Search results for: vertical probe
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1553

Search results for: vertical probe

953 Experimental Study Analyzing the Similarity Theory Formulations for the Effect of Aerodynamic Roughness Length on Turbulence Length Scales in the Atmospheric Surface Layer

Authors: Matthew J. Emes, Azadeh Jafari, Maziar Arjomandi

Abstract:

Velocity fluctuations of shear-generated turbulence are largest in the atmospheric surface layer (ASL) of nominal 100 m depth, which can lead to dynamic effects such as galloping and flutter on small physical structures on the ground when the turbulence length scales and characteristic length of the physical structure are the same order of magnitude. Turbulence length scales are a measure of the average sizes of the energy-containing eddies that are widely estimated using two-point cross-correlation analysis to convert the temporal lag to a separation distance using Taylor’s hypothesis that the convection velocity is equal to the mean velocity at the corresponding height. Profiles of turbulence length scales in the neutrally-stratified ASL, as predicted by Monin-Obukhov similarity theory in Engineering Sciences Data Unit (ESDU) 85020 for single-point data and ESDU 86010 for two-point correlations, are largely dependent on the aerodynamic roughness length. Field measurements have shown that longitudinal turbulence length scales show significant regional variation, whereas length scales of the vertical component show consistent Obukhov scaling from site to site because of the absence of low-frequency components. Hence, the objective of this experimental study is to compare the similarity theory relationships between the turbulence length scales and aerodynamic roughness length with those calculated using the autocorrelations and cross-correlations of field measurement velocity data at two sites: the Surface Layer Turbulence and Environmental Science Test (SLTEST) facility in a desert ASL in Dugway, Utah, USA and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) wind tower in a rural ASL in Jemalong, NSW, Australia. The results indicate that the longitudinal turbulence length scales increase with increasing aerodynamic roughness length, as opposed to the relationships derived by similarity theory correlations in ESDU models. However, the ratio of the turbulence length scales in the lateral and vertical directions to the longitudinal length scales is relatively independent of surface roughness, showing consistent inner-scaling between the two sites and the ESDU correlations. Further, the diurnal variation of wind velocity due to changes in atmospheric stability conditions has a significant effect on the turbulence structure of the energy-containing eddies in the lower ASL.

Keywords: aerodynamic roughness length, atmospheric surface layer, similarity theory, turbulence length scales

Procedia PDF Downloads 114
952 Indicators of Regional Development, Case Study: Bucharest-Ilfov Region

Authors: Dan Cristian Popescu

Abstract:

The new territorial identities and global dynamics have determined a change of policies of economics, social and cultural development from a vertical to a horizontal approach, which is based on cooperation networks between institutional actors, economic operators or civil society representatives. The European integration has not only generated a different patterns of competitiveness, economic growth, concentration of attractive potential, but also disparities among regions of this country, or even in the countryside within a region. To a better understanding of the dynamics of regional development and the impact of this concept on Romania, I chose as a case study the region Bucharest-Ilfov which is analyzed on the basis of predetermined indicators and of the impact of European programs.

Keywords: regional competition, regional development, rural, urban

Procedia PDF Downloads 571
951 Valorization of Gypsum as Industrial Waste

Authors: Hasna Soli

Abstract:

The main objective of this work is the extraction of sulfur from gypsum here is industrial waste. Indeed the sulfuric acid production, passing through the following process; melting sulfur, filtration of the liquid sulfur, sulfur combustion to produce SO₂, conversion of SO₂ to SO₃ and SO₃ absorption in water to produce H₂SO₄ product as waste CaSO₄ the anhydrous calcium sulfate. The main objectives of this work are improving the industrial practices and to find other ways to manage these solid wastes. It should also assess the consequences of treatment in terms of training and become byproducts. Firstly there will be a characterization of this type of waste by an X-ray diffraction; to obtain phase solid compositions and chemical analysis; gravimetrically and atomic absorption spectrometry or by ICP. The samples are mineralized in suitable acidic or basic solutions. The elements analyzed are CaO, Sulfide (SO₃), Al₂O₃, Fe₂O₃, MgO, SiO₂. Then an analysis by EDS energy dispersive spectrometry using an Oxford EDX probe and differential thermal and gravimetric analyzes. Gypsum’s valuation will be performed. Indeed, the CaSO₄ will be reused to produce sulfuric acid, which will be reintroduced into the production line. The second approach explored in this work is the thermal utilization of solid waste to remove sulfur as a dilute sulfuric acid solution.

Keywords: environment, gypsum, sulfur, waste

Procedia PDF Downloads 267
950 Non-Contact Characterization of Standard Liquids Using Waveguide at 12.4 to18 Ghz Frequency Span

Authors: Kasra Khorsand-Kazemi, Bianca Vizcaino, Mandeep Chhajer Jain, Maryam Moradpour

Abstract:

This work presents an approach to characterize a non- contact microwave sensor using waveguides for different standard liquids such as ethanol, methanol and 2-propanol (Isopropyl Alcohol). Wideband waveguides operating between 12.4GHz to 18 GHz form the core of the sensing structure. Waveguides are sensitive to changes in conductivity of the sample under test (SUT), making them an ideal tool to characterize different polar liquids. As conductivity of the sample under test increase, the loss tangent of the material increase, thereby decreasing the S21 (dB) response of the waveguide. Among all the standard liquids measured, methanol exhibits the highest conductivity and 2-Propanol exhibits the lowest. The cutoff frequency measured for ethanol, 2-propanol, and methanol are 10.28 GHz, 10.32 GHz, and 10.38 GHz respectively. The measured results can be correlated with the loss tangent results of the standard liquid measured using the dielectric probe. This conclusively enables us to characterize different liquids using waveguides expanding the potential future applications in domains ranging from water quality management to bio-medical, chemistry and agriculture.

Keywords: Waveguides, , Microwave sensors, , Standard liquids characterization, Non-contact sensing

Procedia PDF Downloads 120
949 Enhanced Thai Character Recognition with Histogram Projection Feature Extraction

Authors: Benjawan Rangsikamol, Chutimet Srinilta

Abstract:

This research paper deals with extraction of Thai character features using the proposed histogram projection so as to improve the recognition performance. The process starts with transformation of image files into binary files before thinning. After character thinning, the skeletons are entered into the proposed extraction using histogram projection (horizontal and vertical) to extract unique features which are inputs of the subsequent recognition step. The recognition rate with the proposed extraction technique is as high as 97 percent since the technique works very well with the idiosyncrasies of Thai characters.

Keywords: character recognition, histogram projection, multilayer perceptron, Thai character features extraction

Procedia PDF Downloads 443
948 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.

Keywords: cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method

Procedia PDF Downloads 184
947 Comparative Study of Various Treatment Positioning Technique: A Site Specific Study-CA. Breast

Authors: Kamal Kaushik, Dandpani Epili, Ajay G. V., Ashutosh, S. Pradhaan

Abstract:

Introduction: Radiation therapy has come a long way over a period of decades, from 2-dimensional radiotherapy to intensity-modulated radiation therapy (IMRT) or VMAT. For advanced radiation therapy, we need better patient position reproducibility to deliver precise and quality treatment, which raises the need for better image guidance technologies for precise patient positioning. This study presents a two tattoo simulation with roll correction technique which is comparable to other advanced patient positioning techniques. Objective: This is a site-specific study is aimed to perform a comparison between various treatment positioning techniques used for the treatment of patients of Ca- Breast undergoing radiotherapy. In this study, we are comparing 5 different positioning methods used for the treatment of ca-breast, namely i) Vacloc with 3 tattoos, ii) Breast board with three tattoos, iii) Thermoplastic cast with three fiducials, iv) Breast board with a thermoplastic mask with 3 tattoo, v) Breast board with 2 tattoos – A roll correction method. Methods and material: All in one (AIO) solution immobilization was used in all patient positioning techniques for immobilization. The process of two tattoo simulations includes positioning of the patient with the help of a thoracic-abdomen wedge, armrest & knee rest. After proper patient positioning, we mark two tattoos on the treatment side of the patient. After positioning, place fiducials as per the clinical borders markers (1) sternum notch (lower border of clavicle head) (2) 2 cm below from contralateral breast (3) midline between 1 & 2 markers (4) mid axillary on the same axis of 3 markers (Marker 3 & 4 should be on the same axis). During plan implementation, a roll depth correction is applied as per the anterior and lateral positioning tattoos, followed by the shifts required for the Isocentre position. The shifts are then verified by SSD on the patient surface followed by radiographic verification using Cone Beam Computed Tomography (CBCT). Results: When all the five positioning techniques were compared all together, the produced shifts in Vertical, Longitudinal and lateral directions are as follows. The observations clearly suggest that the Longitudinal average shifts in two tattoo roll correction techniques are less than every other patient positioning technique. Vertical and lateral Shifts are also comparable to other modern positioning techniques. Concluded: The two tattoo simulation with roll correction technique provides us better patient setup with a technique that can be implemented easily in most of the radiotherapy centers across the developing nations where 3D verification techniques are not available along with delivery units as the shifts observed are quite minimal and are comparable to those with Vacloc and modern amenities.

Keywords: Ca. breast, breast board, roll correction technique, CBCT

Procedia PDF Downloads 113
946 Spatial Mapping of Variations in Groundwater of Taluka Islamkot Thar Using GIS and Field Data

Authors: Imran Aziz Tunio

Abstract:

Islamkot is an underdeveloped sub-district (Taluka) in the Tharparkar district Sindh province of Pakistan located between latitude 24°25'19.79"N to 24°47'59.92"N and longitude 70° 1'13.95"E to 70°32'15.11"E. The Islamkot has an arid desert climate and the region is generally devoid of perennial rivers, canals, and streams. It is highly dependent on rainfall which is not considered a reliable surface water source and groundwater is the only key source of water for many centuries. To assess groundwater’s potential, an electrical resistivity survey (ERS) was conducted in Islamkot Taluka. Groundwater investigations for 128 Vertical Electrical Sounding (VES) were collected to determine the groundwater potential and obtain qualitatively and quantitatively layered resistivity parameters. The PASI Model 16 GL-N Resistivity Meter was used by employing a Schlumberger electrode configuration, with half current electrode spacing (AB/2) ranging from 1.5 to 100 m and the potential electrode spacing (MN/2) from 0.5 to 10 m. The data was acquired with a maximum current electrode spacing of 200 m. The data processing for the delineation of dune sand aquifers involved the technique of data inversion, and the interpretation of the inversion results was aided by the use of forward modeling. The measured geo-electrical parameters were examined by Interpex IX1D software, and apparent resistivity curves and synthetic model layered parameters were mapped in the ArcGIS environment using the inverse Distance Weighting (IDW) interpolation technique. Qualitative interpretation of vertical electrical sounding (VES) data shows the number of geo-electrical layers in the area varies from three to four with different resistivity values detected. Out of 128 VES model curves, 42 nos. are 3 layered, and 86 nos. are 4 layered. The resistivity of the first subsurface layers (Loose surface sand) varied from 16.13 Ωm to 3353.3 Ωm and thickness varied from 0.046 m to 17.52m. The resistivity of the second subsurface layer (Semi-consolidated sand) varied from 1.10 Ωm to 7442.8 Ωm and thickness varied from 0.30 m to 56.27 m. The resistivity of the third subsurface layer (Consolidated sand) varied from 0.00001 Ωm to 3190.8 Ωm and thickness varied from 3.26 m to 86.66 m. The resistivity of the fourth subsurface layer (Silt and Clay) varied from 0.0013 Ωm to 16264 Ωm and thickness varied from 13.50 m to 87.68 m. The Dar Zarrouk parameters, i.e. longitudinal unit conductance S is from 0.00024 to 19.91 mho; transverse unit resistance T from 7.34 to 40080.63 Ωm2; longitudinal resistance RS is from 1.22 to 3137.10 Ωm and transverse resistivity RT from 5.84 to 3138.54 Ωm. ERS data and Dar Zarrouk parameters were mapped which revealed that the study area has groundwater potential in the subsurface.

Keywords: electrical resistivity survey, GIS & RS, groundwater potential, environmental assessment, VES

Procedia PDF Downloads 77
945 The Impacts Of Hydraulic Conditions On The Fate, Transport And Accumulation Of Microplastics Pollution In The Aquatic Ecosystems

Authors: Majid Rasta, Xiaotao Shi, Mian Adnan Kakakhel, Yanqin Bai, Lao Liu, Jia Manke

Abstract:

Microplastics (MPs; particles <5 mm) pollution is considered as a globally pervasive threat to aquatic ecosystems, and many studies reported this pollution in rivers, wetlands, lakes, coastal waters and oceans. In the aquatic environments, settling and transport of MPs in water column and sediments are determined by different factors such as hydrologic characteristics, watershed pattern, rainfall events, hydraulic conditions, vegetation, hydrodynamics behavior of MPs, and physical features of particles (shape, size and density). In the meantime, hydraulic conditions (such as turbulence, high/low water speed flows or water stagnation) play a key role in the fate of MPs in aquatic ecosystems. Therefore, this study presents a briefly review on the effects of different hydraulic conditions on the fate, transport and accumulation of MPs in aquatic ecosystems. Generally, MPs are distributed horizontally and vertically in aquatic environments. The vertical distribution of MPs in the water column changes with different flow velocities. In the riverine, turbulent flow causing from the rapid water velocity and shallow depth may create a homogeneous mixture of MPs throughout the water column. While low velocity followed by low-turbulent waters can lead to the low level vertical mixing of MP particles in the water column. Consequently, the high numbers of MPs are expected to be found in the sediments of deep and wide channels as well as estuaries. In contrast, observing the lowest accumulation of MP particles in the sediments of straights of the rivers, places with the highest flow velocity is understandable. In the marine environment, hydrodynamic factors (e.g., turbulence, current velocity and residual circulation) can affect the sedimentation and transportation of MPs and thus change the distribution of MPs in the marine and coastal sediments. For instance, marine bays are known as the accumulation area of MPs due to poor hydrodynamic conditions. On the other hand, in the nearshore zone, the flow conditions are highly complex and dynamic. Experimental studies illustrated that maximum horizontal flow velocity in the sandy beach can predict the accumulation of MPs so that particles with high sinking velocities deposit in the lower water depths. As a whole, it can be concluded that the transport and accumulation of MPs in aquatic ecosystems are highly affected by hydraulic conditions. This study provided information about the impacts of hydraulic on MPs pollution. Further research on hydraulics and its relationship to the accumulation of MPs in aquatic ecosystems is needed to increase insights into this pollution.

Keywords: microplastics pollution, hydraulic, transport, accumulation

Procedia PDF Downloads 47
944 Experimental Investigations of a Modified Taylor-Couette Flow

Authors: Ahmed Esmael, Ali El Shrif

Abstract:

In this study the instability problem of a modified Taylor-Couette flow between two vertical coaxial cylinders of radius R1, R2 is considered. The modification is based on the wavy shape of the inner cylinder surface, where inner cylinders with different surface amplitude and wavelength are used. The study aims to discover the effect of the inner surface geometry on the instability phenomenon that undergoes Taylor-Couette flow. The study reveals that the transition processes depends strongly on the amplitude and wavelength of the inner cylinder surface and resulting in flow instabilities that are strongly different from that encountered in the case of the classical Taylor-Couette flow.

Keywords: hydrodynamic instability, Modified Taylor-Couette Flow, turbulence, Taylor vortices

Procedia PDF Downloads 417
943 Integration of Magnetoresistance Sensor in Microfluidic Chip for Magnetic Particles Detection

Authors: Chao-Ming Su, Pei-Sheng Wu, Yu-Chi Kuo, Yin-Chou Huang, Tan-Yueh Chen, Jefunnie Matahum, Tzong-Rong Ger

Abstract:

Application of magnetic particles (MPs) has been applied in biomedical field for many years. There are lots of advantages through this mediator including high biocompatibility and multi-diversified bio-applications. However, current techniques for evaluating the quantity of the magnetic-labeled sample assays are rare. In this paper, a Wheatstone bridge giant magnetoresistance (GMR) sensor integrated with a homemade detecting system was fabricated and used to quantify the concentration of MPs. The homemade detecting system has shown high detecting sensitivity of 10 μg/μl of MPs with optimized parameter vertical magnetic field 100 G, horizontal magnetic field 2 G and flow rate 0.4 ml/min.

Keywords: magnetic particles, magnetoresistive sensors, microfluidics, biosensor

Procedia PDF Downloads 386
942 Mathematical Modelling of Biogas Dehumidification by Using of Counterflow Heat Exchanger

Authors: Staņislavs Gendelis, Andris Jakovičs, Jānis Ratnieks, Aigars Laizāns, Dāvids Vardanjans

Abstract:

Dehumidification of biogas at the biomass plants is very important to provide the energy efficient burning of biomethane at the outlet. A few methods are widely used to reduce the water content in biogas, e.g. chiller/heat exchanger based cooling, usage of different adsorbents like PSA, or the combination of such approaches. A quite different method of biogas dehumidification is offered and analyzed in this paper. The main idea is to direct the flow of biogas from the plant around it downwards; thus, creating additional insulation layer. As the temperature in gas shell layer around the plant will decrease from ~ 38°C to 20°C in the summer or even to 0°C in the winter, condensation of water vapor occurs. The water from the bottom of the gas shell can be collected and drain away. In addition, another upward shell layer is created after the condensate drainage place on the outer side to further reducing heat losses. Thus, counterflow biogas heat exchanger is created around the biogas plant. This research work deals with the numerical modelling of biogas flow, taking into account heat exchange and condensation on cold surfaces. Different kinds of boundary conditions (air and ground temperatures in summer/winter) and various physical properties of constructions (insulation between layers, wall thickness) are included in the model to make it more general and useful for different biogas flow conditions. The complexity of this problem is fact, that the temperatures in both channels are conjugated in case of low thermal resistance between layers. MATLAB programming language is used for multiphysical model development, numerical calculations and result visualization. Experimental installation of a biogas plant’s vertical wall with an additional 2 layers of polycarbonate sheets with the controlled gas flow was set up to verify the modelling results. Gas flow at inlet/outlet, temperatures between the layers and humidity were controlled and measured during a number of experiments. Good correlation with modelling results for vertical wall section allows using of developed numerical model for an estimation of parameters for the whole biogas dehumidification system. Numerical modelling of biogas counterflow heat exchanger system placed on the plant’s wall for various cases allows optimizing of thickness for gas layers and insulation layer to ensure necessary dehumidification of the gas under different climatic conditions. Modelling of system’s defined configuration with known conditions helps to predict the temperature and humidity content of the biogas at the outlet.

Keywords: biogas dehumidification, numerical modelling, condensation, biogas plant experimental model

Procedia PDF Downloads 531
941 Synthesis and Evaluation of Antioxidant Behavior of Some Indole-Based Melatonin Derivatives

Authors: Eddy Neuhaus, Hanif Shirinzadeh, Cigdem Karaaslan, Elif Ince, Hande Gurer-Orhan, Sibel Suzen

Abstract:

Reactive oxygen species (ROS) and oxidative stress can cause fatal damage to essential cell structures, including DNA. It is known that use of antioxidants could be advantageous in the prevention of various diseases such as cancer, cardiovascular diseases and neurodegenerative disorders. Since antioxidant properties of the indole ring-containing melatonin (MLT) has been described and evaluated, MLT-related compounds such as MLT metabolites and synthetic analogues are under investigation to determine which exhibit the highest activity with the lowest side-effects. Owing to indole and hydrazones appealing physiological properties and are mostly found in numerous biologically active compounds a series of indole-7-carbaldehyde hydrazone derivatives were synthesized, characterized and in vitro antioxidant activity was investigated by evaluating their reducing effect against oxidation of a redox-sensitive fluorescent probe. Cytotoxicity potential of all indole-based MLT analogues was investigated both by lactate dehydrogenase leakage assay and by MTT assay. This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) Research and Development Grant 112S599.

Keywords: melatonin, antioxidant activity, indole, hydrazone, oxidative stress

Procedia PDF Downloads 467
940 Experimental Study of the Electrical Conductivity and Thermal Conductivity Property of Micro-based Al-Cu-Nb-Mo Alloy

Authors: Uwa C. A., Jamiru T.

Abstract:

Aluminum based alloys with a certain compositional blend and manufacturing method have been reported to have excellent electrical conductors. In the current investigation, metal powders of Aluminum (Al), Copper (Cu), Niobium (Nb), and Molybdenum (Mo) were weighed in accordance with certain ratios and spread equally by combining the powder particles. The metal particles were mixed using a tube mixer for 12 hours. Before pouring into a 30mm-diameter graphite mold, pre-pressed, and placed into an SPS furnace, the thermal conductivity of the mixed metal powders was evaluated using a portable Thermtest device. Axial pressure of 50 MPa was used at a heating rate of 50 oC/min, and a multi-stage heating procedure with a holding period of 10 min. was used to sinter at temperatures between 300 oC and 480 oC. After being cooled to room temperature, the specimens were unmolded to produce the aluminum, copper, niobium, and molybdenum alloy material. The HPS 2662 Precision Four-point Probe Meter was used to determine the electrical resistivity and the values used to calculate the electrical conductivity of the sintered alloy samples. Finally, the alloy with the highest electrical conductivity and thermal conductivity qualities was the one with the following composition: Al 93.5Cu4Nb1.5Mo1. It also had a density of 3.23 g/cm3. It could be advisable for usage in automobile radiator and electric transmission line components.

Keywords: Al-Cu-Nb-Mo, electrical conductivity, alloy, sintering, thermal conductivity

Procedia PDF Downloads 72
939 Application of FT-NIR Spectroscopy and Electronic Nose in On-line Monitoring of Dough Proofing

Authors: Madhuresh Dwivedi, Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

FT-NIR spectroscopy and electronic nose was used to study the kinetics of dough proofing. Spectroscopy was conducted with an optic probe in the diffuse reflectance mode. The dough leavening was carried out at different temperatures (25 and 35°C) and constant RH (80%). Spectra were collected in the range of wave numbers from 12,000 to 4,000 cm-1 directly on the samples, every 5 min during proofing, up to 2 hours. NIR spectra were corrected for scatter effect and second order derivatization was done to transform the spectra. Principal component analysis (PCA) was applied for the leavening process and process kinetics was calculated. PCA was performed on data set and loadings were calculated. For leavening, four absorption zones (8,950-8,850, 7,200-6,800, 5,250-5,150 and 4,700-4,250 cm-1) were involved in describing the process. Simultaneously electronic nose was also used for understanding the development of odour compounds during fermentation. The electronic nose was able to differential the sample on the basis of aroma generation at different time during fermentation. In order to rapidly differentiate samples based on odor, a Principal component analysis is performed and successfully demonstrated in this study. The result suggests that electronic nose and FT-NIR spectroscopy can be utilized for the online quality control of the fermentation process during leavening of bread dough.

Keywords: FT-NIR, dough, e-nose, proofing, principal component analysis

Procedia PDF Downloads 368
938 Study Case of Spacecraft Instruments in Structural Modelling with Nastran-Patran

Authors: Francisco Borja de Lara, Ali Ravanbakhsh, Robert F. Wimmer-Schweingruber, Lars Seimetz, Fermín Navarro

Abstract:

The intense structural loads during the launch of a spacecraft represent a challenge for the space structure designers because enough resistance has to be achieved while maintaining at the same time the mass and volume within the allowable margins of the mission requirements and inside the limits of the budget project. In this conference, we present the structural analysis of the Lunar Lander Neutron Dosimetry (LND) experiment on the Chang'E4 mission, the first probe to land on the moon’s far side included in the Chinese’ Moon Exploration Program by the Chinese National Space Administration. To this target, the software Nastran/Patran has been used: a structural model in Patran and a structural analysis through Nastran have been realized. Next, the results obtained are used both for the optimization process of the spacecraft structure, and as input parameters for the model structural test campaign. In this way, the feasibility of the lunar instrument structure is demonstrated in terms of the modal modes, stresses, and random vibration and a better understanding of the structural tests design is provided by our results.

Keywords: Chang’E4, Chinese national space administration, lunar lander neutron dosimetry, nastran-patran, structural analysis

Procedia PDF Downloads 511
937 Green-synthesized of Selenium Nanoparticles Using Garlic Extract and Their Application for Rapid Detection of Salicylic Acid in Milk

Authors: Kashif Jabbar

Abstract:

Milk adulteration is a global concern, and the current study was plan to synthesize Selenium nanoparticles by green method using plant extract of garlic, Allium Sativum, and to characterize Selenium nanoparticles through different analytical techniques and to apply Selenium nanoparticles as fast and easy technique for the detection of salicylic acid in milk. The highly selective, sensitive, and quick interference green synthesis-based sensing of possible milk adulterants i.e., salicylic acid, has been reported here. Salicylic acid interacts with nanoparticles through strong bonding interactions, hence resulting in an interruption within the formation of selenium nanoparticles which is confirmed by UV-VIS spectroscopy, scanning electron microscopy, and x-ray diffraction. This interaction in the synthesis of nanoparticles resulted in transmittance wavelength that decrease with the increasing amount of salicylic acid, showing strong binding of selenium nanoparticles with adulterant, thereby permitting in-situ fast detection of salicylic acid from milk having a limit of detection at 10-3 mol and linear coefficient correlation of 0.9907. Conclusively, it can be draw that colloidal selenium could be synthesize successfully by garlic extract in order to serve as a probe for fast and cheap testing of milk adulteration.

Keywords: adulteration, green synthesis, selenium nanoparticles, salicylic acid, aggregation

Procedia PDF Downloads 62
936 Status Report of the GERDA Phase II Startup

Authors: Valerio D’Andrea

Abstract:

The GERmanium Detector Array (GERDA) experiment, located at the Laboratori Nazionali del Gran Sasso (LNGS) of INFN, searches for 0νββ of 76Ge. Germanium diodes enriched to ∼ 86 % in the double beta emitter 76Ge(enrGe) are exposed being both source and detectors of 0νββ decay. Neutrinoless double beta decay is considered a powerful probe to address still open issues in the neutrino sector of the (beyond) Standard Model of particle Physics. Since 2013, just after the completion of the first part of its experimental program (Phase I), the GERDA setup has been upgraded to perform its next step in the 0νββ searches (Phase II). Phase II aims to reach a sensitivity to the 0νββ decay half-life larger than 1026 yr in about 3 years of physics data taking. This exposing a detector mass of about 35 kg of enrGe and with a background index of about 10^−3 cts/(keV·kg·yr). One of the main new implementations is the liquid argon scintillation light read-out, to veto those events that only partially deposit their energy both in Ge and in the surrounding LAr. In this paper, the GERDA Phase II expected goals, the upgrade work and few selected features from the 2015 commissioning and 2016 calibration runs will be presented. The main Phase I achievements will be also reviewed.

Keywords: gerda, double beta decay, LNGS, germanium

Procedia PDF Downloads 355
935 Reviewing Privacy Preserving Distributed Data Mining

Authors: Sajjad Baghernezhad, Saeideh Baghernezhad

Abstract:

Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined.

Keywords: data mining, distributed data mining, privacy protection, privacy preserving

Procedia PDF Downloads 502
934 Trace Element Compositions of Placer Gold Samples: Implication for Gold Exploration in Northern Cameroon

Authors: Yanick Blaise Ketchaya, Taofa Zhou

Abstract:

The type of primary source of gold deposit can be explored by using the study of trace element analysis of placer gold which is a valuable exploration tool. Au-bearing deposits are investigated through the placer gold, which is an important indicator mineral. The hydrothermal fluid interacting with diverse geological settings exerts an important function on the chemical composition of gold. Consequently, alluvial gold particles from the placer deposits within the Gamba district in northern Cameroon were examined by an electron probe microanalyzer (EPMA) to show discriminant chemical signatures. The gold grains from a different locality show the same trace element composition, which appears to be in a solid solution in Au. These trace element compositions, contained in gold grains, indicate a homogeneous source. The placer gold particles have significant chemical characteristics (low Ag content), consistent with a mesothermal source. The gold particle signatures in the Gamba district, with high Te and Bi contents, reflect the chemical characteristics of the felsic host rock superimposed on the chemical signature of the hydrothermal fluid.

Keywords: hypogene source, Northern Cameroon, placer gold, trace element

Procedia PDF Downloads 92
933 A Semi-Automated GIS-Based Implementation of Slope Angle Design Reconciliation Process at Debswana Jwaneng Mine, Botswana

Authors: K. Mokatse, O. M. Barei, K. Gabanakgosi, P. Matlhabaphiri

Abstract:

The mining of pit slopes is often associated with some level of deviation from design recommendations, and this may translate to associated changes in the stability of the excavated pit slopes. Therefore slope angle design reconciliations are essential for assessing and monitoring compliance of excavated pit slopes to accepted slope designs. These associated changes in slope stability may be reflected by changes in the calculated factors of safety and/or probabilities of failure. Reconciliations of as-mined and slope design profiles are conducted periodically to assess the implications of these deviations on pit slope stability. Currently, the slope design reconciliation process being implemented in Jwaneng Mine involves the measurement of as-mined and design slope angles along vertical sections cut along the established geotechnical design section lines on the GEOVIA GEMS™ software. Bench retentions are calculated as a percentage of the available catchment area, less over-mined and under-mined areas, to that of the designed catchment area. This process has proven to be both tedious and requires a lot of manual effort and time to execute. Consequently, a new semi-automated mine-to-design reconciliation approach that utilizes laser scanning and GIS-based tools is being proposed at Jwaneng Mine. This method involves high-resolution scanning of targeted bench walls, subsequent creation of 3D surfaces from point cloud data and the derivation of slope toe lines and crest lines on the Maptek I-Site Studio software. The toe lines and crest lines are then exported to the ArcGIS software where distance offsets between the design and actual bench toe lines and crest lines are calculated. Retained bench catchment capacity is measured as distances between the toe lines and crest lines on the same bench elevations. The assessment of the performance of the inter-ramp and overall slopes entails the measurement of excavated and design slope angles along vertical sections on the ArcGIS software. Excavated and design toe-to-toe or crest-to-crest slope angles are measured for inter-ramp stack slope reconciliations. Crest-to-toe slope angles are also measured for overall slope angle design reconciliations. The proposed approach allows for a more automated, accurate, quick and easier workflow for carrying out slope angle design reconciliations. This process has proved highly effective and timeous in the assessment of slope performance in Jwaneng Mine. This paper presents a newly proposed process for assessing compliance to slope angle designs for Jwaneng Mine.

Keywords: slope angle designs, slope design recommendations, slope performance, slope stability

Procedia PDF Downloads 210
932 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy

Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly

Abstract:

In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.

Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening

Procedia PDF Downloads 57
931 Gender and Science: Is the Association Universal?

Authors: Neelam Kumar

Abstract:

Science is stratified, with an unequal distribution of research facilities and rewards among scientists. Gender stratification is one of the most prevalent phenomena in the world of science. In most countries gender segregation, horizontal as well as vertical, stands out in the field of science and engineering. India is no exception. This paper aims to examine: (1) gender and science associations, historical as well as contemporary, (2) women’s enrolment and gender differences in selection of academic fields, (2) women as professional researchers, (3) career path and recognition/trajectories. The paper reveals that in recent years the gender–science relationship has changed, but is not totally free from biases. Women’s enrolment into various science disciplines has shown remarkable and steady increase in most parts of the world, including India, yet they remain underrepresented in the S&T workforce, although to a lesser degree than in the past.

Keywords: gender, science, universal, women

Procedia PDF Downloads 288
930 Experimental Investigation on the Effect of Prestress on the Dynamic Mechanical Properties of Conglomerate Based on 3D-SHPB System

Authors: Wei Jun, Liao Hualin, Wang Huajian, Chen Jingkai, Liang Hongjun, Liu Chuanfu

Abstract:

Kuqa Piedmont is rich in oil and gas resources and has great development potential in Tarim Basin, China. However, there is a huge thick gravel layer developed with high content, wide distribution and variation in size of gravel, leading to the condition of strong heterogeneity. So that, the drill string is in a state of severe vibration and the drill bit is worn seriously while drilling, which greatly reduces the rock-breaking efficiency, and there is a complex load state of impact and three-dimensional in-situ stress acting on the rock in the bottom hole. The dynamic mechanical properties and the influencing factors of conglomerate, the main component of gravel layer, are the basis of engineering design and efficient rock breaking method and theoretical research. Limited by the previously experimental technique, there are few works published yet about conglomerate, especially rare in dynamic load. Based on this, a kind of 3D SHPB system, three-dimensional prestress, can be applied to simulate the in-situ stress characteristics, is adopted for the dynamic test of the conglomerate. The results show that the dynamic strength is higher than its static strength obviously, and while the three-dimensional prestress is 0 and the loading strain rate is 81.25~228.42 s-1, the true triaxial equivalent strength is 167.17~199.87 MPa, and the strong growth factor of dynamic and static is 1.61~1.92. And the higher the impact velocity, the greater the loading strain rate, the higher the dynamic strength and the greater the failure strain, which all increase linearly. There is a critical prestress in the impact direction and its vertical direction. In the impact direction, while the prestress is less than the critical one, the dynamic strength and the loading strain rate increase linearly; otherwise, the strength decreases slightly and the strain rate decreases rapidly. In the vertical direction of impact load, the strength increases and the strain rate decreases linearly before the critical prestress, after that, oppositely. The dynamic strength of the conglomerate can be reduced properly by reducing the amplitude of impact load so that the service life of rock-breaking tools can be prolonged while drilling in the stratum rich in gravel. The research has important reference significance for the speed-increasing technology and theoretical research while drilling in gravel layer.

Keywords: huge thick gravel layer, conglomerate, 3D SHPB, dynamic strength, the deformation characteristics, prestress

Procedia PDF Downloads 181
929 Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera

Authors: Isa Moazen, Ali Nahvi

Abstract:

Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness.

Keywords: advanced driver assistance systems, thermal imaging, driver drowsiness detection, feature extraction

Procedia PDF Downloads 118
928 Driving Mechanism of Urban Sprawl in Chinese Context from the Perspective of Domestic and Overseas Comparison

Authors: Tingke Wu, Yaping Huang

Abstract:

Many cities in China have been experiencing serious urban sprawl since the 1980s, which pose great challenges to a country with scare cultivated land and huge population. Because of different social and economic context and development stage, driving forces of urban sprawl in China are quite different from developed countries. Therefore, it is of great importance to probe into urban sprawl driving mechanism in Chinese context. By a comparison study of the background and features of urban sprawl between China and developed countries, this research establishes an analytical framework for sprawl dynamic mechanism in China. By literature review and analyzing data from national statistical yearbook, it then probes into the driving mechanism and the primary cause of urban sprawl. The results suggest that population increase, economic growth, traffic and information technology development lead to rapid expansion of urban space; defects of land institution and lack of effective guidance give rise to low efficiency of urban land use. Moreover, urban sprawl is ultimately attributed to imperfections of policy and institution. On this basis, this research puts forward several sprawl control strategies in Chinese context.

Keywords: China, driving forces, driving mechanism, land institution, urban expansion, urban sprawl

Procedia PDF Downloads 163
927 Dual Solutions in Mixed Convection Boundary Layer Flow: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The mixed convection stagnation point flow toward a vertical plate is investigated. The external flow impinges normal to the heated plate and the surface temperature is assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. Numerical results show that dual solutions are possible for a certain range of the mixed convection parameter. A stability analysis is performed to determine which solution is linearly stable and physically realizable.

Keywords: dual solutions, heat transfer, mixed convection, stability analysis

Procedia PDF Downloads 375
926 Adjustment of the Whole-Body Center of Mass during Trunk-Flexed Walking across Uneven Ground

Authors: Soran Aminiaghdam, Christian Rode, Reinhard Blickhan, Astrid Zech

Abstract:

Despite considerable studies on the impact of imposed trunk posture on human walking, less is known about such locomotion while negotiating changes in ground level. The aim of this study was to investigate the behavior of the VBCOM in response to a two-fold expected perturbation, namely alterations in body posture and in ground level. To this end, the kinematic data and ground reaction forces of twelve able participants were collected. We analyzed the vertical position of the body center of mass (VBCOM) from the ground determined by the body segmental analysis method relative to the laboratory coordinate system at touchdown and toe-off instants during walking across uneven ground — characterized by perturbation contact (a 10-cm visible drop) and pre- and post-perturbation contacts — in comparison to unperturbed level contact while maintaining three postures (regular erect, ~30° and ~50° of trunk flexion from the vertical). The VBCOM was normalized to the distance between the greater trochanter marker and the lateral malleoli marker at the instant of TD. Moreover, we calculated the backward rotation during step-down as the difference of the maximum of the trunk angle in the pre-perturbation contact and the minimal trunk angle in the perturbation contact. Two-way repeated measures ANOVAs revealed contact-specific effects of posture on the VBCOM at touchdown (F = 5.96, p = 0.00). As indicated by the analysis of simple main effects, during unperturbed level and pre-perturbation contacts, no between-posture differences for the VBCOM at touchdown were found. In the perturbation contact, trunk-flexed gaits showed a significant increase of VBCOM as compared to the pre-perturbation contact. In the post-perturbation contact, the VBCOM demonstrated a significant decrease in all gait postures relative to the preceding corresponding contacts with no between-posture differences. Main effects of posture revealed that the VBCOM at toe-off significantly decreased in trunk-flexed gaits relative to the regular erect gait. For the main effect of contact, the VBCOM at toe-off demonstrated changes across perturbation and post-perturbation contacts as compared to the unperturbed level contact. Furthermore, participants exhibited a backward trunk rotation during step-down possibly to control the angular momentum of their whole body. A more pronounced backward trunk rotation (2- to 3-fold compared with level contacts) in trunk-flexed walking contributed to the observed elevated VBCOM during the step-down which may have facilitated drop negotiation. These results may shed light on the interaction between posture and locomotion in able gait, and specifically on the behavior of the body center of mass during perturbed locomotion.

Keywords: center of mass, perturbation, posture, uneven ground, walking

Procedia PDF Downloads 163
925 Removal of Nitenpyram from Farmland Runoff by an Integrated Ecological Ditches with Constructed Wetland System

Authors: Dan Qu, Dezhi Sun, Benhang Li

Abstract:

The removal of Nitenpyram from farmland runoff by an integrated eco-ditches and constructed wetland system was investigated in the case of different HRT. Experimental results show that the removal of COD, N and P was not influenced by the Nitenpyram. When the HRT was 2.5 d, 2 d, and 1 d, the Nitenpyram removal efficiency could reach 100%, 100% and 84%, respectively. The removal efficiency in the ecological ditches was about 38%-40% in the case of different HRT, while that in the constructed wetland was influenced by the HRT variation. The optimum HRT for Nitenpyram and pollutants removal was 2 d. The substrate zeolite with soil and hollow brick layer enabled higher Nitenpyram removal rates, probably due to the cooperative phenomenon of plant uptake and microbiological deterioration as well as the adsorption by the substrate.

Keywords: ecological ditch, vertical flow constructed wetland, hydraulic retention time, Nitenpyram

Procedia PDF Downloads 377
924 Effects of Voltage Pulse Characteristics on Some Performance Parameters of LiₓCoO₂-based Resistive Switching Memory Devices

Authors: Van Son Nguyen, Van Huy Mai, Alec Moradpour, Pascale Auban Senzier, Claude Pasquier, Kang Wang, Pierre-Antoine Albouy, Marcelo J. Rozenberg, John Giapintzakis, Christian N. Mihailescu, Charis M. Orfanidou, Thomas Maroutian, Philippe Lecoeur, Guillaume Agnus, Pascal Aubert, Sylvain Franger, Raphaël Salot, Nathalie Brun, Katia March, David Alamarguy, Pascal ChréTien, Olivier Schneegans

Abstract:

In the field of Nanoelectronics, a major research activity is being developed towards non-volatile memories. To face the limitations of existing Flash memory cells (endurance, downscaling, rapidity…), new approaches are emerging, among them resistive switching memories (Re-RAM). In this work, we analysed the behaviour of LixCoO2 oxide thin films in electrode/film/electrode devices. Preliminary results have been obtained concerning the influence of bias pulses characteristics (duration, value) on some performance parameters, such as endurance and resistance ratio (ROFF/RON). Besides, Conducting Probe Atomic Force Microscopy (CP-AFM) characterizations of the devices have been carried out to better understand some causes of performance failure, and thus help optimizing the switching performance of such devices.

Keywords: non volatile resistive memories, resistive switching, thin films, endurance

Procedia PDF Downloads 589