged profile at higher voltage layers. Furthermore, voltage fluctuations can be expected to decrease if spikes of individual consumption are reduced. The crucial part to achieve PS lies in the charging pattern: peaks depend on the switching on and off of appliances in the dwelling by the occupants and are therefore impossible to predict accurately. A performant PS strategy must, therefore, include a smart charge recovery algorithm that can ensure enough energy is present in the battery in case it is needed without generating new peaks by charging the unit. Three categories of PS algorithms are introduced in detail. First, using a constant threshold or power rate for charge recovery, followed by algorithms using the State Of Charge (SOC) as a decision variable. Finally, using a load forecast – of which the impact of the accuracy is discussed – to generate PS. A performance metrics was defined in order to quantitatively evaluate their operating regarding peak reduction, total energy consumption, and self-consumption of domestic photovoltaic generation. The algorithms were tested on load profiles with a 1-minute granularity over a 1-year period, and their performance was assessed regarding these metrics. The results show that constant charging threshold or power are far from optimal: a certain value is not likely to fit the variability of a residential profile. As could be expected, forecast-based algorithms show the highest performance. However, these depend on the accuracy of the forecast. On the other hand, SOC based algorithms also present satisfying performance, making them a strong alternative when the reliable forecast is not available.

Keywords: decentralised control, domestic integrated batteries, electricity network performance, peak-shaving algorithm

Procedia PDF Downloads 117
338 Parametric Study for Obtaining the Structural Response of Segmental Tunnels in Soft Soil by Using No-Linear Numerical Models

Authors: Arturo Galván, Jatziri Y. Moreno-Martínez, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, one of the methods most used for the construction of tunnels in soft soil is the shield-driven tunneling. The advantage of this construction technique is that it allows excavating the tunnel while at the same time a primary lining is placed, which consists of precast segments. There are joints between segments, also called longitudinal joints, and joints between rings (called as circumferential joints). This is the reason because of this type of constructions cannot be considered as a continuous structure. The effect of these joints influences in the rigidity of the segmental lining and therefore in its structural response. A parametric study was performed to take into account the effect of different parameters in the structural response of typical segmental tunnels built in soft soil by using non-linear numerical models based on Finite Element Method by means of the software package ANSYS v. 11.0. In the first part of this study, two types of numerical models were performed. In the first one, the segments were modeled by using beam elements based on Timoshenko beam theory whilst the segment joints were modeled by using inelastic rotational springs considering the constitutive moment-rotation relation proposed by Gladwell. In this way, the mechanical behavior of longitudinal joints was simulated. On the other hand for simulating the mechanical behavior of circumferential joints elastic springs were considered. As well as, the stability given by the soil was modeled by means of elastic-linear springs. In the second type of models, the segments were modeled by means of three-dimensional solid elements and the joints with contact elements. In these models, the zone of the joints is modeled as a discontinuous (increasing the computational effort) therefore a discrete model is obtained. With these contact elements the mechanical behavior of joints is simulated considering that when the joint is closed, there is transmission of compressive and shear stresses but not of tensile stresses and when the joint is opened, there is no transmission of stresses. This type of models can detect changes in the geometry because of the relative movement of the elements that form the joints. A comparison between the numerical results with two types of models was carried out. In this way, the hypothesis considered in the simplified models were validated. In addition, the numerical models were calibrated with (Lab-based) experimental results obtained from the literature of a typical tunnel built in Europe. In the second part of this work, a parametric study was performed by using the simplified models due to less used computational effort compared to complex models. In the parametric study, the effect of material properties, the geometry of the tunnel, the arrangement of the longitudinal joints and the coupling of the rings were studied. Finally, it was concluded that the mechanical behavior of segment and ring joints and the arrangement of the segment joints affect the global behavior of the lining. As well as, the effect of the coupling between rings modifies the structural capacity of the lining.

Keywords: numerical models, parametric study, segmental tunnels, structural response

Procedia PDF Downloads 229
337 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing

Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko

Abstract:

Currently and in the foreseeable future (up to 2100), the global economy is oriented to the use of organic fuel, mostly, solid fuels, the share of which constitutes 40% in the generation of electric power. Therefore, the development of technologies for their effective and environmentally friendly application represents a priority problem nowadays. This work presents the results of thermodynamic and experimental investigations of plasma technology for processing of low-grade coals. The use of this technology for producing target products (synthesis gas, hydrogen, technical carbon, and valuable components of mineral mass of coals) meets the modern environmental and economic requirements applied to basic industrial sectors. The plasma technology of coal processing for the production of synthesis gas from the coal organic mass (COM) and valuable components from coal mineral mass (CMM) is highly promising. Its essence is heating the coal dust by reducing electric arc plasma to the complete gasification temperature, when the COM converts into synthesis gas, free from particles of ash, nitrogen oxides and sulfur. At the same time, oxides of the CMM are reduced by the carbon residue, producing valuable components, such as technical silicon, ferrosilicon, aluminum and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, titanium. Thermodynamic analysis of the process was made using a versatile computation program TERRA. Calculations were carried out in the temperature range 300 - 4000 K and a pressure of 0.1 MPa. Bituminous coal with the ash content of 40% and the heating value 16,632 kJ/kg was taken for the investigation. The gaseous phase of coal processing products includes, basically, a synthesis gas with a concentration of up to 99 vol.% at 1500 K. CMM components completely converts from the condensed phase into the gaseous phase at a temperature above 2600 K. At temperatures above 3000 K, the gaseous phase includes, basically, Si, Al, Ca, Fe, Na, and compounds of SiO, SiH, AlH, and SiS. The latter compounds dissociate into relevant elements with increasing temperature. Complex coal conversion for the production of synthesis gas from COM and valuable components from CMM was investigated using a versatile experimental plant the main element of which was plug and flow plasma reactor. The material and thermal balances helped to find the integral indicators for the process. Plasma-steam gasification of the low-grade coal with CMM processing gave the synthesis gas yield 95.2%, the carbon gasification 92.3%, and coal desulfurization 95.2%. The reduced material of the CMM was found in the slag in the form of ferrosilicon as well as silicon and iron carbides. The maximum reduction of the CMM oxides was observed in the slag from the walls of the plasma reactor in the areas with maximum temperatures, reaching 47%. The thusly produced synthesis gas can be used for synthesis of methanol, or as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants. Reduced material of CMM can be used in metallurgy.

Keywords: gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components

Procedia PDF Downloads 608
336 Development of Three-Dimensional Bio-Reactor Using Magnetic Field Stimulation to Enhance PC12 Cell Axonal Extension

Authors: Eiji Nakamachi, Ryota Sakiyama, Koji Yamamoto, Yusuke Morita, Hidetoshi Sakamoto

Abstract:

The regeneration of injured central nerve network caused by the cerebrovascular accidents is difficult, because of poor regeneration capability of central nerve system composed of the brain and the spinal cord. Recently, new regeneration methods such as transplant of nerve cells and supply of nerve nutritional factor were proposed and examined. However, there still remain many problems with the canceration of engrafted cells and so on and it is strongly required to establish an efficacious treating method of a central nerve system. Blackman proposed the electromagnetic stimulation method to enhance the axonal nerve extension. In this study, we try to design and fabricate a new three-dimensional (3D) bio-reactor, which can load a uniform AC magnetic field stimulation on PC12 cells in the extracellular environment for enhancement of an axonal nerve extension and 3D nerve network generation. Simultaneously, we measure the morphology of PC12 cell bodies, axons, and dendrites by the multiphoton excitation fluorescence microscope (MPM) and evaluate the effectiveness of the uniform AC magnetic stimulation to enhance the axonal nerve extension. Firstly, we designed and fabricated the uniform AC magnetic field stimulation bio-reactor. For the AC magnetic stimulation system, we used the laminated silicon steel sheets for a yoke structure of 3D chamber, which had a high magnetic permeability. Next, we adopted the pole piece structure and installed similar specification coils on both sides of the yoke. We searched an optimum pole piece structure using the magnetic field finite element (FE) analyses and the response surface methodology. We confirmed that the optimum 3D chamber structure showed a uniform magnetic flux density in the PC12 cell culture area by using FE analysis. Then, we fabricated the uniform AC magnetic field stimulation bio-reactor by adopting analytically determined specifications, such as the size of chamber and electromagnetic conditions. We confirmed that measurement results of magnetic field in the chamber showed a good agreement with FE results. Secondly, we fabricated a dish, which set inside the uniform AC magnetic field stimulation of bio-reactor. PC12 cells were disseminated with collagen gel and could be 3D cultured in the dish. The collagen gel were poured in the dish. The collagen gel, which had a disk shape of 6 mm diameter and 3mm height, was set on the membrane filter, which was located at 4 mm height from the bottom of dish. The disk was full filled with the culture medium inside the dish. Finally, we evaluated the effectiveness of the uniform AC magnetic field stimulation to enhance the nurve axonal extension. We confirmed that a 6.8 increase in the average axonal extension length of PC12 under the uniform AC magnetic field stimulation at 7 days culture in our bio-reactor, and a 24.7 increase in the maximum axonal extension length. Further, we confirmed that a 60 increase in the number of dendrites of PC12 under the uniform AC magnetic field stimulation. Finally, we confirm the availability of our uniform AC magnetic stimulation bio-reactor for the nerve axonal extension and the nerve network generation.

Keywords: nerve regeneration, axonal extension , PC12 cell, magnetic field, three-dimensional bio-reactor

Procedia PDF Downloads 168
335 Correlations and Impacts Of Optimal Rearing Parameters on Nutritional Value Of Mealworm (Tenebrio Molitor)

Authors: Fabienne Vozy, Anick Lepage

Abstract:

Insects are displaying high nutritional value, low greenhouse gas emissions, low land use requirements and high food conversion efficiency. They can contribute to the food chain and be one of many solutions to protein shortages. Currently, in North America, nutritional entomology is under-developed and the needs to better understand its benefits remain to convince large-scale producers and consumers (both for human and agricultural needs). As such, large-scale production of mealworms offers a promising alternative to replacing traditional sources of protein and fatty acids. To proceed orderly, it is required to collect more data on the nutritional values of insects such as, a) Evaluate the diets of insects to improve their dietary value; b) Test the breeding conditions to optimize yields; c) Evaluate the use of by-products and organic residues as sources of food. Among the featured technical parameters, relative humidity (RH) percentage and temperature, optimal substrates and hydration sources are critical elements, thus establishing potential benchmarks for to optimize conversion rates of protein and fatty acids. This research is to establish the combination of the most influential rearing parameters with local food residues, to correlate the findings with the nutritional value of the larvae harvested. 125 same-monthly old adults/replica are randomly selected in the mealworm breeding pool then placed to oviposit in growth chambers preset at 26°C and 65% RH. Adults are removed after 7 days. Larvae are harvested upon the apparition of the first nymphosis signs and batches, are analyzed for their nutritional values using wet chemistry analysis. The first samples analyses include total weight of both fresh and dried larvae, residual humidity, crude proteins (CP%), and crude fats (CF%). Further analyses are scheduled to include soluble proteins and fatty acids. Although they are consistent with previous published data, the preliminary results show no significant differences between treatments for any type of analysis. Nutritional properties of each substrate combination have yet allowed to discriminate the most effective residue recipe. Technical issues such as the particles’ size of the various substrate combinations and larvae screen compatibility are to be investigated since it induced a variable percentage of lost larvae upon harvesting. To address those methodological issues are key to develop a standardized efficient procedure. The aim is to provide producers with easily reproducible conditions, without incurring additional excessive expenditure on their part in terms of equipment and workforce.

Keywords: entomophagy, nutritional value, rearing parameters optimization, Tenebrio molitor

Procedia PDF Downloads 113
334 Branched Chain Amino Acid Kinesio PVP Gel Tape from Extract of Pea (Pisum sativum L.) Based on Ultrasound-Assisted Extraction Technology

Authors: Doni Dermawan

Abstract:

Modern sports competition as a consequence of the increase in the value of the business and entertainment in the field of sport has been demanding athletes to always have excellent physical endurance performance. Physical exercise is done in a long time, and intensive may pose a risk of muscle tissue damage caused by the increase of the enzyme creatine kinase. Branched Chain Amino Acids (BCAA) is an essential amino acid that is composed of leucine, isoleucine, and valine which serves to maintain muscle tissue, keeping the immune system, and prevent further loss of coordination and muscle pain. Pea (Pisum sativum L.) is a kind of leguminous plants that are rich in Branched Chain Amino Acids (BCAA) where every one gram of protein pea contains 82.7 mg of leucine; 56.3 mg isoleucine; and 56.0 mg of valine. This research aims to develop Branched Chain Amino Acids (BCAA) from pea extract is applied in dosage forms Gel PVP Kinesio Tape technology using Ultrasound-assisted Extraction. The method used in the writing of this paper is the Cochrane Collaboration Review that includes literature studies, testing the quality of the study, the characteristics of the data collection, analysis, interpretation of results, and clinical trials as well as recommendations for further research. Extraction of BCAA in pea done using ultrasound-assisted extraction technology with optimization variables includes the type of solvent extraction (NaOH 0.1%), temperature (20-250C), time (15-30 minutes) power (80 watt) and ultrasonic frequency (35 KHz). The advantages of this extraction method are the level of penetration of the solvent into the membrane of the cell is high and can increase the transfer period so that the BCAA substance separation process more efficient. BCAA extraction results are then applied to the polymer PVP (Polyvinylpyrrolidone) Gel powder composed of PVP K30 and K100 HPMC dissolved in 10 mL of water-methanol (1: 1) v / v. Preparations Kinesio Tape Gel PVP is the BCAA in the gel are absorbed into the muscle tissue, and joints through tensile force then provides stimulation to the muscle circulation with variable pressure so that the muscle can increase the biomechanical movement and prevent damage to the muscle enzyme creatine kinase. Analysis and evaluation of test preparation include interaction, thickness, weight uniformity, humidity, water vapor permeability, the levels of the active substance, content uniformity, percentage elongation, stability testing, release profile, permeation in vitro and in vivo skin irritation testing.

Keywords: branched chain amino acid, BCAA, Kinesio tape, pea, PVP gel, ultrasound-assisted extraction

Procedia PDF Downloads 289
333 Agroecology Approaches Towards Sustainable Agriculture and Food System: Reviewing and Exploring Selected Policies and Strategic Documents through an Agroecological Lens

Authors: Dereje Regasa

Abstract:

The global food system is at a crossroads, which requires prompt action to minimize the effects of the crises. Agroecology is gaining prominence due to its contributions to sustainable food systems. To support efforts in mitigating the crises, the Food and Agriculture Organization (FAO) established alternative approaches for sustainable agri-food systems. Agroecological elements and principles were developed to guide and support measures that countries need to achieve the Sustainable Development Goals (SDGs). The SDGs require the systemic integration of practices for a smart intensification or adaptation of traditional or industrial agriculture. As one of the countries working towards SDGs, the agricultural practices in Ethiopia need to be guided by these agroecological elements and principles. Aiming at the identification of challenging aspects of a sustainable agri-food system and the characterization of an enabling environment for agroecology, as well as exploring to what extent the existing policies and strategies support the agroecological transition process, five policy and strategy documents were reviewed. These documents are the Rural Development Policy and Strategy, the Environment Policy, the Biodiversity Policy, and the Soil Strategy of the Ministry of Agriculture (MoA). Using the Agroecology Criteria Tool (ACT), the contents were reviewed, focusing on agroecological requirements and the inclusion of sustainable practices. ACT is designed to support a self-assessment of elements supporting agroecology. For each element, binary values were assigned based on the inclusion of the minimum requirements index and then validated through discussion with the document owners. The results showed that the documents were well below the requirements for an agroecological transition of the agri-food system. The Rural Development Policy and Strategy only suffice to 83% in Human and Social Value. It does not support the transition concerning the other elements. The Biodiversity Policy and Soil Strategy suffice regarding the inclusion of Co-creation and Sharing of knowledge (100%), while the remaining elements were not considered sufficiently. In contrast, the Environment Policy supports the transition with three elements accounting for 100%. These are Resilience, Recycling, and Human and Social Care. However, when the four documents were combined, elements such as Synergies, Diversity, Efficiency, Human and Social value, Responsible governance, and Co-creation and Sharing of knowledge were identified as fully supportive (100%). This showed that the policies and strategies complemented one another to a certain extent. However, the evaluation results call for improvements concerning elements like Culture and food traditions, Circular and solidarity economy, Resilience, Recycling, and Regulation and balance since the majority of the elements were not sufficiently observed. Consequently, guidance for the smart intensification of local practices is needed, as well as traditional knowledge enriched with advanced technologies. Ethiopian agricultural and environmental policies and strategies should provide sufficient support and guidance for the intensification of sustainable practices and should provide a framework for an agroecological transition towards a sustainable agri-food system.

Keywords: agroecology, diversity, recycling, sustainable food system, transition

Procedia PDF Downloads 87
332 Evaluation of Bagh Printing Motifs and Processes of Madhya Pradesh: From Past to Contemporary

Authors: Kaveri Dutta, Ratna Sharma

Abstract:

Indian traditional textile is a synthesis of various cultures. Art and crafts of a country showcases the rich cultural and artistic history of that nation. Prehistorically Indian handicrafts were basically made for day to day use; the yearning for aesthetic application soon saw the development of flooding designs and motifs. Similarly, Bagh print a traditional hand block Print with natural colours an Indian handicraft practiced in Bagh, Madhya Pradesh(India). Bagh print has its roots in Sindh, which is now a part of Pakistan. The present form of Bagh printing actually started in 1962 when the craftsmen migrated from Manavar to the neighboring town of Bagh situated in Madhya Pradesh and hence Bagh has always been associated with this printing style. Bagh printing basically involved blocks that are carved onto motifs that represent flora such as Jasmine, Mushroom leheriya and so on. There are some prints that were inspired by the jaali work that embellished the Taj Mahal and various other forts. Inspiration is also drawn from the landscapes and geometrical figures. The motifs evoke various moods in the serenity of the prints and that is the catchy element of Bagh prints. The development in this traditional textile is as essential as in another field. Nowadays fashion trends are fragile and innovative changes over existing fashion field in the short span is the demand of times. We must make efforts to preserve this cultural heritage of arts and crafts and this is done either by documenting the various ancient traditions or by making a blend of it. Since this craft is well known over the world, but the need is to document the original motif, fabric, technology and colors used in contemporary fashion. Hence keeping above points in mind this study on bagh print textiles of Madhya Pradesh work has been formulated. The information incorporated in the paper was based on secondary data taken from relevant books, journals, museum visit and articles. Besides for the demographic details and working profile of the artisans dealt with printing, an interview schedule was carried out in three regions of Madhya Pradesh. This work of art was expressed in Cotton fabric. For this study selected traditional motifs for Bang printing was used. Some of the popular traditional Bagh motifs are Jasmine, Mushroom leheriya, geometrical figures and jaali work. The Bagh printed cotton fabrics were developed into a range of men’s ethic wear in combination with embroideries from Rajasthan. Products developed were bandhgala jackets, kurtas, serwani and dupattas. From the present study, it can be observed that the embellished traditional Bang printed range of ethnic men’s wear resulted in the fresh and colourful pattern. The embroidered Bagh printed cotton fabric also created a huge change in a positive way among artisans of the three regions.

Keywords: art and craft of Madhya Pradesh, evolution of printing in India, history of Bagh printing, sources of inspiration

Procedia PDF Downloads 353
331 Extra Skin Removal Surgery and Its Effects: A Comprehensive Review

Authors: Rebin Mzhda Mohammed, Hoshmand Ali Hama Agha

Abstract:

Excess skin, often consequential to substantial weight loss or the aging process, introduces physical discomfort, obstructs daily activities, and undermines an individual's self-esteem. As these challenges become increasingly prevalent, the need to explore viable solutions grows in significance. Extra skin removal surgery, colloquially known as body contouring surgery, has emerged as a compelling intervention to ameliorate the physical and psychological burdens of excess skin. This study undertakes a comprehensive review to illuminate the intricacies of extra skin removal surgery, encompassing its diverse procedures, associated risks, benefits, and psychological implications on patients. The methodological approach adopted involves a systematic and exhaustive review of pertinent scholarly literature sourced from reputable databases, including PubMed, Google Scholar, and specialized cosmetic surgery journals. Articles are meticulously curated based on their relevance, credibility, and recency. Subsequently, data from these sources are synthesized and categorized, facilitating a comprehensive understanding of the subject matter. Qualitative analysis serves to unravel the nuanced psychological effects, while quantitative data, where available, are harnessed to underpin the study's conclusions. In terms of major findings, the research underscores the manifold advantages of extra skin removal surgery. Patients experience a notable improvement in physical comfort, amplified mobility, enhanced self-confidence, and a newfound ability to don clothing comfortably. Nonetheless, the benefits are juxtaposed with potential risks, encompassing infection, scarring, hematoma, delayed healing, and the challenge of achieving symmetry. A salient discovery is the profound psychological impact of the surgery, as patients consistently report elevated body image satisfaction, heightened self-esteem, and a substantial enhancement in overall quality of life. In summation, this research accentuates the pivotal role of extra skin removal surgery in ameliorating the intricate interplay of physical and psychological difficulties posed by excess skin. By elucidating the diverse procedures, associated risks, and psychological outcomes, the study contributes to a comprehensive and informed comprehension of the surgery's multifaceted effects. Therefore, individuals contemplating this transformative surgical option are equipped with comprehensive insights, ultimately fostering informed decision-making, guided by the expertise of medical professionals.

Keywords: extra skin removal surgery, body contouring, abdominoplasty, brachioplasty, thigh lift, body lift, benefits, risks, psychological effects

Procedia PDF Downloads 66
330 Solar Electric Propulsion: The Future of Deep Space Exploration

Authors: Abhishek Sharma, Arnab Banerjee

Abstract:

The research is intended to study the solar electric propulsion (SEP) technology for planetary missions. The main benefits of using solar electric propulsion for such missions are shorter flight times, more frequent target accessibility and the use of a smaller launch vehicle than that required by a comparable chemical propulsion mission. Energized by electric power from on-board solar arrays, the electrically propelled system uses 10 times less propellant than conventional chemical propulsion system, yet the reduced fuel mass can provide vigorous power which is capable of propelling robotic and crewed missions beyond the Lower Earth Orbit (LEO). The various thrusters used in the SEP are gridded ion thrusters and the Hall Effect thrusters. The research is solely aimed to study the ion thrusters and investigate the complications related to it and what can be done to overcome the glitches. The ion thrusters are used because they are found to have a total lower propellant requirement and have substantially longer time. In the ion thrusters, the anode pushes or directs the incoming electrons from the cathode. But the anode is not maintained at a very high potential which leads to divergence. Divergence leads to the charges interacting against the surface of the thruster. Just as the charges ionize the xenon gases, they are capable of ionizing the surfaces and over time destroy the surface and hence contaminate it. Hence the lifetime of thruster gets limited. So a solution to this problem is using substances which are not easy to ionize as the surface material. Another approach can be to increase the potential of anode so that the electrons don’t deviate much or reduce the length of thruster such that the positive anode is more effective. The aim is to work on these aspects as to how constriction of the deviation of charges can be done by keeping the input power constant and hence increase the lifetime of the thruster. Predominantly ring cusp magnets are used in the ion thrusters. However, the study is also intended to observe the effect of using solenoid for producing micro-solenoidal magnetic field apart from using the ring cusp magnetic field which are used in the discharge chamber for prevention of interaction of electrons with the ionization walls. Another foremost area of interest is what are the ways by which power can be provided to the Solar Electric Propulsion Vehicle for lowering and boosting the orbit of the spacecraft and also provide substantial amount of power to the solenoid for producing stronger magnetic fields. This can be successfully achieved by using the concept of Electro-dynamic tether which will serve as a power source for powering both the vehicle and the solenoids in the ion thruster and hence eliminating the need for carrying extra propellant on the spacecraft which will reduce the weight and hence reduce the cost of space propulsion.

Keywords: electro-dynamic tether, ion thruster, lifetime of thruster, solar electric propulsion vehicle

Procedia PDF Downloads 211
329 Pregnancy Outcomes in Women With History of COVID-19 in Alexandria, Egypt

Authors: Nermeen Elbeltagy, Helmy abd Elsatar, Sara Hassan, Mohamed Darwish

Abstract:

Introduction: with the inial appearance in Wuhan, China, in December 2019, the coronavirus disease-related respiratory infection (COVID-19) has rapidly spread among people all over the world. The WHO considered it a pandemic in March 2020. The severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks have proved that pregnant females as well as their fetuses are exposed to adverse outcomes, including high rates of intensive care unit (ICU) admission and case fatality. Physiological changes occurring during pregnancy such as the increased transverse diameter of the thoracic cage as well as the elevation of the diaphragm can expose the mother to severe infections because of her decreased tolerance for hypoxia. Furthermore, vasodilation and changes in lung capacity can cause mucosal edema and an increase in upper respiratory tract secretions. In addition, the increased susceptibility to infection is enhanced by changes in cellmediated immunity. Aim of the work: to study the effect of COVID-19 on pregnant females admitted to El-Shatby Maternity University Hospital regarding maternal antepartum, intrapartum and postpartum adverse effects on the mothers and their neonates. Method: A retrospective cohort study was done between October 2020 and October 2022. Maternal characteristics and associated health conditions of COVID-19 positive parents were investigated. Also, the severity of their conditions and me of infection (first or second or third trimester)were explored. Cases were diagnosed based on presence of symptoms suggestive of COVID-19, laboratory tests (other than PCR) and radiological findings.all cases were confirmed by positive PCR test results. Results: The most common adverse maternal outcomes were pre-term labor (11.6%) followed by premature rupture of membranes (5.7%), post-partum hemorrhage (5.4%), preeclampsia (5.0%) and placental abrupon (4.3%). One sixth of the neonates of the studied paents were admied to NICUs and 6.5% of them had respiratory distress with no neonatal deaths. The majority of neonates (85.4%) had a birth weight of 2500- 4000g (normal range). Most of the neonates (77.9%) had an APGAR score of equal or more than 7 in 5 minutes. Conclusion: the most common comorbidity that might increase the incidence of COVID-19 before pregnancy were diabetes, cardiac disorders/ chronic hypertension and chronic obstructive lung diseases (non-asthma). During pregnancy, anemia followed by gestational diabetes and pre-eclampsia/gestational hypertension were the most prevalent comorbidity. So, severity of infection can be reduced by good antenatal care.

Keywords: COVID-19, pregnancy outcome, complicated pregnancy., COVID in Egypt

Procedia PDF Downloads 78
328 Investigating the Algorithm to Maintain a Constant Speed in the Wankel Engine

Authors: Adam Majczak, Michał Bialy, Zbigniew Czyż, Zdzislaw Kaminski

Abstract:

Increasingly stringent emission standards for passenger cars require us to find alternative drives. The share of electric vehicles in the sale of new cars increases every year. However, their performance and, above all, range cannot be today successfully compared to those of cars with a traditional internal combustion engine. Battery recharging lasts hours, which can be hardly accepted due to the time needed to refill a fuel tank. Therefore, the ways to reduce the adverse features of cars equipped with electric motors only are searched for. One of the methods is a combination of an electric engine as a main source of power and a small internal combustion engine as an electricity generator. This type of drive enables an electric vehicle to achieve a radically increased range and low emissions of toxic substances. For several years, the leading automotive manufacturers like the Mazda and the Audi together with the best companies in the automotive industry, e.g., AVL have developed some electric drive systems capable of recharging themselves while driving, known as a range extender. An electricity generator is powered by a Wankel engine that has seemed to pass into history. This low weight and small engine with a rotating piston and a very low vibration level turned out to be an excellent source in such applications. Its operation as an energy source for a generator almost entirely eliminates its disadvantages like high fuel consumption, high emission of toxic substances, or short lifetime typical of its traditional application. The operation of the engine at a constant rotational speed enables a significant increase in its lifetime, and its small external dimensions enable us to make compact modules to drive even small urban cars like the Audi A1 or the Mazda 2. The algorithm to maintain a constant speed was investigated on the engine dynamometer with an eddy current brake and the necessary measuring apparatus. The research object was the Aixro XR50 rotary engine with the electronic power supply developed at the Lublin University of Technology. The load torque of the engine was altered during the research by means of the eddy current brake capable of giving any number of load cycles. The parameters recorded included speed and torque as well as a position of a throttle in an inlet system. Increasing and decreasing load did not significantly change engine speed, which means that control algorithm parameters are correctly selected. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: electric vehicle, power generator, range extender, Wankel engine

Procedia PDF Downloads 157
327 Relationship between the Development of Sepsis, Systemic Inflammatory Response Syndrome and Body Mass Index among Adult Trauma Patients at University Hospital in Cairo

Authors: Mohamed Hendawy Mousa, Warda Youssef Mohamed Morsy

Abstract:

Background: Sepsis is a major cause of mortality and morbidity in trauma patients. Body mass index as an indicator of nutritional status was reported as a predictor of injury pattern and complications among critically ill injured patients. Aim: The aim of this study is to investigate the relationship between body mass index and the development of sepsis, systemic inflammatory response syndrome among adult trauma patients at emergency hospital - Cairo University. Research design: Descriptive correlational research design was utilized in the current study. Research questions: Q1. What is the body mass index profile of adult trauma patients admitted to the emergency hospital at Cairo University over a period of 6 months?, Q2. What is the frequency of systemic inflammatory response syndrome and sepsis among adult trauma patients admitted to the emergency hospital at Cairo University over a period of 6 months?, and Q3. What is the relationship between the development of sepsis, systemic inflammatory response syndrome and body mass index among adult trauma patients admitted to the emergency hospital at Cairo University over a period of 6 months?. Sample: A purposive sample of 52 adult male and female trauma patients with revised trauma score 10 to 12. Setting: The Emergency Hospital affiliated to Cairo University. Tools: Four tools were utilized to collect data pertinent to the study: Socio demographic and medical data tool, Systemic inflammatory response syndrome assessment tool, Revised Trauma Score tool, and Sequential organ failure assessment tool. Results: The current study revealed that, (61.5 %) of the studied subjects had normal body mass index, (25 %) were overweight, and (13.5 %) were underweight. 84.6% of the studied subjects had systemic inflammatory response syndrome and 92.3% were suffering from mild sepsis. No significant statistical relationship was found between body mass index and occurrence of Systemic inflammatory response syndrome (2= 2.89 & P = 0.23). However, Sequential organ failure assessment scores were affected significantly by body mass index was found mean of initial and last Sequential organ failure assessment score for underweight, normal and obese where t= 7.24 at p = 0.000, t= 16.49 at p = 0.000 and t= 9.80 at p = 0.000 respectively. Conclusion: Underweight trauma patients showed significantly higher rate of developing sepsis as compared to patients with normal body weight and obese. Recommendations: based on finding of this study the following are recommended: replication of the study on a larger probability sample from different geographical locations in Egypt; Carrying out of further studies in order to assess the other risk factors influencing trauma outcome and incidence of its complications; Establishment of standardized guidelines for managing underweight traumatized patients with sepsis.

Keywords: body mass index, sepsis, systemic inflammatory response syndrome, adult trauma

Procedia PDF Downloads 251
326 Verification of Low-Dose Diagnostic X-Ray as a Tool for Relating Vital Internal Organ Structures to External Body Armour Coverage

Authors: Natalie A. Sterk, Bernard van Vuuren, Petrie Marais, Bongani Mthombeni

Abstract:

Injuries to the internal structures of the thorax and abdomen remain a leading cause of death among soldiers. Body armour is a standard issue piece of military equipment designed to protect the vital organs against ballistic and stab threats. When configured for maximum protection, the excessive weight and size of the armour may limit soldier mobility and increase physical fatigue and discomfort. Providing soldiers with more armour than necessary may, therefore, hinder their ability to react rapidly in life-threatening situations. The capability to determine the optimal trade-off between the amount of essential anatomical coverage and hindrance on soldier performance may significantly enhance the design of armour systems. The current study aimed to develop and pilot a methodology for relating internal anatomical structures with actual armour plate coverage in real-time using low-dose diagnostic X-ray scanning. Several pilot scanning sessions were held at Lodox Systems (Pty) Ltd head-office in South Africa. Testing involved using the Lodox eXero-dr to scan dummy trunk rigs at various degrees and heights of measurement; as well as human participants, wearing correctly fitted body armour while positioned in supine, prone shooting, seated and kneeling shooting postures. The verification of sizing and metrics obtained from the Lodox eXero-dr were then confirmed through a verification board with known dimensions. Results indicated that the low-dose diagnostic X-ray has the capability to clearly identify the vital internal structures of the aortic arch, heart, and lungs in relation to the position of the external armour plates. Further testing is still required in order to fully and accurately identify the inferior liver boundary, inferior vena cava, and spleen. The scans produced in the supine, prone, and seated postures provided superior image quality over the kneeling posture. The X-ray-source and-detector distance from the object must be standardised to control for possible magnification changes and for comparison purposes. To account for this, specific scanning heights and angles were identified to allow for parallel scanning of relevant areas. The low-dose diagnostic X-ray provides a non-invasive, safe, and rapid technique for relating vital internal structures with external structures. This capability can be used for the re-evaluation of anatomical coverage required for essential protection while optimising armour design and fit for soldier performance.

Keywords: body armour, low-dose diagnostic X-ray, scanning, vital organ coverage

Procedia PDF Downloads 123
325 Application of the Standard Deviation in Regulating Design Variation of Urban Solutions Generated through Evolutionary Computation

Authors: Mohammed Makki, Milad Showkatbakhsh, Aiman Tabony

Abstract:

Computational applications of natural evolutionary processes as problem-solving tools have been well established since the mid-20th century. However, their application within architecture and design has only gained ground in recent years, with an increasing number of academics and professionals in the field electing to utilize evolutionary computation to address problems comprised from multiple conflicting objectives with no clear optimal solution. Recent advances in computer science and its consequent constructive influence on the architectural discourse has led to the emergence of multiple algorithmic processes capable of simulating the evolutionary process in nature within an efficient timescale. Many of the developed processes of generating a population of candidate solutions to a design problem through an evolutionary based stochastic search process are often driven through the application of both environmental and architectural parameters. These methods allow for conflicting objectives to be simultaneously, independently, and objectively optimized. This is an essential approach in design problems with a final product that must address the demand of a multitude of individuals with various requirements. However, one of the main challenges encountered through the application of an evolutionary process as a design tool is the ability for the simulation to maintain variation amongst design solutions in the population while simultaneously increasing in fitness. This is most commonly known as the ‘golden rule’ of balancing exploration and exploitation over time; the difficulty of achieving this balance in the simulation is due to the tendency of either variation or optimization being favored as the simulation progresses. In such cases, the generated population of candidate solutions has either optimized very early in the simulation, or has continued to maintain high levels of variation to which an optimal set could not be discerned; thus, providing the user with a solution set that has not evolved efficiently to the objectives outlined in the problem at hand. As such, the experiments presented in this paper seek to achieve the ‘golden rule’ by incorporating a mathematical fitness criterion for the development of an urban tissue comprised from the superblock as its primary architectural element. The mathematical value investigated in the experiments is the standard deviation factor. Traditionally, the standard deviation factor has been used as an analytical value rather than a generative one, conventionally used to measure the distribution of variation within a population by calculating the degree by which the majority of the population deviates from the mean. A higher standard deviation value delineates a higher number of the population is clustered around the mean and thus limited variation within the population, while a lower standard deviation value is due to greater variation within the population and a lack of convergence towards an optimal solution. The results presented will aim to clarify the extent to which the utilization of the standard deviation factor as a fitness criterion can be advantageous to generating fitter individuals in a more efficient timeframe when compared to conventional simulations that only incorporate architectural and environmental parameters.

Keywords: architecture, computation, evolution, standard deviation, urban

Procedia PDF Downloads 133
324 Sensitivity Improvement of Optical Ring Resonator for Strain Analysis with the Direction of Strain Recognition Possibility

Authors: Tayebeh Sahraeibelverdi, Ahmad Shirazi Hadi Veladi, Mazdak Radmalekshah

Abstract:

Optical sensors became attractive due to preciseness, low power consumption, and intrinsic electromagnetic interference-free characteristic. Among the waveguide optical sensors, cavity-based ones attended for the high Q-factor. Micro ring resonators as a potential platform have been investigated for various applications as biosensors to pressure sensors thanks to their sensitive ring structure responding to any small change in the refractive index. Furthermore, these small micron size structures can come in an array, bringing the opportunity to have any of the resonance in a specific wavelength and be addressed in this way. Another exciting application is applying a strain to the ring and making them an optical strain gauge where the traditional ones are based on the piezoelectric material. Making them in arrays needs electrical wiring and about fifty times bigger in size. Any physical element that impacts the waveguide cross-section, Waveguide elastic-optic property change, or ring circumference can play a role. In comparison, ring size change has a larger effect than others. Here an engineered ring structure is investigated to study the strain effect on the ring resonance wavelength shift and its potential for more sensitive strain devices. At the same time, these devices can measure any strain by mounting on the surface of interest. The idea is to change the" O" shape ring to a "C" shape ring with a small opening starting from 2π/360 or one degree. We used the Mode solution of Lumbrical software to investigate the effect of changing the ring's opening and the shift induced by applied strain. The designed ring radius is a three Micron silicon on isolator ring which can be fabricated by standard complementary metal-oxide-semiconductor (CMOS) micromachining. The measured wavelength shifts from1-degree opening of the ring to a 6-degree opening have been investigated. Opening the ring for 1-degree affects the ring's quality factor from 3000 to 300, showing an order of magnitude Q-factor reduction. Assuming a strain making the ring-opening from 1 degree to 6 degrees, our simulation results showing negligible Q-factor reduction from 300 to 280. A ring resonator quality factor can reach up to 108 where an order of magnitude reduction is negligible. The resonance wavelength shift showed a blue shift and was obtained to be 1581, 1579,1578,1575nm for 1-, 2-, 4- and 6-degree ring-opening, respectively. This design can find the direction of the strain-induced by applying the opening on different parts of the ring. Moreover, by addressing the specified wavelength, we can precisely find the direction. We can open a significant opportunity to find cracks and any surface mechanical property very specifically and precisely. This idea can be implemented on polymer ring resonators while they can come with a flexible substrate and can be very sensitive to any strain making the two ends of the ring in the slit part come closer or further.

Keywords: optical ring resonator, strain gauge, strain sensor, surface mechanical property analysis

Procedia PDF Downloads 126
323 Comparison of Quality of Life One Year after Bariatric Intervention: Systematic Review of the Literature with Bayesian Network Meta-Analysis

Authors: Piotr Tylec, Alicja Dudek, Grzegorz Torbicz, Magdalena Mizera, Natalia Gajewska, Michael Su, Tanawat Vongsurbchart, Tomasz Stefura, Magdalena Pisarska, Mateusz Rubinkiewicz, Piotr Malczak, Piotr Major, Michal Pedziwiatr

Abstract:

Introduction: Quality of life after bariatric surgery is an important factor when evaluating the final result of the treatment. Considering the vast surgical options, we tried to globally compare available methods in terms of quality of following the surgery. The aim of the study is to compare the quality of life a year after bariatric intervention using network meta-analysis methods. Material and Methods: We performed a systematic review according to PRISMA guidelines with Bayesian network meta-analysis. Inclusion criteria were: studies comparing at least two methods of weight loss treatment of which at least one is surgical, assessment of the quality of life one year after surgery by validated questionnaires. Primary outcomes were quality of life one year after bariatric procedure. The following aspects of quality of life were analyzed: physical, emotional, general health, vitality, role physical, social, mental, and bodily pain. All questionnaires were standardized and pooled to a single scale. Lifestyle intervention was considered as a referenced point. Results: An initial reference search yielded 5636 articles. 18 studies were evaluated. In comparison of total score of quality of life, we observed that laparoscopic sleeve gastrectomy (LSG) (median (M): 3.606, Credible Interval 97.5% (CrI): 1.039; 6.191), laparoscopic Roux en-Y gastric by-pass (LRYGB) (M: 4.973, CrI: 2.627; 7.317) and open Roux en-Y gastric by-pass (RYGB) (M: 9.735, CrI: 6.708; 12.760) had better results than other bariatric intervention in relation to lifestyle interventions. In the analysis of the physical aspects of quality of life, we notice better results in LSG (M: 3.348, CrI: 0.548; 6.147) and in LRYGB procedure (M: 5.070, CrI: 2.896; 7.208) than control intervention, and worst results in open RYGB (M: -9.212, CrI: -11.610; -6.844). Analyzing emotional aspects, we found better results than control intervention in LSG, in LRYGB, in open RYGB, and laparoscopic gastric plication. In general health better results were in LSG (M: 9.144, CrI: 4.704; 13.470), in LRYGB (M: 6.451, CrI: 10.240; 13.830) and in single-anastomosis gastric by-pass (M: 8.671, CrI: 1.986; 15.310), and worst results in open RYGB (M: -4.048, CrI: -7.984; -0.305). In social and vital aspects of quality of life, better results were observed in LSG and LRYGB than control intervention. We did not find any differences between bariatric interventions in physical role, mental and bodily aspects of quality of life. Conclusion: The network meta-analysis revealed that better quality of life in total score one year after bariatric interventions were after LSG, LRYGB, open RYGB. In physical and general health aspects worst quality of life was in open RYGB procedure. Other interventions did not significantly affect the quality of life after a year compared to dietary intervention.

Keywords: bariatric surgery, network meta-analysis, quality of life, one year follow-up

Procedia PDF Downloads 159
322 Adopting a New Policy in Maritime Law for Protecting Ship Mortgagees Against Maritime Liens

Authors: Mojtaba Eshraghi Arani

Abstract:

Ship financing is the vital element in the development of shipping industry because while the ship constitutes the owners’ main asset, she is considered a reliable security in the financiers’ viewpoint as well. However, it is most probable that a financier who has accepted a ship as security will face many creditors who are privileged and rank before him for collecting, out of the ship, the money that they are owed. In fact, according to the current rule of maritime law, which was established by “Convention Internationale pour l’Unification de Certaines Règles Relatives aux Privilèges et Hypothèques Maritimes, Brussels, 10 April 1926”, the mortgages, hypotheques, and other charges on vessels rank after several secured claims referred to as “maritime liens”. Such maritime liens are an exhaustive list of claims including but not limited to “expenses incurred in the common interest of the creditors to preserve the vessel or to procure its sale and the distribution of the proceeds of sale”, “tonnage dues, light or harbour dues, and other public taxes and charges of the same character”, “claims arising out of the contract of engagement of the master, crew and other persons hired on board”, “remuneration for assistance and salvage”, “the contribution of the vessel in general average”, “indemnities for collision or other damage caused to works forming part of harbours, docks, etc,” “indemnities for personal injury to passengers or crew or for loss of or damage to cargo”, “claims resulting form contracts entered into or acts done by the master”. The same rule survived with only some minor change in the categories of maritime liens in the substitute conventions 1967 and 1993. The status que in maritime law have always been considered as a major obstacle to the development of shipping market and has inevitably led to increase in the interest rates and other related costs of ship financing. It seems that the national and international policy makers have yet to change their mind being worried about the deviation from the old marine traditions. However, it is crystal clear that the continuation of status que will harm, to a great extent, the shipowners and, consequently, the international merchants as a whole. It is argued in this article that the raison d'être for many categories of maritime liens cease to exist anymore, in view of which, the international community has to recognize only a minimum category of maritime liens which are created in the common interests of all creditors; to this effect, only two category of “compensation due for the salvage of ship” and “extraordinary expenses indispensable for the preservation of the ship” can be declared as taking priority over the mortgagee rights, in anology with the Geneva Convention on the International Recognition of Rights in Aircrafts (1948). A qualitative method with the concept of interpretation of data collection has been used in this manuscript. The source of the data is the analysis of international conventions and domestic laws.

Keywords: ship finance, mortgage, maritime liens, brussels convenion, geneva convention 1948

Procedia PDF Downloads 72