Search results for: binary
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 662

Search results for: binary

62 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 136
61 Transgressing Gender Norms in Addiction Treatment

Authors: Sara Matsuzaka

Abstract:

At the center of emerging policy debates on the rights of transgender individuals in public accommodations is the collision of gender binary views with transgender perspectives that challenge conventional gender norms. The results of such socio-political debates could have significant ramifications for the policies and infrastructures of public and private institutions nationwide, including within the addiction treatment field. Despite having disproportionately high rates of substance use disorder compared to the general population, transgender individuals experience significant barriers to engaging in addiction treatment programs. Inpatient addiction treatment centers were originally designed to treat heterosexual cisgender populations and, as such, feature gender segregated housing, bathrooms, and counseling sessions. Such heteronormative structural barriers, combined with exposures to stigmatic al attitudes, may dissuade transgender populations from benefiting from the addiction treatment they so direly need. A literature review is performed to explore the mechanisms by which gender segregation alienates transgender populations within inpatient addiction treatment. The constituent parts of the current debate on the rights of transgender individuals in public accommodations are situated the context of inpatient addiction treatment facilities. Minority Stress Theory is used as a theoretical framework for understanding substance abuse issues among transgender populations as a maladaptive behavioral response for coping with chronic stressors related to gender minority status and intersecting identities. The findings include that despite having disproportionately high rates of substance use disorder compared to the general population, transgender individuals experience significant barriers to engaging in and benefiting from addiction treatment. These barriers are present in the form of anticipated or real interpersonal stigma and discrimination by service providers and structural stigma in the form of policy and programmatic components in addiction treatment that marginalize transgender populations. Transphobic manifestations within addiction treatment may dissuade transgender individuals from seeking help, if not reinforce a lifetime of stigmatic experience, potentially exacerbating their substance use issues. Conclusive recommendations for social workers and addiction treatment professionals include: (1) dismantling institutional policies around gender segregation that alienate transgender individuals, (2) developing policies that provide full protections for transgender clients against discrimination based on their gender identity, and (3) implementing trans-affirmative cultural competency training requirements for all staff. Directions for future research are provided.

Keywords: addiction treatment, gender segregation, stigma, transgender

Procedia PDF Downloads 211
60 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 129
59 Polymeric Composites with Synergetic Carbon and Layered Metallic Compounds for Supercapacitor Application

Authors: Anukul K. Thakur, Ram Bilash Choudhary, Mandira Majumder

Abstract:

In this technologically driven world, it is requisite to develop better, faster and smaller electronic devices for various applications to keep pace with fast developing modern life. In addition, it is also required to develop sustainable and clean sources of energy in this era where the environment is being threatened by pollution and its severe consequences. Supercapacitor has gained tremendous attention in the recent years because of its various attractive properties such as it is essentially maintenance-free, high specific power, high power density, excellent pulse charge/discharge characteristics, exhibiting a long cycle-life, require a very simple charging circuit and safe operation. Binary and ternary composites of conducting polymers with carbon and other layered transition metal dichalcogenides have shown tremendous progress in the last few decades. Compared with bulk conducting polymer, these days conducting polymers have gained more attention because of their high electrical conductivity, large surface area, short length for the ion transport and superior electrochemical activity. These properties make them very suitable for several energy storage applications. On the other hand, carbon materials have also been studied intensively, owing to its rich specific surface area, very light weight, excellent chemical-mechanical property and a wide range of the operating temperature. These have been extensively employed in the fabrication of carbon-based energy storage devices and also as an electrode material in supercapacitors. Incorporation of carbon materials into the polymers increases the electrical conductivity of the polymeric composite so formed due to high electrical conductivity, high surface area and interconnectivity of the carbon. Further, polymeric composites based on layered transition metal dichalcogenides such as molybdenum disulfide (MoS2) are also considered important because they are thin indirect band gap semiconductors with a band gap around 1.2 to 1.9eV. Amongst the various 2D materials, MoS2 has received much attention because of its unique structure consisting of a graphene-like hexagonal arrangement of Mo and S atoms stacked layer by layer to give S-Mo-S sandwiches with weak Van-der-Waal forces between them. It shows higher intrinsic fast ionic conductivity than oxides and higher theoretical capacitance than the graphite.

Keywords: supercapacitor, layered transition-metal dichalcogenide, conducting polymer, ternary, carbon

Procedia PDF Downloads 256
58 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 8
57 Analysis of the Savings Behaviour of Rice Farmers in Tiaong, Quezon, Philippines

Authors: Angelika Kris D. Dalangin, Cesar B. Quicoy

Abstract:

Rice farming is a major source of livelihood and employment in the Philippines, but it requires a substantial amount of capital. Capital may come from income (farm, non-farm, and off-farm), savings and credit. However, rice farmers suffer from lack of capital due to high costs of inputs and low productivity. Capital insufficiency, coupled with low productivity, hindered them to meet their basic household and production needs. Hence, they resorted to borrowing money, mostly from informal lenders who charge very high interest rates. As another source of capital, savings can help rice farmers meet their basic needs for both the household and the farm. However, information is inadequate whether the farmers save or not, as well as, why they do not depend on savings to augment their lack of capital. Thus, it is worth analyzing how rice farmers saved. The study revealed, using the actual savings which is the difference between the household income and expenditure, that about three-fourths (72%) of the total number of farmers interviewed are savers. However, when they were asked whether they are savers or not, more than half of them considered themselves as non-savers. This gap shows that there are many farmers who think that they do not have savings at all; hence they continue to borrow money and do not depend on savings to augment their lack of capital. The study also identified the forms of savings, saving motives, and savings utilization among rice farmers. Results revealed that, for the past 12 months, most of the farmers saved cash at home for liquidity purposes while others deposited cash in banks and/or saved their money in the form of livestock. Among the most important reasons of farmers for saving are for daily household expenses, for building a house, for emergency purposes, for retirement, and for their next production. Furthermore, the study assessed the factors affecting the rice farmers’ savings behaviour using logistic regression. Results showed that the factors found to be significant were presence of non-farm income, per capita net farm income, and per capita household expense. The presence of non-farm income and per capita net farm income positively affects the farmers’ savings behaviour. On the other hand, per capita household expenses have negative effect. The effect, however, of per capita net farm income and household expenses is very negligible because of the very small chance that the farmer is a saver. Generally, income and expenditure were proved to be significant factors that affect the savings behaviour of the rice farmers. However, most farmers could not save regularly due to low farm income and high household and farm expenditures. Thus, it is highly recommended that government should develop programs or implement policies that will create more jobs for the farmers and their family members. In addition, programs and policies should be implemented to increase farm productivity and income.

Keywords: agricultural economics, agricultural finance, binary logistic regression, logit, Philippines, Quezon, rice farmers, savings, savings behaviour

Procedia PDF Downloads 228
56 Preschoolers’ Selective Trust in Moral Promises

Authors: Yuanxia Zheng, Min Zhong, Cong Xin, Guoxiong Liu, Liqi Zhu

Abstract:

Trust is a critical foundation of social interaction and development, playing a significant role in the physical and mental well-being of children, as well as their social participation. Previous research has demonstrated that young children do not blindly trust others but make selective trust judgments based on available information. The characteristics of speakers can influence children’s trust judgments. According to Mayer et al.’s model of trust, these characteristics of speakers, including ability, benevolence, and integrity, can influence children’s trust judgments. While previous research has focused primarily on the effects of ability and benevolence, there has been relatively little attention paid to integrity, which refers to individuals’ adherence to promises, fairness, and justice. This study focuses specifically on how keeping/breaking promises affects young children’s trust judgments. The paradigm of selective trust was employed in two experiments. A sample size of 100 children was required for an effect size of w = 0.30,α = 0.05,1-β = 0.85, using G*Power 3.1. This study employed a 2×2 within-subjects design to investigate the effects of moral valence of promises (within-subjects factor: moral vs. immoral promises), and fulfilment of promises (within-subjects factor: kept vs. broken promises) on children’s trust judgments (divided into declarative and promising contexts). In Experiment 1 adapted binary choice paradigms, presenting 118 preschoolers (62 girls, Mean age = 4.99 years, SD = 0.78) with four conflict scenarios involving the keeping or breaking moral/immoral promises, in order to investigate children’s trust judgments. Experiment 2 utilized single choice paradigms, in which 112 preschoolers (57 girls, Mean age = 4.94 years, SD = 0.80) were presented four stories to examine their level of trust. The results of Experiment 1 showed that preschoolers selectively trusted both promisors who kept moral promises and those who broke immoral promises, as well as their assertions and new promises. Additionally, the 5.5-6.5-year-old children are more likely to trust both promisors who keep moral promises and those who break immoral promises more than the 3.5- 4.5-year-old children. Moreover, preschoolers are more likely to make accurate trust judgments towards promisor who kept moral promise compared to those who broke immoral promises. The results of Experiment 2 showed significant differences of preschoolers’ trust degree: kept moral promise > broke immoral promise > broke moral promise ≈ kept immoral promise. This study is the first to investigate the development of trust judgement in moral promise among preschoolers aged 3.5-6.5. The results show that preschoolers can consider both valence and fulfilment of promises when making trust judgments. Furthermore, as preschoolers mature, they become more inclined to trust promisors who keep moral promises and those who break immoral promises. Additionally, the study reveals that preschoolers have the highest level of trust in promisors who kept moral promises, followed by those who broke immoral promises. Promisors who broke moral promises and those who kept immoral promises are trusted the least. These findings contribute valuable insights to our understanding of moral promises and trust judgment.

Keywords: promise, trust, moral judgement, preschoolers

Procedia PDF Downloads 54
55 Quantifying Multivariate Spatiotemporal Dynamics of Malaria Risk Using Graph-Based Optimization in Southern Ethiopia

Authors: Yonas Shuke Kitawa

Abstract:

Background: Although malaria incidence has substantially fallen sharply over the past few years, the rate of decline varies by district, time, and malaria type. Despite this turn-down, malaria remains a major public health threat in various districts of Ethiopia. Consequently, the present study is aimed at developing a predictive model that helps to identify the spatio-temporal variation in malaria risk by multiple plasmodium species. Methods: We propose a multivariate spatio-temporal Bayesian model to obtain a more coherent picture of the temporally varying spatial variation in disease risk. The spatial autocorrelation in such a data set is typically modeled by a set of random effects that assign a conditional autoregressive prior distribution. However, the autocorrelation considered in such cases depends on a binary neighborhood matrix specified through the border-sharing rule. Over here, we propose a graph-based optimization algorithm for estimating the neighborhood matrix that merely represents the spatial correlation by exploring the areal units as the vertices of a graph and the neighbor relations as the series of edges. Furthermore, we used aggregated malaria count in southern Ethiopia from August 2013 to May 2019. Results: We recognized that precipitation, temperature, and humidity are positively associated with the malaria threat in the area. On the other hand, enhanced vegetation index, nighttime light (NTL), and distance from coastal areas are negatively associated. Moreover, nonlinear relationships were observed between malaria incidence and precipitation, temperature, and NTL. Additionally, lagged effects of temperature and humidity have a significant effect on malaria risk by either species. More elevated risk of P. falciparum was observed following the rainy season, and unstable transmission of P. vivax was observed in the area. Finally, P. vivax risks are less sensitive to environmental factors than those of P. falciparum. Conclusion: The improved inference was gained by employing the proposed approach in comparison to the commonly used border-sharing rule. Additionally, different covariates are identified, including delayed effects, and elevated risks of either of the cases were observed in districts found in the central and western regions. As malaria transmission operates in a spatially continuous manner, a spatially continuous model should be employed when it is computationally feasible.

Keywords: disease mapping, MSTCAR, graph-based optimization algorithm, P. falciparum, P. vivax, waiting matrix

Procedia PDF Downloads 77
54 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering

Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher

Abstract:

Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.

Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing

Procedia PDF Downloads 169
53 God, The Master Programmer: The Relationship Between God and Computers

Authors: Mohammad Sabbagh

Abstract:

Anyone who reads the Torah or the Quran learns that GOD created everything that is around us, seen and unseen, in six days. Within HIS plan of creation, HE placed for us a key proof of HIS existence which is essentially computers and the ability to program them. Digital computer programming began with binary instructions, which eventually evolved to what is known as high-level programming languages. Any programmer in our modern time can attest that you are essentially giving the computer commands by words and when the program is compiled, whatever is processed as output is limited to what the computer was given as an ability and furthermore as an instruction. So one can deduce that GOD created everything around us with HIS words, programming everything around in six days, just like how we can program a virtual world on the computer. GOD did mention in the Quran that one day where GOD’s throne is, is 1000 years of what we count; therefore, one might understand that GOD spoke non-stop for 6000 years of what we count, and gave everything it’s the function, attributes, class, methods and interactions. Similar to what we do in object-oriented programming. Of course, GOD has the higher example, and what HE created is much more than OOP. So when GOD said that everything is already predetermined, it is because any input, whether physical, spiritual or by thought, is outputted by any of HIS creatures, the answer has already been programmed. Any path, any thought, any idea has already been laid out with a reaction to any decision an inputter makes. Exalted is GOD!. GOD refers to HIMSELF as The Fastest Accountant in The Quran; the Arabic word that was used is close to processor or calculator. If you create a 3D simulation of a supernova explosion to understand how GOD produces certain elements and fuses protons together to spread more of HIS blessings around HIS skies; in 2022 you are going to require one of the strongest, fastest, most capable supercomputers of the world that has a theoretical speed of 50 petaFLOPS to accomplish that. In other words, the ability to perform one quadrillion (1015) floating-point operations per second. A number a human cannot even fathom. To put in more of a perspective, GOD is calculating when the computer is going through those 50 petaFLOPS calculations per second and HE is also calculating all the physics of every atom and what is smaller than that in all the actual explosion, and it’s all in truth. When GOD said HE created the world in truth, one of the meanings a person can understand is that when certain things occur around you, whether how a car crashes or how a tree grows; there is a science and a way to understand it, and whatever programming or science you deduce from whatever event you observed, it can relate to other similar events. That is why GOD might have said in The Quran that it is the people of knowledge, scholars, or scientist that fears GOD the most! One thing that is essential for us to keep up with what the computer is doing and for us to track our progress along with any errors is we incorporate logging mechanisms and backups. GOD in The Quran said that ‘WE used to copy what you used to do’. Essentially as the world is running, think of it as an interactive movie that is being played out in front of you, in a full-immersive non-virtual reality setting. GOD is recording it, from every angle to every thought, to every action. This brings the idea of how scary the Day of Judgment will be when one might realize that it’s going to be a fully immersive video when we would be getting and reading our book.

Keywords: programming, the Quran, object orientation, computers and humans, GOD

Procedia PDF Downloads 107
52 An Adaptive Oversampling Technique for Imbalanced Datasets

Authors: Shaukat Ali Shahee, Usha Ananthakumar

Abstract:

A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.

Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling

Procedia PDF Downloads 418
51 Prevalence of Fast-Food Consumption on Overweight or Obesity on Employees (Age Between 25-45 Years) in Private Sector; A Cross-Sectional Study in Colombo, Sri Lanka

Authors: Arosha Rashmi De Silva, Ananda Chandrasekara

Abstract:

This study seeks to comprehensively examine the influence of fast-food consumption and physical activity levels on the body weight of young employees within the private sector of Sri Lanka. The escalating popularity of fast food has raised concerns about its nutritional content and associated health ramifications. To investigate this phenomenon, a cohort of 100 individuals aged between 25 and 45, employed in Sri Lanka's private sector, participated in this research. These participants provided socio-demographic data through a standardized questionnaire, enabling the characterization of their backgrounds. Additionally, participants disclosed their frequency of fast-food consumption and engagement in physical activities, utilizing validated assessment tools. The collected data was meticulously compiled into an Excel spreadsheet and subjected to rigorous statistical analysis. Descriptive statistics, such as percentages and proportions, were employed to delineate the body weight status of the participants. Employing chi-square tests, our study identified significant associations between fast-food consumption, levels of physical activity, and body weight categories. Furthermore, through binary logistic regression analysis, potential risk factors contributing to overweight and obesity within the young employee cohort were elucidated. Our findings revealed a disconcerting trend, with 6% of participants classified as underweight, 32% within the normal weight range, and a substantial 62% categorized as overweight or obese. These outcomes underscore the alarming prevalence of overweight and obesity among young private-sector employees, particularly within the bustling urban landscape of Colombo, Sri Lanka. The data strongly imply a robust correlation between fast-food consumption, sedentary behaviors, and higher body weight categories, reflective of the evolving lifestyle patterns associated with the nation's economic growth. This study emphasizes the urgent need for effective interventions to counter the detrimental effects of fast-food consumption. The implementation of awareness campaigns elucidating the adverse health consequences of fast food, coupled with comprehensive nutritional education, can empower individuals to make informed dietary choices. Workplace interventions, including the provision of healthier meal alternatives and the facilitation of physical activity opportunities, are essential in fostering a healthier workforce and mitigating the escalating burden of overweight and obesity in Sri Lanka

Keywords: fast food consumption, obese, overweight, physical activity level

Procedia PDF Downloads 50
50 Determinants of Never Users of Contraception-Results from Pakistan Demographic and Health Survey 2012-13

Authors: Arsalan Jabbar, Wajiha Javed, Nelofer Mehboob, Zahid Memon

Abstract:

Introduction: There are multiple social, individual and cultural factors that influence an individual’s decision to adopt family planning methods especially among non-users in patriarchal societies like Pakistan.Non-users, if targeted efficiently, can contribute significantly to country’s CPR. A research study showed that non-users if convinced to adopt lactational amenorrhea method can shift to long-term methods in future. Research shows that if non-users are targeted efficiently a 59% reduction in unintended pregnancies in Saharan Africa and South-Central and South-East Asia is anticipated. Methods: We did secondary data analysis on Pakistan Demographic Heath Survey (2012-13) dataset. Use of contraception (never-use/ever-use) was the outcome variable. At univariate level Chi-square/Fisher Exact test was used to assess relationship of baseline covariates with contraception use. Then variables to be incorporated in the model were checked for multi-collinearity, confounding, and interaction. Then binary logistic regression (with an urban-rural stratification) was done to find the relationship between contraception use and baseline demographic and social variables. Results: The multivariate analyses of the study showed that younger women (≤ 29 years) were more prone to be never users as compared to those who were > 30 years and this trend was seen in urban areas (AOR 1.92, CI 1.453-2.536) as well as rural areas (AOR 1.809, CI 1.421-2.303). While looking at regional variation, women from urban Sindh (AOR 1.548, CI 1.142-2.099) and urban Balochistan (AOR 2.403, CI 1.504-3.839) had more never users as compared to other urban regions. Women in the rich wealth quintile were more never users and this was seen both in urban and rural localities (urban (AOR 1.106 CI .753-1.624); rural areas (AOR 1.162, CI .887-1.524)) even though these were not statistically significant. Women idealizing more children(> 4) are more never users as compared to those idealizing less children in both urban (AOR 1.854, CI 1.275-2.697) and rural areas (AOR 2.101, CI 1.514-2.916). Women who never lost a pregnancy were more inclined to be non-users in rural areas (AOR 1.394, CI 1.127-1.723) .Women familiar with only traditional or no method had more never users in rural areas (AOR 1.717, CI 1.127-1.723) but in urban areas it wasn’t significant. Women unaware of Lady Health Worker’s presence in their area were more never users especially in rural areas (AOR 1.276, CI 1.014-1.607). Women who did not visit any care provider were more never users (urban (AOR 11.738, CI 9.112-15.121) rural areas (AOR 7.832, CI 6.243-9.826)). Discussion/Conclusion: This study concluded that government, policy makers and private sector family planning programs should focus on the untapped pool of never users (younger women from underserved provinces, in higher wealth quintiles, who desire more children.). We need to make sure to cover catchment areas where there are less LHWs and less providers as ignorance to modern methods and never been visited by an LHW are important determinants of never use. This all is in sync with previous literate from similar developing countries.

Keywords: contraception, demographic and health survey, family planning, never users

Procedia PDF Downloads 408
49 The Effect of Technology on Skin Development and Progress

Authors: Haidy Weliam Megaly Gouda

Abstract:

Dermatology is often a neglected specialty in low-resource settings despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV-positive patients. African countries have the highest HIV infection rates, and skin conditions are frequently misdiagnosed and mismanaged because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve the diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV-positive patients. A literature search within Embassy, Medline and Google Scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff, a list of 15 skin conditions was included, and a booklet was created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.

Keywords: prevalence and pattern of skin diseases, impact on quality of life, rural Nepal, interventions, quality switched ruby laser, skin color river blindness, clinical signs, circularity index, grey level run length matrix, grey level co-occurrence matrix, local binary pattern, object detection, ring detection, shape identification

Procedia PDF Downloads 62
48 Automated Computer-Vision Analysis Pipeline of Calcium Imaging Neuronal Network Activity Data

Authors: David Oluigbo, Erik Hemberg, Nathan Shwatal, Wenqi Ding, Yin Yuan, Susanna Mierau

Abstract:

Introduction: Calcium imaging is an established technique in neuroscience research for detecting activity in neural networks. Bursts of action potentials in neurons lead to transient increases in intracellular calcium visualized with fluorescent indicators. Manual identification of cell bodies and their contours by experts typically takes 10-20 minutes per calcium imaging recording. Our aim, therefore, was to design an automated pipeline to facilitate and optimize calcium imaging data analysis. Our pipeline aims to accelerate cell body and contour identification and production of graphical representations reflecting changes in neuronal calcium-based fluorescence. Methods: We created a Python-based pipeline that uses OpenCV (a computer vision Python package) to accurately (1) detect neuron contours, (2) extract the mean fluorescence within the contour, and (3) identify transient changes in the fluorescence due to neuronal activity. The pipeline consisted of 3 Python scripts that could both be easily accessed through a Python Jupyter notebook. In total, we tested this pipeline on ten separate calcium imaging datasets from murine dissociate cortical cultures. We next compared our automated pipeline outputs with the outputs of manually labeled data for neuronal cell location and corresponding fluorescent times series generated by an expert neuroscientist. Results: Our results show that our automated pipeline efficiently pinpoints neuronal cell body location and neuronal contours and provides a graphical representation of neural network metrics accurately reflecting changes in neuronal calcium-based fluorescence. The pipeline detected the shape, area, and location of most neuronal cell body contours by using binary thresholding and grayscale image conversion to allow computer vision to better distinguish between cells and non-cells. Its results were also comparable to manually analyzed results but with significantly reduced result acquisition times of 2-5 minutes per recording versus 10-20 minutes per recording. Based on these findings, our next step is to precisely measure the specificity and sensitivity of the automated pipeline’s cell body and contour detection to extract more robust neural network metrics and dynamics. Conclusion: Our Python-based pipeline performed automated computer vision-based analysis of calcium image recordings from neuronal cell bodies in neuronal cell cultures. Our new goal is to improve cell body and contour detection to produce more robust, accurate neural network metrics and dynamic graphs.

Keywords: calcium imaging, computer vision, neural activity, neural networks

Procedia PDF Downloads 82
47 Finding the Association Rule between Nursing Interventions and Early Evaluation Results of In-Hospital Cardiac Arrest to Improve Patient Safety

Authors: Wei-Chih Huang, Pei-Lung Chung, Ching-Heng Lin, Hsuan-Chia Yang, Der-Ming Liou

Abstract:

Background: In-Hospital Cardiac Arrest (IHCA) threaten life of the inpatients, cause serious effect to patient safety, quality of inpatients care and hospital service. Health providers must identify the signs of IHCA early to avoid the occurrence of IHCA. This study will consider the potential association between early signs of IHCA and the essence of patient care provided by nurses and other professionals before an IHCA occurs. The aim of this study is to identify significant associations between nursing interventions and abnormal early evaluation results of IHCA that can assist health care providers in monitoring inpatients at risk of IHCA to increase opportunities of IHCA early detection and prevention. Materials and Methods: This study used one of the data mining techniques called association rules mining to compute associations between nursing interventions and abnormal early evaluation results of IHCA. The nursing interventions and abnormal early evaluation results of IHCA were considered to be co-occurring if nursing interventions were provided within 24 hours of last being observed in abnormal early evaluation results of IHCA. The rule based methods were utilized 23.6 million electronic medical records (EMR) from a medical center in Taipei, Taiwan. This dataset includes 733 concepts of nursing interventions that coded by clinical care classification (CCC) codes and 13 early evaluation results of IHCA with binary codes. The values of interestingness and lift were computed as Q values to measure the co-occurrence and associations’ strength between all in-hospital patient care measures and abnormal early evaluation results of IHCA. The associations were evaluated by comparing the results of Q values and verified by medical experts. Results and Conclusions: The results show that there are 4195 pairs of associations between nursing interventions and abnormal early evaluation results of IHCA with their Q values. The indication of positive association is 203 pairs with Q values greater than 5. Inpatients with high blood sugar level (hyperglycemia) have positive association with having heart rate lower than 50 beats per minute or higher than 120 beats per minute, Q value is 6.636. Inpatients with temporary pacemaker (TPM) have significant association with high risk of IHCA, Q value is 47.403. There is significant positive correlation between inpatients with hypovolemia and happened abnormal heart rhythms (arrhythmias), Q value is 127.49. The results of this study can help to prevent IHCA from occurring by making health care providers early recognition of inpatients at risk of IHCA, assist with monitoring patients for providing quality of care to patients, improve IHCA surveillance and quality of in-hospital care.

Keywords: in-hospital cardiac arrest, patient safety, nursing intervention, association rule mining

Procedia PDF Downloads 271
46 Redeeming the Self-Settling Scores with the Nazis by the Means of Poetics

Authors: Liliane Steiner

Abstract:

Beyond the testimonial act, that sheds light on the feminine experience in the Holocaust, the survivors' writing voices first and foremost the abjection of the feminine self brutally inflicted by the Nazis in the Holocaust, and in the same movement redeems the self by the means of poetics, and brings it to an existential state of being a subject. This study aims to stress the poetics of this writing in order to promote the Holocaust literature from the margins to the mainstream and to contribute to the commemoration of the Holocaust in the next generations. Methodology: The study of the survivors' redeeming of self is based on Julia Kristeva's theory of the abject: the self-throws out everything that threatens its existence and Liliane Steiner's theory of the post- abjection of hell: the belated act of vomiting the abject experiences settles cores with the author of the abject to redeem the self. The research will focus on Ruth Sender's trilogy The Cage, To Life and The Holocaust Lady as a case study. Findings: The binary mode that characterizes this writing reflects the experience of Jewish women, who were subject(s), were treated violently as object(s), debased, defeminized and, eventually turned into abject by the Nazis. In a tour de force, this writing re-enacts the postponed resistance, that vomited the abject imposed on the feminine self by the very act of narration, which denounces the real abject, the perpetrators. The post-abjection of self is acted out in constructs of abject, relating the abject experience of the Holocaust as well as the rehabilitation of the surviving self (subject). The transcription of abject surfaces in deconstructing the abject through self- characterization, and in the elusive rendering of bad memories, having recourse to literary figures. The narrative 'I' selects, obstructs, mends and tells the past events from an active standpoint, as would a subject in control of its (narrative) fate. In a compensatory movement, the narrating I tells itself by reconstructing the subject and proving time and again that I is other. Moreover, in the belated endeavor to revenge, testify and narrate the abject, the narrative I defies itself, and represents itself as a dialectical I, splitting and multiplying itself in a deconstructing way. The dialectical I is never (one) I. It voices not only the unvoiced but also and mainly the other silenced 'I's. Drawing its nature and construct from traumatic memories, the dialectical I transgresses boundaries to narrate her story, and in the same breath, the story of Jewish women doomed to silence. In this narrative feat, the dialectical I stresses its essential dialectical existence with the past, never to be (one) again. Conclusion: The pattern of I is other generates patterns of subject(s) that defy, transgress and repudiate the abject and its repercussions on the feminine I. The feminine I writes itself as a survivor that defies the abject (Nazis) and takes revenge. The paradigm of metamorphosis that accompanies the journey of the Holocaust memoirist engenders life and surviving as well as a narration that defies stagnation and death.

Keywords: abject, feminine writing, holocaust, post-abjection

Procedia PDF Downloads 103
45 Household Socioeconomic Factors Associated with Teenage Pregnancies in Kigali City, Rwanda

Authors: Dieudonne Uwizeye, Reuben Muhayiteto

Abstract:

Teenage pregnancy is a challenging problem for sustainable development due to restrictions it poses to socioeconomic opportunities for young mothers, their children and families. Being unable to take appropriate economic and social responsibilities, teen mothers get trapped into poverty and become economic burden to their family and country. Besides, teenage pregnancy is also a health problem because children born to very young mothers are vulnerable with greater risk of illnesses and deaths, and teenage mothers are more likely to be exposed to greater risk of maternal mortality and to other health and psychological problems. In Kigali city, in Rwanda, teenage pregnancy rate is currently high and its increase in recent years is worrisome. However, only individual factors influencing the teenage pregnancy tend to be the basis of interventions. It is important to understand the important socioeconomic factors at the household level that are associated with teenage pregnancy to help government, parents, and other stakeholders to appropriately address the problem with sustainable measures. This study analyzed secondary data from the Fifth Rwanda Demographic and Health Survey (RDHS-V 2014-2015) conducted by the National Institute of Statistics of Rwanda (NISR). The aim was to examine household socio-economic factors that are associated with incidence of teenage pregnancies in Kigali city. In addition to descriptive analysis, Pearson’s Chi Square and Binary Logistic Regression were used in the analysis. Findings indicate that marital status and age of household head, number of members in a household, number of rooms used for sleeping, educational level of the household head and household's wealth are significantly associated with teenage pregnancy in Rwanda ( p< 0.05). It was found that teenagers living with parents, those having parents with higher education and those from richer families are less likely to become pregnant. Age of household head was pinpointed as factor to teenage pregnancy, with teenage-headed households being more vulnerable. The findings also revealed that household composition correlates with the probability of teenage pregnancy (p < 0.05) with teenagers from households with less number of members being more vulnerable. Regarding the size of the house, the study suggested that the more rooms available in households, the less incidences of teenage pregnancy are likely to be observed (p < 0.05). However, teenage pregnancy was not significantly associated with physical violence among parents (p = 0.65) and sex of household heads (p = 0.52), except in teen-headed households of which female are predominantly heads. The study concludes that teenage pregnancy remains a serious social, economic and health problem in Rwanda. The study informs government officials, parents and other stakeholders to take interventions and preventive measures through community sex education, policies and strategies to foster effective parental guidance, care and control of young girls through meeting their necessary social and financial needs within households.

Keywords: household socio-economic factors, Rwanda, Rwanda demographic and health survey, teenage pregnancy

Procedia PDF Downloads 179
44 Determinants of Maternal Near-Miss among Women in Public Hospital Maternity Wards in Northern Ethiopia: A Facility Based Case-Control Study

Authors: Dejene Ermias Mekango, Mussie Alemayehu, Gebremedhin Berhe Gebregergs, Araya Abrha Medhanye, Gelila Goba

Abstract:

Background: Maternal near miss (MNM) can be used as a proxy indicator of maternal mortality ratio. There is a huge gap in life time risk between Sub-Saharan Africa and developed countries. In Ethiopia, a significant number of women die each year from complications during pregnancy, childbirth and the post-partum period. Besides, a few studies have been performed on MNM, and little is known regarding determinant factors. This study aims to identify determinants of MNM among women in Tigray region, Northern Ethiopia. Methods: a case-control study in hospital found in Tigray region, Ethiopia was conducted from January 30 - March 30, 2016. The sample included 103 cases and 205 controls recruited from women seeking obstetric care at six public hospitals. Clients having a life-threatening obstetric complication including haemorrhage, hypertensive diseases of pregnancy, dystocia, infections, and anemia or clinical signs of severe anemia in women without haemorrhage were taken as cases and those with normal obstetric outcomes were considered as controls. Cases were selected based on proportional to size allocation while systematic sampling was employed for controls. Data were analyzed using SPSS version 20.0. Binary and multiple variable logistic regression (odds ratio) analyses were calculated with 95% CI. Results: The largest proportion of cases and controls was among the ages of20–29 years, accounting for37.9 %( 39) of cases and 31.7 %( 65) of controls. Roughly 90% of cases and controls were married. About two-thirds of controls and 45.6 %( 47) of cases had gestational age between 37-41 weeks. History of chronic medical conditions was reported in 55.3 %(57) of cases and 33.2%(68) of controls. Women with no formal education [AOR=3.2;95%CI:1.24, 8.12],being less than 16 years old at first pregnancy [AOR=2.5; 95%CI:1.12,5.63],induced labor[AOR=3; 95%CI:1.44, 6.17], history of Cesarean section (C-section) [AOR=4.6; 95%CI: 1.98, 7.61] or chronic medical disorder[AOR=3.5;95%CI:1.78, 6.93], and women who traveled more than 60 minutes before reaching their final place of care[AOR=2.8;95% CI: 1.19,6.35] all had higher odds of experiencing MNM. Conclusions: The Government of Ethiopia should continue its effort to address the lack of road and health facility access as well as education, which will help reduce MNM. Work should also be continued to educate women and providers about common predictors of MNM like the history of C-section, chronic illness, and teenage pregnancy. These efforts should be carried out at the facility, community, and individual levels. The targeted follow-up to women with a history of chronic disease and C-section could also be a practical way to reduce MNM.

Keywords: maternal near miss, severe obstetric hemorrhage, hypertensive disorder, c-section, Tigray, Ethiopia

Procedia PDF Downloads 222
43 Land, History and Housing: Colonial Legacies and Land Tenure in Kuala Lumpur

Authors: Nur Fareza Mustapha

Abstract:

Solutions to policy problems need to be curated to the local context, taking into account the trajectory of the local development path to ensure its efficacy. For Kuala Lumpur, rapid urbanization and migration into the city for the past few decades have increased the demand for housing to accommodate a growing urban population. As a critical factor affecting housing affordability, land supply constraints have been attributed to intensifying market pressures, which grew in tandem with the demands of urban development, along with existing institutional constraints in the governance of land. While demand-side pressures are inevitable given the fixed supply of land, supply-side constraints in regulations distort markets and if addressed inappropriately, may lead to mistargeted policy interventions. Given Malaysia’s historical development, regulatory barriers for land may originate from the British colonial period, when many aspects of the current laws governing tenure were introduced and formalized, and henceforth, became engrained in the system. This research undertakes a postcolonial institutional analysis approach to uncover the causal mechanism driving the evolution of land tenure systems in post-colonial Kuala Lumpur. It seeks to determine the sources of these shifts, focusing on the incentives and bargaining positions of actors during periods of institutional flux/change. It aims to construct a conceptual framework to further this understanding and to elucidate how this historical trajectory affects current access to urban land markets for housing. Archival analysis is used to outline and analyse the evolution of land tenure systems in Kuala Lumpur while stakeholder interviews are used to analyse its impact on the current urban land market, with a particular focus on the provision of and access to affordable housing in the city. Preliminary findings indicate that many aspects of the laws governing tenure that were introduced and formalized during the British colonial period have endured until the present day. Customary rules of tenure were displaced by rules following a European tradition, which found legitimacy through a misguided interpretation of local laws regarding the ownership of land. Colonial notions of race and its binary view of native vs. non-natives have also persisted in the construction and implementation of current legislation regarding land tenure. More concrete findings from this study will generate a more nuanced understanding of the regulatory land supply constraints in Kuala Lumpur, taking into account both the long and short term spatial and temporal processes that affect how these rules are created, implemented and enforced.

Keywords: colonial discourse, historical institutionalism, housing, land policy, post-colonial city

Procedia PDF Downloads 128
42 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs

Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.

Abstract:

Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.

Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification

Procedia PDF Downloads 125
41 Place Attachment as Basic Condition for Wellbeing and Life Satisfaction in East African Wetland Users

Authors: Sophie-Bo Heinkel, Andrea Rechenburg, Thomas Kistemann

Abstract:

The current status of wellbeing and life satisfaction of subsistence farmers in a wetland in Uganda and the contributing role of place attachment has been assessed. The aim of this study is to shed light on environmental factors supporting wellbeing in a wetland setting. Furthermore, it has been assessed, how the emotional bonding to the wetland as ‘place’ influences the peoples’ wellbeing and life satisfaction. The results shed light on the human-environment-relationship. A survey was carried out in three communities in urban and rural areas in a wetland basin in Uganda. A sample (n=235) provided information about the attachment to the wetland, the participants’ relation to the place of their residence and their emotional wellbeing. The Wellbeing Index (WHO-5) was assessed as well as the Perceived Stress Scale (PSS-10) and Rosenberg’s Self-Esteem scale (RSE). Furthermore, the Satisfaction With Life Scale (SWLS) was applied as well as the Place Attachment Inventory (PAI), which consists of the two intertwined dimensions of place identity and place dependence. Beside this, binary indicators as ‘feeling save’ and ‘feeling comfortable’ and ‘enjoying to live at the place of residence’ have been assessed. A bivariate correlation analysis revealed a high interconnectivity between all metric scales. Especially, the subscale ‘place identity’ showed significances with all other scales. A cluster analysis revealed three groups, which differed in the perception of place-related indicators and their attachment to the wetland as well as the status of wellbeing. First, a cluster whose majority is dissatisfied with their lives, but mainly had a good status of emotional well-being. This group does not feel attached to the wetland and lives in a town. Comparably less persons of this group feel safe and comfortable at their place of residence. In the second cluster, persons feel highly attached to the wetland and identify with it. This group was characterized by the high number of persons preferring their current place of residence and do not consider moving. All persons feel well and satisfied with their lives. The third group of persons is mainly living in rural areas and feels highly attached to the wetland. They are satisfied with their lives, but only a small minority is in a good emotional state of wellbeing. The emotional attachment to a place influences life satisfaction and, indirectly, the emotional wellbeing. In the present study it could be shown that subsistence farmers are attached to the wetland, as it is the source of their livelihood. While those living in areas with a good infrastructure are less dependent on the wetland and, therefore, less attached to. This feeling also was mirrored in the perception of a place as being safe and comfortable. The identification with a place is crucial for the feeling of being at “home”. Subsistence farmers feel attached to the ecosystem, but they also might be exposed to environmental and social stressors influencing their short-term emotional wellbeing. The provision of place identity is an ecosystem service provided by wetlands, which supports the status of wellbeing in human beings.

Keywords: mental health, positive environments, quality of life, wellbeing

Procedia PDF Downloads 410
40 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees

Authors: Alexandru-Ion Marinescu

Abstract:

There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.

Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution

Procedia PDF Downloads 117
39 The Food and Nutritional Effects of Smallholders’ Participation in Milk Value Chain in Ethiopia

Authors: Geday Elias, Montaigne Etienne, Padilla Martine, Tollossa Degefa

Abstract:

Smallholder farmers’ participation in agricultural value chain identified as a pathway to get out of poverty trap in Ethiopia. The smallholder dairy activities have a huge potential in poverty reduction through enhancing income, achieving food and nutritional security in the country. However, much less is known about the effects of smallholder’s participation in milk value chain on household food security and nutrition. This paper therefore, aims at evaluating the effects of smallholders’ participation in milk value chain on household food security taking in to account the four pillars of food security measurements (availability, access, utilization and stability). Using a semi-structured interview, a cross sectional farm household data collected from a randomly selected sample of 333 households (170 in Amhara and 163 in Oromia regions).Binary logit and propensity score matching( PSM) models are employed to examine the mechanisms through which smallholder’s participation in the milk value chain affects household food security where crop production, per capita calorie intakes, diet diversity score, and food insecurity access scale are used to measure food availability, access, utilization and stability respectively. Our findings reveal from 333 households, only 34.5% of smallholder farmers are participated in the milk value chain. Limited access to inputs and services, limited access to inputs markets and high transaction costs are key constraints for smallholders’ limited access to the milk value chain. To estimate the true average participation effects of milk value chain for participated households, the outcome variables (food security) of farm households who participated in milk value chain are compared with the outcome variables if the farm households had not participated. The PSM analysis reveals smallholder’s participation in milk value chain has a significant positive effect on household income, food security and nutrition. Smallholder farmers who are participated in milk chain are better by 15 quintals crops production and 73 percent of per capita calorie intakes in food availability and access respectively than smallholder farmers who are not participated in the market. Similarly, the participated households are better in dietary quality by 112 percents than non-participated households. Finally, smallholders’ who are participated in milk value chain are better in reducing household vulnerability to food insecurity by an average of 130 percent than non participated households. The results also shows income earned from milk value chain participation contributed to reduce capital’s constraints of the participated households’ by higher farm income and total household income by 5164 ETB and 14265 ETB respectively. This study therefore, confirms the potential role of smallholders’ participation in food value chain to get out of poverty trap through improving rural household income, food security and nutrition. Therefore, identified the determinants of smallholder participation in milk value chain and the participation effects on food security in the study areas are worth considering as a positive knock for policymakers and development agents to tackle the poverty trap in the study area in particular and in the country in general.

Keywords: effects, food security and nutrition, milk, participation, smallholders, value chain

Procedia PDF Downloads 339
38 Recycling Service Strategy by Considering Demand-Supply Interaction

Authors: Hui-Chieh Li

Abstract:

Circular economy promotes greater resource productivity and avoids pollution through greater recycling and re-use which bring benefits for both the environment and the economy. The concept is contrast to a linear economy which is ‘take, make, dispose’ model of production. A well-design reverse logistics service strategy could enhance the willingness of recycling of the users and reduce the related logistics cost as well as carbon emissions. Moreover, the recycle brings the manufacturers most advantages as it targets components for closed-loop reuse, essentially converting materials and components from worn-out product into inputs for new ones at right time and right place. This study considers demand-supply interaction, time-dependent recycle demand, time-dependent surplus value of recycled product and constructs models on recycle service strategy for the recyclable waste collector. A crucial factor in optimizing a recycle service strategy is consumer demand. The study considers the relationships between consumer demand towards recycle and product characteristics, surplus value and user behavior. The study proposes a recycle service strategy which differs significantly from the conventional and typical uniform service strategy. Periods with considerable demand and large surplus product value suggest frequent and short service cycle. The study explores how to determine a recycle service strategy for recyclable waste collector in terms of service cycle frequency and duration and vehicle type for all service cycles by considering surplus value of recycled product, time-dependent demand, transportation economies and demand-supply interaction. The recyclable waste collector is responsible for the collection of waste product for the manufacturer. The study also examines the impacts of utilization rate on the cost and profit in the context of different sizes of vehicles. The model applies mathematical programming methods and attempts to maximize the total profit of the distributor during the study period. This study applies the binary logit model, analytical model and mathematical programming methods to the problem. The model specifically explores how to determine a recycle service strategy for the recycler by considering product surplus value, time-dependent recycle demand, transportation economies and demand-supply interaction. The model applies mathematical programming methods and attempts to minimize the total logistics cost of the recycler and maximize the recycle benefits of the manufacturer during the study period. The study relaxes the constant demand assumption and examines how service strategy affects consumer demand towards waste recycling. Results of the study not only help understanding how the user demand for recycle service and product surplus value affects the logistics cost and manufacturer’s benefits, but also provide guidance such as award bonus and carbon emission regulations for the government.

Keywords: circular economy, consumer demand, product surplus value, recycle service strategy

Procedia PDF Downloads 392
37 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking

Authors: Noga Bregman

Abstract:

Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.

Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves

Procedia PDF Downloads 52
36 Entrepreneurial Dynamism and Socio-Cultural Context

Authors: Shailaja Thakur

Abstract:

Managerial literature abounds with discussions on business strategies, success stories as well as cases of failure, which provide an indication of the parameters that should be considered in gauging the dynamism of an entrepreneur. Neoclassical economics has reduced entrepreneurship to a mere factor of production, driven solely by the profit motive, thus stripping him of all creativity and restricting his decision making to mechanical calculations. His ‘dynamism’ is gauged simply by the amount of profits he earns, marginalizing any discussion on the means that he employs to attain this objective. With theoretical backing, we have developed an Index of Entrepreneurial Dynamism (IED) giving weights to the different moves that the entrepreneur makes during his business journey. Strategies such as changes in product lines, markets and technology are gauged as very important (weighting of 4); while adaptations in terms of technology, raw materials used, upgradations in skill set are given a slightly lesser weight of 3. Use of formal market analysis, diversification in related products are considered moderately important (weight of 2) and being a first generation entrepreneur, employing managers and having plans to diversify are taken to be only slightly important business strategies (weight of 1). The maximum that an entrepreneur can score on this index is 53. A semi-structured questionnaire is employed to solicit the responses from the entrepreneurs on the various strategies that have been employed by them during the course of their business. Binary as well as graded responses are obtained, weighted and summed up to give the IED. This index was tested on about 150 tribal entrepreneurs in Mizoram, a state of India and was found to be highly effective in gauging their dynamism. This index has universal acceptability but is devoid of the socio-cultural context, which is very central to the success and performance of the entrepreneurs. We hypothesize that a society that respects risk taking takes failures in its stride, glorifies entrepreneurial role models, promotes merit and achievement is one that has a conducive socio- cultural environment for entrepreneurship. For obtaining an idea about the social acceptability, we are putting forth questions related to the social acceptability of business to another set of respondents from different walks of life- bureaucracy, academia, and other professional fields. Similar weighting technique is employed, and index is generated. This index is used for discounting the IED of the respondent entrepreneurs from that region/ society. This methodology is being tested for a sample of entrepreneurs from two very different socio- cultural milieus- a tribal society and a ‘mainstream’ society- with the hypothesis that the entrepreneurs in the tribal milieu might be showing a higher level of dynamism than their counterparts in other regions. An entrepreneur who scores high on IED and belongs to society and culture that holds entrepreneurship in high esteem, might not be in reality as dynamic as a person who shows similar dynamism in a relatively discouraging or even an outright hostile environment.

Keywords: index of entrepreneurial dynamism, India, social acceptability, tribal entrepreneurs

Procedia PDF Downloads 257
35 Preparation, Solid State Characterization of Etraverine Co-Crystals with Improved Solubility for the Treatment of Human Immunodeficiency Virus

Authors: B. S. Muddukrishna, Karthik Aithal, Aravind Pai

Abstract:

Introduction: Preparation of binary cocrystals of Etraverine (ETR) by using Tartaric Acid (TAR) as a conformer was the main focus of this study. Etravirine is a Class IV drug, as per the BCS classification system. Methods: Cocrystals were prepared by slow evaporation technique. A mixture of total 500mg of ETR: TAR was weighed in molar ratios of 1:1 (371.72mg of ETR and 128.27mg of TAR). Saturated solution of Etravirine was prepared in Acetone: Methanol (50:50) mixture in which tartaric acid is dissolved by sonication and then this solution was stirred using a magnetic stirrer until the solvent got evaporated. Shimadzu FTIR – 8300 system was used to acquire the FTIR spectra of the cocrystals prepared. Shimadzu thermal analyzer was used to achieve DSC measurements. X-ray diffractometer was used to obtain the X-ray powder diffraction pattern. Shake flask method was used to determine the equilibrium dynamic solubility of pure, physical mixture and cocrystals of ETR. USP buffer (pH 6.8) containing 1% of Tween 80 was used as the medium. The pure, physical mixture and the optimized cocrystal of ETR were accurately weighed sufficient to maintain the sink condition and were filled in hard gelatine capsules (size 4). Electrolab-Tablet Dissolution tester using basket apparatus at a rotational speed of 50 rpm and USP phosphate buffer (900 mL, pH = 6.8, 37 ˚C) + 1% Tween80 as a media, was used to carry out dissolution. Shimadzu LC-10 series chromatographic system was used to perform the analysis with PDA detector. An Hypersil BDS C18 (150mm ×4.6 mm ×5 µm) column was used for separation with mobile phase comprising of a mixture of ace¬tonitrile and phosphate buffer 20mM, pH 3.2 in the ratio 60:40 v/v. The flow rate was 1.0mL/min and column temperature was set to 30°C. The detection was carried out at 304 nm for ETR. Results and discussions: The cocrystals were subjected to various solid state characterization and the results confirmed the formation of cocrystals. The C=O stretching vibration (1741cm-1) in tartaric acid was disappeared in the cocrystal and the peak broadening of primary amine indicates hydrogen bond formation. The difference in the melting point of cocrystals when compared to pure Etravirine (265 °C) indicates interaction between the drug and the coformer which proves that first ordered transformation i.e. melting endotherm has disappeared. The difference in 2θ values of pure drug and cocrystals indicates the interaction between the drug and the coformer. Dynamic solubility and dissolution studies were also conducted by shake flask method and USP apparatus one respectively and 3.6 fold increase in the dynamic solubility were observed and in-vitro dissolution study shows four fold increase in the solubility for the ETR: TAR (1:1) cocrystals. The ETR: TAR (1:1) cocrystals shows improved solubility and dissolution as compared to the pure drug which was clearly showed by solid state characterization and dissolution studies.

Keywords: dynamic solubility, Etraverine, in vitro dissolution, slurry method

Procedia PDF Downloads 356
34 Integrating Multiple Types of Value in Natural Capital Accounting Systems: Environmental Value Functions

Authors: Pirta Palola, Richard Bailey, Lisa Wedding

Abstract:

Societies and economies worldwide fundamentally depend on natural capital. Alarmingly, natural capital assets are quickly depreciating, posing an existential challenge for humanity. The development of robust natural capital accounting systems is essential for transitioning towards sustainable economic systems and ensuring sound management of capital assets. However, the accurate, equitable and comprehensive estimation of natural capital asset stocks and their accounting values still faces multiple challenges. In particular, the representation of socio-cultural values held by groups or communities has arguably been limited, as to date, the valuation of natural capital assets has primarily been based on monetary valuation methods and assumptions of individual rationality. People relate to and value the natural environment in multiple ways, and no single valuation method can provide a sufficiently comprehensive image of the range of values associated with the environment. Indeed, calls have been made to improve the representation of multiple types of value (instrumental, intrinsic, and relational) and diverse ontological and epistemological perspectives in environmental valuation. This study addresses this need by establishing a novel valuation framework, Environmental Value Functions (EVF), that allows for the integration of multiple types of value in natural capital accounting systems. The EVF framework is based on the estimation and application of value functions, each of which describes the relationship between the value and quantity (or quality) of an ecosystem component of interest. In this framework, values are estimated in terms of change relative to the current level instead of calculating absolute values. Furthermore, EVF was developed to also support non-marginalist conceptualizations of value: it is likely that some environmental values cannot be conceptualized in terms of marginal changes. For example, ecological resilience value may, in some cases, be best understood as a binary: it either exists (1) or is lost (0). In such cases, a logistic value function may be used as the discriminator. Uncertainty in the value function parameterization can be considered through, for example, Monte Carlo sampling analysis. The use of EVF is illustrated with two conceptual examples. For the first time, EVF offers a clear framework and concrete methodology for the representation of multiple types of value in natural capital accounting systems, simultaneously enabling 1) the complementary use and integration of multiple valuation methods (monetary and non-monetary); 2) the synthesis of information from diverse knowledge systems; 3) the recognition of value incommensurability; 4) marginalist and non-marginalist value analysis. Furthermore, with this advancement, the coupling of EVF and ecosystem modeling can offer novel insights to the study of spatial-temporal dynamics in natural capital asset values. For example, value time series can be produced, allowing for the prediction and analysis of volatility, long-term trends, and temporal trade-offs. This approach can provide essential information to help guide the transition to a sustainable economy.

Keywords: economics of biodiversity, environmental valuation, natural capital, value function

Procedia PDF Downloads 194
33 Implication of Woman’s Status on Child Health in India

Authors: Rakesh Mishra

Abstract:

India’s Demography has always amazed the world because of its unprecedented outcomes in the presence of multifaceted socioeconomic and geographical characteristics. Being the first one to implement family panning in 1952, it occupies 2nd largest population of the world, with some of its state like Uttar Pradesh contributing 5th largest population to the world population surpassing Brazil. Being the one with higher in number it is more prone to the demographic disparity persisting into its territories brought upon by the inequalities in availability, accessibility and attainability of socioeconomic and various other resources. Fifth goal of Millennium Development Goal emphasis to improve maternal and child health across the world as Children’s development is very important for the overall development of society and the best way to develop national human resources is to take care of children. The target is to reduce the infant deaths by three quarters between 1990 and 2015. Child health status depends on the care and delivery by trained personnel, particularly through institutional facilities which is further associated with the status of the mother. However, delivery in institutional facilities and delivery by skilled personnel are rising slowly in India. The main objective of the present study is to measure the child health status on based on the educational and occupational background of the women in India. Study indicates that women education plays a very crucial role in deciding the health of the new born care and access to family planning, but the women autonomy indicates to have mixed results in different states of India. It is observed that rural women are 1.61 times more likely to exclusive breastfed their children compared to urban women. With respect to Hindu category, women belonging to other religious community were 21 percent less likely to exclusive breastfed their child. Taking scheduled caste as reference category, the odds of exclusive breastfeeding is found to be decreasing in comparison to other castes, and it is found to be significant among general category. Women of high education status have higher odds of using family planning methods in most of the southern states of India. By and large, girls and boys are about equally undernourished. Under nutrition is generally lower for first births than for subsequent births and consistently increases with increasing birth order for all measures of nutritional status. It is to be noted that at age 12-23 months, when many children are being weaned from breast milk, 30 percent of children are severely stunted and around 21 percent are severely underweight. So, this paper presents the evidence on the patterns of prevailing child health status in India and its states with reference to the mother socioeconomics and biological characteristics and examines trends in these, and discusses plausible explanations.

Keywords: immunization, exclusive breastfeeding, under five mortality, binary logistic regression, ordinal regression and life table

Procedia PDF Downloads 265