Search results for: antimicrobial
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 832

Search results for: antimicrobial

232 Intestine Characteristics and Blood Profile of Broiler Chickens Treated with Garlic

Authors: Mary Anthony Oguike, Ilouno, Amaduruonye

Abstract:

A completely randomized design experiment with 3 treatments was conducted to study the effects of garlic on intestine characteristics, haematology and serum biochemistry of Marshal broilers. Thirty three (33) broiler chicks were randomly allotted to each treatment designated T1, T2 and T3. The birds in each treatment were replicated 3 times with 11 broilers per replicate. They were fed diets supplemented with garlic at 0, 1.5 and 2.5 % /kg feed for t1, T2 and T3, respectively with T1 as control. Data were collected on intestine parameters, serum biochemical parameters and haematological indices. The results showed significant (P>0.05) dose-dependent decrease in intestine weight and caeca microbial load of the broilers. The intestine of broilers in the treatments showed normal histological architecture in all the treatments. The red blood cell (RBC), white blood cell (WBC), haemoglobin (Hb) and other haematological indices showed no significant differences (P<0.05) among the treatments. Cholesterol, globulin, glucose and alanin aminotransferase (ALT) were significantly different (P<0.05) among the treatment groups. Serum biochemical parameters such as, total protein albumin, bilirubin and others were not significant among the treatments. All the blood parameters studied fall within the normal range for broilers. Garlic supplementation in the diets of broilers did not have any detrimental effects on the treated birds since their serum biochemistry and haematology fall within the normal range for broilers birds. The microbial examination of intestine and caeca, as well as the histopathological studies of the intestine confirmed antimicrobial properties of garlic.

Keywords: broiler, biochemistry and haematology, garlic, intestine

Procedia PDF Downloads 96
231 Effects of Beeswax Coating on the Properties of Cocoa Bean Shell Based Papers

Authors: Sri Rejeki, Tamrin Tamrin, RH. F. Faradilla, Muhammad N. Ibrahim, Mariana M., Irnawati Irnawati

Abstract:

Cocoa bean shells, despite their antioxidant and antimicrobial properties, are still considered as an underutilized agricultural waste. The functional properties and their lignocelluloses content make cocoa bean shells a potential material for paper-based food packaging. In our previous research, we have successfully produced papers from cocoa bean shells that had antioxidant and antibacterial activities. However, the hydrophilic nature of the lignocelluloses of cocoa bean shells hinders the application of the paper to be used as a food packaging. In this research, we aimed to study the effects of beeswax coating on the wettability and mechanical properties of the paper. The coating was done by dipping the papers in beeswax solution several times and in three different beeswax concentrations. The number of dipping and beeswax concentration significantly (p<0.05) affected the water contact angle of the papers. Results show that the water contact angle increases dramatically due to the coating treatment. The control paper or uncoated paper had a contact angle of 40.50o, while the contact angle of the best-coated paper (D3B3: 3x dipping, 3g/10mL beeswax) reached 96.93o. Both tensile strength and percent elongation were not significantly (p>0.05) affected by the coating treatment. This showed that beeswax was a potential organic material to improve the hydrophobicity of paper from cocoa bean shells without any undesirable effects on the mechanical properties of the paper.

Keywords: cocoa bean shell, paper, beeswax, coating, contact angle

Procedia PDF Downloads 148
230 Human Xanthine Oxidase Inhibitory Effect, in vivo Antioxidant Activity of Globularia alypum L. Extracts

Authors: N. Boussoualim, H. Trabsa, I. Krache, S. Aouachria, S. Boumerfeg, L. Arrar, A. Baghiani

Abstract:

The aim of this study consisted in evaluating the antioxidant in vivo properties, anti-hemolytic and XOR inhibitory effect of Globularia alypum L. (GA) extracts. GA was submitted to extraction and fractionation to give crude (CrE), chloroformique (ChE), ethyle acetate (EAE) and aqueos (AqE) extracts. Total polyphenols contents of GA extracts were determined; EAE is the most rich in polyphenols (157,74±5,27 mg GAE/mg of extract). GA Extracts inhibited XO in a concentration-dependent manner, the EAE showed the highest inhibitory properties on the XOR activity (IC50=0,083±0,001 mg/ml), followed by CrE and ChE. The antioxidant activities of the CrE, EAE, and AqE were tested by an in vivo assay in mice, the plasma ability to inhibit DPPH radical was measured, The CrE was found to exhibit the greatest scavenger activity with 48.41±2.763%, followed by AqE and EAE (40.54±7.51% and 41.79±1.654%, respectively). Total antioxidant capacity of red blood cells was measured, from the kinetics of hemolysis obtained. The calculated HT50 reveal an extension of time for half hemolysis in all treated groups compared with the control group. CrE increase significantly HT50 (112,8±2,427). The hemolysis is lagged, indicating that endogenous antioxidants in the erythrocytes can trap radicals to protect them against free-radical-induced hemolysis. Antimicrobial activities of the extracts were determined by the disc diffusion method. Test microorganisms were; 4 Gram positive, 7 gram negative bacteria, most active extracts were EAE and CrE. We deduce a great relationship between the effect on the extracts antibacterial effect and their contents in flavonoid.

Keywords: Globularia alypum, Xanthine oxidoreductase, in vivo-antioxidant activity, hemolysis, polyphenol

Procedia PDF Downloads 334
229 A Sensitive Approach on Trace Analysis of Methylparaben in Wastewater and Cosmetic Products Using Molecularly Imprinted Polymer

Authors: Soukaina Motia, Nadia El Alami El Hassani, Alassane Diouf, Benachir Bouchikhi, Nezha El Bari

Abstract:

Parabens are the antimicrobial molecules largely used in cosmetic products as a preservative agent. Among them, the methylparaben (MP) is the most frequently used ingredient in cosmetic preparations. Nevertheless, their potential dangers led to the development of sensible and reliable methods for their determination in environmental samples. Firstly, a sensitive and selective molecular imprinted polymer (MIP) based on screen-printed gold electrode (Au-SPE), assembled on a polymeric layer of carboxylated poly(vinyl-chloride) (PVC-COOH), was developed. After the template removal, the obtained material was able to rebind MP and discriminate it among other interfering species such as glucose, sucrose, and citric acid. The behavior of molecular imprinted sensor was characterized by Cyclic Voltammetry (CV), Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) techniques. Then, the biosensor was found to have a linear detection range from 0.1 pg.mL-1 to 1 ng.mL-1 and a low limit of detection of 0.12 fg.mL-1 and 5.18 pg.mL-1 by DPV and EIS, respectively. For applications, this biosensor was employed to determine MP content in four wastewaters in Meknes city and two cosmetic products (shower gel and shampoo). The operational reproducibility and stability of this biosensor were also studied. Secondly, another MIP biosensor based on tungsten trioxide (WO3) functionalized by gold nanoparticles (Au-NPs) assembled on a polymeric layer of PVC-COOH was developed. The main goal was to increase the sensitivity of the biosensor. The developed MIP biosensor was successfully applied for the MP determination in wastewater samples and cosmetic products.

Keywords: cosmetic products, methylparaben, molecularly imprinted polymer, wastewater

Procedia PDF Downloads 319
228 Fungicidal Evaluation of Essential Oils of Medicinal Plants for the Management of Early Blight Pathogen (Alternaria solani) in Pakistan

Authors: Sehrish Iftikhar, Kiran Nawaz, Ahmad A. Shahid, Waheed Anwar, Muhammad S. Haider

Abstract:

Early blight caused by Alternaria solani Sorauer is one of the most serious foliage diseases of the potato (Solanum tuberosum L.). This disease causes huge crop losses and has major economic importance worldwide. The antifungal activity for three medicinal plants (Foeniculum vulgare, Syzygium aromaticum, and Eucalyptus citriodora) against Alternaria solani has been evaluated. The inhibitory potential of selected essential oils on the radial mycelial growth and germination of spore was measured in vitro at various concentrations (5%, 2.5%. 1.25%, 0.625%, and 0.312%) using agar well diffusion assay. Essential oil of E. citriodora was most effective causing 85% inhibition of mycelial growth and 88% inhibition of spore germination at 0.625% and 1.25% concentrations. Essential oil of Foeniculum vulgare also caused 80% and 82% inhibition of the above mentioned parameters but at double the concentrations 1.25% and 2.5%. While essential oil of Syzygium aromaticum was least effective in controlling the mycelial growth and spore germination with 76% and 77% inhibition at 1.25% and 2.5%. All the selected essential oils, especially E. citriodora, showed marked antimicrobial activity significant at higher concentration. These results suggest that the use of essential oils for the control of A. solani can reduce environmental risks related with commercial fungicides, lower cost for control, and the chances for resistance development. Additional studies are essential to evaluate the potential of essential oils as natural treatments for this disease.

Keywords: clove, essential oils, fennel, potato

Procedia PDF Downloads 325
227 Phytochemical Evaluation and In-Vitro Antibacterial Activity of Ethanolic Extracts of Moroccan Lavandula x Intermedia Leaves and Flowers

Authors: Jamila Fliou, Federica Spinola, Ouassima Riffi, Asmaa Zriouel, Ali Amechrouq, Luca Nalbone, Alessandro Giuffrida, Filippo Giarratana

Abstract:

This study performed a preliminary evaluation of the phytochemical composition and in vitro antibacterial activity of ethanolic extracts of Lavandula x intermedia leaves and flowers collected in the Fez-Meknes region of Morocco. Phytochemical analyses comprised qualitative colourimetric determinations of alkaloids, anthraquinones, and terpenes and quantitative analysis of total polyphenols, flavonoids, and condensed tannins by UV spectrophotometer. Antibacterial activity was evaluated by determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against different ATCC bacterial strains. The phytochemical analysis showed a high amount of total polyphenols, flavonoids, and tannins in the leaf extract and a higher amount of terpenes based on colourimetric reaction than the flower extract. A positive colourimetric reaction for alkaloids and anthraquinones was detected for both extracts. The antibacterial activity of leaves and flower extract was not different against Gram-positive and Gram-negative strains (p<0.05). The results of the present study suggest the possible use of ethanolic extracts of L. x intermedia collected in the Fez-Meknes region of Morocco as a natural agent against bacterial pathogens.

Keywords: antimicrobial activity, Lavandula spp., lavender, lavandin, UV spectrophotometric analysis

Procedia PDF Downloads 68
226 African Mesquite Exerts Neuroprotective Activity Against Quaternary Metal Mixture -Induced Olfactory Bulb-Hippocampal Oxido-Inflammatory Stress via NRF2-HMOX-1-TNF-Alpha Pathway Pathway

Authors: Orish E. Orisakwe, Chinna N. Orish, Anthonet N. Ezejiofor

Abstract:

African mesquite has been recognized for its antimicrobial, anti-inflammatory, and potential anticarcinogenic activities. However, its neuroprotective benefits against heavy metal-induced neurotoxicity remain largely unexplored. Therefore, the objective of this study was to investigate the neuroprotective properties of African mesquite in the hippocampus and olfactory bulb against common environmental pollutants, including Cd, As, Hg, and Pb. Thirty-five albino Sprague Dawley rats were divided into five groups for the experiment. Group 1 served as the control and did not receive either the heavy metal mixture (HMM) or African mesquite. Group 2 was orally administered HMM, consisting of PbCl2 (20 mg/kg), CdCl2 (1.61 mg/kg), HgCl2 (0.40 mg/kg), and NaAsO3 (10 mg/kg), for 960 days. Meanwhile, groups 3, 4, and 5 were treated with HMM along with African mesquite at doses of 500 mg/kg, 1000 mg/kg, and 1500 mg/kg, respectively. African mesquite reduced heavy metal accumulation in the hippocampus and olfactory bulb. Additionally, Sprague Dawley rats exhibited improved performance in the Passive avoidance and Cincinnati Maze tests. Furthermore, treatment with African mesquite significantly alleviated inflammation macromolecules peroxidation. It also restored the concentrations of SOD, CAT, GSH, GPx, Hmox-1, and reduced the activity of AChE, NRF2 and NFkB and improved histopathological findings. African mesquite exhibits a multifaceted neuroprotective effect with the potential to mitigate various aspects of heavy metal-induced neurotoxicity.

Keywords: African mesquite, heavy metal mixture;, neurotoxicity;, chemoprevention

Procedia PDF Downloads 72
225 Phenotypic Characterization of Listeria Spp Isolated from Chicken Carcasses Marketed in Northeast of Iran

Authors: Abdollah Jamshidi, Tayebeh Zeinali, Mehrnaz Rad, Jamshid Razmyar

Abstract:

Listeria infections occur worldwide in variety of animals and man. Listeriae are widely distributed in nature. The organism has been isolated from the feces of humans and several animals, different soils, plants, aquatic environments and food of animal and vegetable origin. Listeria monocytogenes is recognized as important food-borne pathogens due to its high mortality rate. This organism is able to growth at refrigeration temperature, and high osmotic pressure. Poultry can become contaminated environmentally or through healthy carrier birds. In recent decades, prophylactic use of antimicrobial agents may be lead to emergence of antibiotic resistant organisms, which can be transmitted to human through consumption of contaminated foods. In this study, from 200 fresh chicken carcasses samples which were collected randomly from different supermarkets and butcheries, 80 samples were detected as contaminate with Listeria spp. and 19% of the isolates identified as Listeria monocytogene using multiplex PCR assay. Conventional methods were used to differentiate other species of the listeria genus. The results showed the most prevalent isolates as L. monocytogenes (48.75%). Other isolates were detected as Listeria innocua (28.75%), Listeria murrayi (20%), Listeria grayi (3.75%) and Listeria welshimeri (2.5%).The Majority of the isolates had multidrug resistance to commonly used antibiotics. Most of them were resistant to erythromycin (50%), followed by Tetracycline (44.44%), Clindamycin (41.66%), and Trimethoprim (25%). Some of them showed resistance to chloramphenicol (17.65%). The results indicate the resistance of the isolates to antimicrobials commonly used to treat human listeriosis, which could be a potential health hazard for consumers.

Keywords: listeria species, L. monocytogenes, antibiotic resistance, chicken carcass

Procedia PDF Downloads 382
224 Antimicrobial Evaluation of Polyphenon 60 and Ciprofloxacin Loaded Nano Emulsion against Uropathogenic Escherichia coli Bacteria and Its in vivo Analysis

Authors: Atinderpal Kaur, Shweta Dang

Abstract:

Our aim is to develop a nanoemulsion-based delivery system containing polyphenon 60 (P60) and ciprofloxacin (Cipro) for intravaginal delivery to treat urinary tract infection. In the present study Polyphenon 60 (P60) and ciprofloxacin (Cipro) were loaded in a single nano emulsion (NE) system via ultra-sonication technique and characterized for particle size, in vitro release and antibacterial efficacy against Bcl-2 level Escherichia coli bacteria. To determine in vivo pharmacokinetic parameters and intravaginal transportation of NE, gamma scintigraphy and biodistribution study was conducted by radiolabelling NE with technetium pertechnetate (99mTc). The preliminary antibacterial investigation showed synergy between these compounds with FICindex of 0.42. The developed formulation showed zeta potential +55.3 and particle size of 151.7 nm, with PDI of 0.196. The in vitro release percentage of P60 at the end of 7th hours was 94.8 ± 0.9 % whereas the release for Cipro was 75.1± 0.15 % in simulated vaginal media. MBC was identified and the findings demonstrated that in both ESBL (Extended Spectrum β- lactamase) and MBL (Metallo β- lactamase) cultures the P60+Cipro NE showed inhibition of growth of all the isolates at 2 mg/ml dilutions. The percentage per gram of radiolabelled drug was found (3.50±0.26) and (3.81±0.30) in kidney and urinary bladder, respectively at 3 h. From the findings, it was concluded that the developed P60+Cipro NE was transported efficiently throughout the target organs, had long duration of action and high biocompatibility via intravaginal administration as compared to oral administration.

Keywords: ciprofloxacin, gamma scintigraphy, intravaginal drug delivery, Polyphenon 60

Procedia PDF Downloads 319
223 Elimination of Mixed-Culture Biofilms Using Biological Agents

Authors: Anita Vidacs, Csaba Vagvolgyi, Judit Krisch

Abstract:

The attachment of microorganisms to different surfaces and the development of biofilms can lead to outbreaks of food-borne diseases and economic losses due to perished food. In food processing environments, bacterial communities are generally formed by mixed cultures of different species. Plants are sources of several antimicrobial substances that may be potential candidates for the development of new disinfectants. We aimed to investigate cinnamon (Cinnamomum zeylanicum), marjoram (Origanum majorana), and thyme (Thymus vulgaris). Essential oils and their major components (cinnamaldehyde, terpinene-4-ol, and thymol) on four-species biofilms of E. coli, L. monocytogenes, P. putida, and S. aureus. Experiments had three parts: (i) determination of minimum bactericide concentration and the killing time with microdilution methods; (ii) elimination of the four-species 24– and 168-hours old biofilm from stainless steel, polypropylene, tile and wood surfaces; and (iii) comparing the disinfectant effect with industrial used per-acetic based sanitizer (HC-DPE). E. coli and P. putida were more resistant to investigated essential oils and their main components in biofilm, than L. monocytogenes and S. aureus. These Gram-negative bacteria were detected on the surfaces, where the natural based disinfectant had not total biofilm elimination effect. Most promoted solutions were the cinnamon essential oil and the terpinene-4-ol that could eradicate the biofilm from stainless steel, polypropylene and even from tile, too. They have a better disinfectant effect than HC-DPE. These natural agents can be used as alternative solutions in the battle against bacterial biofilms.

Keywords: biofilm, essential oils, surfaces, terpinene-4-ol

Procedia PDF Downloads 112
222 Effect of Satureja khuzestanica Jamzad Supplementation on Inflammatory and Antioxidant Indicators in Type 2 Diabetes Patients: A Randomized Controlled Clinical Trial Study

Authors: Maryam Bordbar, Yaser Mokhayeri, Sajjad Roosta, Fatemeh Ghasemi, Saeed Choobkar, Hamidreza Nikbakht, Ebrahim Falahi

Abstract:

Objective: Diabetes mellitus type 2 is the most common metabolic disorder that is growing exponentially worldwide. Satureja Khuzestanica Jamzad is a native plant of Iran that grows widely in the south of Iran. Its antimicrobial, antioxidant, anti-inflammatory and pain-relieving effects have been documented in animal studies. The purpose of this study is to investigate the effect of consumption daily S. khuzestanica on inflammatory and antioxidant indicators in type 2 diabetic patients. Methods and Materials: In a double-blind, placebo-controlled clinical trial, 67 patients with type 2 diabetes were included and divided into two groups. One group received S. khuzestanica (capsule containing 500 mg) and the other group received placebo (500 mg talcum powder) once a day for 12 weeks. After the intervention, the inflammatory and antioxidant indicators of the two groups were compared. Results: In comparison to placebo groups, there was a significant difference in levels of total antioxidant capacity, superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase; these antioxidant indicators were higher in the intervention group (P<0.05). Moreover, a considerable decrease in weight, CRP and IL-6 levels were observed in patients in the S.Khuzestanica group. Conclusion: Our findings may provide novel complementary treatments without adverse effects for diabetes complications.

Keywords: Satureja khuzestanica Jamzad, diabetes mellitus, antioxidant indicators, IL-6, C-reactive protein

Procedia PDF Downloads 70
221 Synergistic Effect of Eugenol Acetate with Betalactam Antibiotic on Betalactamase and Its Bioinformatics Analysis

Authors: Vinod Nair, C. Sadasivan

Abstract:

Beta-lactam antibiotics are the most frequently prescribed medications in modern medicine. The antibiotic resistance by the production of enzyme beta-lactamase is an important mechanism seen in microorganisms. Resistance to beta-lactams mediated by beta-lactamases can be overcome successfully with the use of beta-lactamase inhibitors. New generations of the antibiotics contain mostly synthetic compounds, and many side effects have been reported for them. Combinations of beta-lactam and beta-lactamase inhibitors have become one of the most successful antimicrobial strategies in the current scenario of bacterial infections. Plant-based drugs are very cheap and having lesser adverse effect than synthetic compounds. The synergistic effect of eugenol acetate with beta-lactams restores the activity of beta-lactams, allowing their continued clinical use. It is reported here the enhanced inhibitory effect of phytochemical, eugenol acetate, isolated from the plant Syzygium aromaticum with beta-lactams on beta-lactamase. The compound was found to have synergistic effect with the antibiotic amoxicillin against antibiotic-resistant strain of S.aureus. The enzyme was purified from the organism and incubated with the compound. The assay showed that the compound could inhibit the enzymatic activity of beta-lactamase. Modeling and molecular docking studies indicated that the compound can fit into the active site of beta-lactamase and can mask the important residue for hydrolysis of beta-lactams. The synergistic effects of eugenol acetate with beta-lactam antibiotics may justify, the use of these plant compounds for the preparation of β-lactamase inhibitors against β-lactam resistant S.aureus.

Keywords: betalactamase, eugenol acetate, synergistic effect, molecular modeling

Procedia PDF Downloads 249
220 Impact of Edible Coatings Made of Chitosan and Spray Dried Propolis in the Shell Life of White Cachama (Piaractus brachypomus)

Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez

Abstract:

There is a need to preserve aquaculture matrices due to their high nutritional value, and its broad consumption, one of those species is the white cachama (Piaractus brachypomus), this fish is located in the rivers of eastern Colombia, and the previously mentioned species needs more study. Therefore, in a paper the effects of an alternative method of preservation of shell life were investigated, the method used is the application of an edible coating made from chitosan and ethanolic extract of propolis (EEP) encapsulated in maltodextrin. The coating was applied by immersion, and after that, we investigated the post mortem quality changes of the fish performing physicochemical and microbiological analysis. pH, volatile bases, test thiobarbituric acid and peroxide value were tested; finally, we studied the effect of the coating on mesophilic strains, coliforms and other microorganisms such as Staphylococcus, and Salmonella. Finally, we concluded that the coating prolongs the shelf life because it acts as a barrier to oxygen and moisture, the bioactive compounds trap free radicals and the coatings changes the metabolism and cause the cell lysis of the microorganisms. It was determined that the concentration of malonaldehyde, the volatile basic nitrogen content and pH are the variables that distinguish more clearly between the samples with the treatment and the control samples.

Keywords: antimicrobial activity, lipid oxidation, texture profile analysis (TPA), sensorial analysis, peroxide value, thiobarbituric acid assay (TBA), total volatile basic nitrogen (TVB-N)

Procedia PDF Downloads 289
219 Antibacterial Activity of Silver Nanoparticles of Extract of Leaf of Nauclea latifolia (Sm.) against Some Selected Clinical Isolates

Authors: Mustapha Abdulsalam, R. N. Ahmed

Abstract:

Nauclea latifolia is one of the medicinal plants used in traditional Nigerian medicine in the treatment of various diseases such as fever, toothaches, malaria, diarrhea among several other conditions. Nauclea latifolia leaf extract acts as a capping and reducing agent in the formation of silver nanoparticles. Silver nanoparticles (AgNPs) were synthesized using a combination of aqueous extract of Nauclea latifolia and 1mM of silver nitrate (AgNO₃) solution to obtain concentrations of 100mg/ml-400mg/ml. Characterization of the particles was done by UV-Vis spectroscopy and Fourier transform infrared (FTIR). In this study, aqueous as well as ethanolic extract of leaf of Nauclea latifolia were investigated for antibacterial activity using the standard agar well diffusion technique against three clinical isolates (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa). The Minimum Inhibitory Concentration (MIC) was achieved by microbroth dilution method and Minimum Bactericidal Concentration (MBC) was also determined by plate assay. Characterization by UV-visible spectrometry revealed peak absorbance of 0.463 at 450.0nm, while FTIR showed the presence of two functional groups. At 400mg/ml, the highest inhibitory activities were observed with S.aureus and E.coli with zones of inhibition measuring 20mm and 18mm respectively. The MIC was obtained at 400mg/ml while MBC was at a higher concentration. The data from this study indicate the potential of silver nanoparticle of Nauclea latifolia as a suitable alternative antibacterial agent for incorporation into orthodox medicine in health care delivery in Nigeria.

Keywords: agar well diffusion, antimicrobial activity, Nauclea latifolia, silver nanoparticles

Procedia PDF Downloads 206
218 Contribution to the Production of Phenazine Antibiotics Effect Type Compounds by Some Strains of Pseudomonas spp.fluorescent

Authors: Nacéra Benoussaid, Lehalali Meriem, Benchabane Messaoud

Abstract:

Our work focuses on the production of compound antibiotic effect of volatile nature namely hydrogen cyanide and the production and identification of molecules phénazinique by some strains of fluorescent Pseudomonas spp isolated from the rhizosphere of some trees for a possible use as bio pesticides antifungal effect and/or antibiotic. We tested the production of hydrogen cyanide of 21 strains of Pseudomonas spp. fluorescent among them 19 strains (90, 47%) showed a positive cyanogenesis.The antagonism test executed in vitro showed that Pseudomonas strains have a higher anti fungal effect relative to their antibacterial effect with diameters of inhibition zones up to 3, 9 cm recorded by the strain F48 against Coleosporiumsp compared with recorded results against bacteria with a maximum inhibition of 1, 26 cm among this antagonistic strain.Three strains were selected by testing for producing phénazines namely PI9, BB9 and F20. The effect of the antimicrobial activity was performed on different culture media (GN, King B, ISP2 and PDA). The results of our study allowed us to retain the King B medium as ideal medium for the production of secondary metabolite. The produced phenazinique compounds was extracted from various organic solvents, and after the results of antibiographie against germs - targets, the extracts of ethyl acetate gave the best results compared to dichloromethane and hexane.The Analysis of these compounds of antibiotic phenazinique effect within layer chromatography (CCM) and high performance liquid chromatography( HPLC) indicate that both strains PI9 and F20 are productive of phenazine-1-carboxylic acid (PCA). The BB9 strain is suspected to be productive of another phenazinique compound.

Keywords: Pseudomonas ssp. fluorescents, antagonism in vitro, secondary metabolite, phenazines, biopesticide.

Procedia PDF Downloads 511
217 Valorisation of Waste Chicken Feathers: Electrospun Antibacterial Nanoparticles-Embedded Keratin Composite Nanofibers

Authors: Lebogang L. R. Mphahlele, Bruce B. Sithole

Abstract:

Chicken meat is the highest consumed meat in south Africa, with a per capita consumption of >33 kg yearly. Hence, South Africa produces over 250 million kg of waste chicken feathers each year, the majority of which is landfilled or incinerated. The discarded feathers have caused environmental pollution and natural protein resource waste. Therefore, the valorisation of waste chicken feathers is measured as a more environmentally friendly and cost-effective treatment. Feather contains 91% protein, the main component being beta-keratin, a fibrous and insoluble structural protein extensively cross linked by disulfide bonds. Keratin is usually converted it into nanofibers via electrospinning for a variety of applications. keratin nanofiber composites have many potential biomedical applications for their attractive features, such as high surface-to-volume ratio and very high porosity. The application of nanofibers in the biomedical wound dressing requires antimicrobial properties for materials. One approach is incorporating inorganic nanoparticles, among which silver nanoparticles played an important alternative antibacterial agent and have been studied against many types of microbes. The objective of this study is to combine synthetic polymer, chicken feather keratin, and antibacterial nanoparticles to develop novel electrospun antibacterial nanofibrous composites for possible wound dressing application. Furthermore, this study will converting a two-dimensional electrospun nanofiber membrane to three-dimensional fiber networks that resemble the structure of the extracellular matrix (ECM)

Keywords: chicken feather keratin, nanofibers, nanoparticles, nanocomposites, wound dressing

Procedia PDF Downloads 132
216 Collagen Scaffold Incorporated with Macrotyloma uniflorum Plant Extracts as a–Burn/Wound Dressing Material, in Vitro and in Vivo Evaluation

Authors: Thangavelu Muthukumar, Thotapalli Parvathaleswara Sastry

Abstract:

Collagen is the most abundantly available connective tissue protein, which is being used as a biomaterial for various biomedical applications. Presently, fish wastes are disposed improperly which is causing serious environmental pollution resulting in offensive odour. Fish scales are promising source of Type I collagen. Medicinal plants have been used since time immemorial for treatment of various ailments of skin and dermatological disorders especially cuts, wounds, and burns. Developing biomaterials from the natural sources which are having wound healing properties within the search of a common man is the need of hour, particularly in developing and third world countries. With these objectives in view we have developed a wound dressing material containing fish scale collagen (FSC) incorporated with Macrotyloma uniflorum plant extract (PE). The wound dressing composite was characterized for its physiochemical properties using conventional methods. SEM image revealed that the composite has fibrous and porous surface which helps in transportation of oxygen as well as absorbing wound fluids. The biomaterial has shown 95% biocompatibility with required mechanical strength and has exhibited antimicrobial properties. This biomaterial has been used as a wound dressing material in experimental wounds of rats. The healing pattern was evaluated by macroscopic observations, panimetric studies, biochemical, histopathological observations. The results showed faster healing pattern in the wounds treated with CSPE compared to the other composites used in this study and untreated control. These experiments clearly suggest that CSPE can be used as wound/burn dressing materials.

Keywords: collagen, wound dressing, Macrotyloma uniflorum, burn dressing

Procedia PDF Downloads 417
215 Dual Mode Mobile Based Detection of Endogenous Hydrogen Sulfide for Determination of Live and Antibiotic Resistant Bacteria

Authors: Shashank Gahlaut, Chandrashekhar Sharan, J. P. Singh

Abstract:

Increasing incidence of antibiotic-resistant bacteria is a big concern for the treatment of pathogenic diseases. The effect of treatment of patients with antibiotics often leads to the evolution of antibiotic resistance in the pathogens. The detection of antibiotic or antimicrobial resistant bacteria (microbes) is quite essential as it is becoming one of the big threats globally. Here we propose a novel technique to tackle this problem. We are taking a step forward to prevent the infections and diseases due to drug resistant microbes. This detection is based on some unique features of silver (a noble metal) nanorods (AgNRs) which are fabricated by a physical deposition method called thermal glancing angle deposition (GLAD). Silver nanorods are found to be highly sensitive and selective for hydrogen sulfide (H2S) gas. Color and water wetting (contact angle) of AgNRs are two parameters what are effected in the presence of this gas. H₂S is one of the major gaseous products evolved in the bacterial metabolic process. It is also known as gasotransmitter that transmits some biological singles in living systems. Nitric Oxide (NO) and Carbon mono oxide (CO) are two another members of this family. Orlowski (1895) observed the emission of H₂S by the bacteria for the first time. Most of the microorganism produce these gases. Here we are focusing on H₂S gas evolution to determine live/dead and antibiotic-resistant bacteria. AgNRs array has been used for the detection of H₂S from micro-organisms. A mobile app is also developed to make it easy, portable, user-friendly, and cost-effective.

Keywords: antibiotic resistance, hydrogen sulfide, live and dead bacteria, mobile app

Procedia PDF Downloads 145
214 Organotin (IV) Based Complexes as Promiscuous Antibacterials: Synthesis in vitro, in Silico Pharmacokinetic, and Docking Studies

Authors: Wajid Rehman, Sirajul Haq, Bakhtiar Muhammad, Syed Fahad Hassan, Amin Badshah, Muhammad Waseem, Fazal Rahim, Obaid-Ur-Rahman Abid, Farzana Latif Ansari, Umer Rashid

Abstract:

Five novel triorganotin (IV) compounds have been synthesized and characterized. The tin atom is penta-coordinated to assume trigonal-bipyramidal geometry. Using in silico derived parameters; the objective of our study is to design and synthesize promiscuous antibacterials potent enough to combat resistance. Among various synthesized organotin (IV) complexes, compound 5 was found as potent antibacterial agent against various bacterial strains. Further lead optimization of drug-like properties was evaluated through in silico predictions. Data mining and computational analysis were utilized to derive compound promiscuity phenomenon to avoid drug attrition rate in designing antibacterials. Xanthine oxidase and human glucose- 6-phosphatase were found as only true positive off-target hits by ChEMBL database and others utilizing similarity ensemble approach. Propensity towards a-3 receptor, human macrophage migration factor and thiazolidinedione were found as false positive off targets with E-value 1/4> 10^-4 for compound 1, 3, and 4. Further, displaying positive drug-drug interaction of compound 1 as uricosuric was validated by all databases and docked protein targets with sequence similarity and compositional matrix alignment via BLAST software. Promiscuity of the compound 5 was further confirmed by in silico binding to different antibacterial targets.

Keywords: antibacterial activity, drug promiscuity, ADMET prediction, metallo-pharmaceutical, antimicrobial resistance

Procedia PDF Downloads 503
213 Synthesis and Characterization of Cellulose-Based Halloysite-Carbon Adsorbent

Authors: Laura Frydel, Piotr M. Slomkiewicz, Beata Szczepanik

Abstract:

Triclosan has been used as a disinfectant in many medical products, such as: hand disinfectant soaps, creams, mouthwashes, pastes and household cleaners. Due to its strong antimicrobial activity, triclosan is becoming more and more popular and the consumption of disinfectants with triclosan in it is increasing. As a result, this compound increasingly finds its way into waters and soils in an unchanged form, pollutes the environment and may have a negative effect on organisms. The aim of this study was to investigate the synthesis of cellulose-based halloysite-carbon adsorbent and perform its characterization. The template in the halloysite-carbon adsorbent was halloysite nanotubes and the carbon precursor was microcrystalline cellulose. Scanning electron microscope (SEM) images were obtained and the elementary composition (qualitative and quantitative) of the sample was determined by energy dispersion spectroscopy (EDS). The identification of the crystallographic composition of the halloysite nanotubes and the sample of the halloysite-carbon composite was carried out using the X-ray powder diffraction (XRPD) method. The FTIR spectra were acquired before and after the adsorption process in order to determine the functional groups on the adsorbent surface and confirm the interactions between adsorbent and adsorbate molecules. The parameters of the porous structure of the adsorbent, such as the specific surface area (Brunauer-Emmett-Teller method), the total pore volume and the volume of mesopores and micropores were determined. Total carbon and total organic carbon were also determined in the samples. A cellulose-based halloysite-carbon adsorbent was used to remove triclosan from water. The degree of removal of triclosan from water was approximately 90%. The results indicate that the halloysite-carbon composite can be successfully used as an effective adsorbent for removing triclosan from water.

Keywords: Adsorption, cellulose, halloysite, triclosan

Procedia PDF Downloads 128
212 Development of an in vitro Fermentation Chicken Ileum Microbiota Model

Authors: Bello Gonzalez, Setten Van M., Brouwer M.

Abstract:

The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling.

Keywords: broilers, in vitro model, ileum microbiota, fermentation

Procedia PDF Downloads 57
211 The Effect of Electrical Discharge Plasma on Inactivation of Escherichia Coli MG 1655 in Pure Culture

Authors: Zoran Herceg, Višnja Stulić, Anet Režek Jambrak, Tomislava Vukušić

Abstract:

Electrical discharge plasma is a new non-thermal processing technique which is used for the inactivation of contaminating and hazardous microbes in liquids. Plasma is a source of different antimicrobial species including UV photons, charged particles, and reactive species such as superoxide, hydroxyl radicals, nitric oxide and ozone. Escherichia coli was studied as foodborne pathogen. The aim of this work was to examine inactivation effects of electrical discharge plasma treatment on the Escherichia coli MG 1655 in pure culture. Two types of plasma configuration and polarity were used. First configuration was with titanium wire as high voltage needle and another with medical stainless steel needle used to form bubbles in treated volume and titanium wire as high voltage needle. Model solution samples were inoculated with Escerichia coli MG 1655 and treated by electrical discharge plasma at treatment time of 5 and 10 min, and frequency of 60, 90 and 120 Hz. With the first configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.3 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was 3.0 log₁₀ reduction. At the frequency of 90 Hz after 10 minutes inactivation rate was 1.3 log₁₀ reduction. With the second configuration after 5 minutes of treatment at frequency of 120 Hz the inactivation rate was 1.2 log₁₀ reduction and after 10 minutes of treatment the inactivation rate was also 3.0 log₁₀ reduction. In this work it was also examined the formation of biofilm, nucleotide and protein leakage at 260/280 nm, before and after treatment and recuperation of treated samples. Further optimization of method is needed to understand mechanism of inactivation.

Keywords: electrical discharge plasma, escherichia coli MG 1655, inactivation, point-to-plate electrode configuration

Procedia PDF Downloads 432
210 Microwave Synthesis and Molecular Docking Studies of Azetidinone Analogous Bearing Diphenyl Ether Nucleus as a Potent Antimycobacterial and Antiprotozoal Agent

Authors: Vatsal M. Patel, Navin B. Patel

Abstract:

The present studies deal with the developing a series bearing a diphenyl ethers nucleus using structure-based drug design concept. A newer series of diphenyl ether based azetidinone namely N-(3-chloro-2-oxo-4-(3-phenoxyphenyl)azetidin-1-yl)-2-(substituted amino)acetamide (2a-j) have been synthesized by condensation of m-phenoxybenzaldehyde with 2-(substituted-phenylamino)acetohydrazide followed by the cyclisation of resulting Schiff base (1a-j) by conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 2f was found to be most active M. tuberculosis (6.25 µM) MIC value in the primary screening as well as this same derivative has been found potency against L. mexicana and T. cruzi with MIC value 2.09 and 6.69 µM comparable to the reference drug Miltefosina and Nifurtimox. To provide understandable evidence to predict binding mode and approximate binding energy of a compound to a target in the terms of ligand-protein interaction, all synthesized compounds were docked against an enoyl-[acyl-carrier-protein] reductase of M. tuberculosis (PDB ID: 4u0j). The computational studies revealed that azetidinone derivatives have a high affinity for the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski’s parameters showed good drug-like properties and can be developed as an oral drug candidate.

Keywords: antimycobacterial, antiprotozoal, azetidinone, diphenylether, docking, microwave

Procedia PDF Downloads 161
209 Antibacterial Wound Dressing Based on Metal Nanoparticles Containing Cellulose Nanofibers

Authors: Mohamed Gouda

Abstract:

Antibacterial wound dressings based on cellulose nanofibers containing different metal nanoparticles (CMC-MNPs) were synthesized using an electrospinning technique. First, the composite of carboxymethyl cellulose containing different metal nanoparticles (CMC/MNPs), such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs), zinc nanoparticles (ZnNPs), cadmium nanoparticles (CdNPs) and cobalt nanoparticles (CoNPs) were synthesized, and finally, these composites were transferred to the electrospinning process. Synthesized CMC-MNPs were characterized using scanning electron microscopy (SEM) coupled with high-energy dispersive X-ray (EDX) and UV-visible spectroscopy used to confirm nanoparticle formation. The SEM images clearly showed regular flat shapes with semi-porous surfaces. All MNPs were well distributed inside the backbone of the cellulose without aggregation. The average particle diameters were 29-39 nm for ZnNPs, 29-33 nm for CdNPs, 25-33 nm for CoNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Surface morphology, water uptake and release of MNPs from the nanofibers in water and antimicrobial efficacy were studied. SEM images revealed that electrospun CMC-MNPs nanofibers are smooth and uniformly distributed without bead formation with average fiber diameters in the range of 300 to 450 nm. Fiber diameters were not affected by the presence of MNPs. TEM images showed that MNPs are present in/on the electrospun CMC-MNPs nanofibers. The diameter of the electrospun nanofibers containing MNPs was in the range of 300–450 nm. The MNPs were observed to be spherical in shape. The CMC-MNPs nanofibers showed good hydrophilic properties and had excellent antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus.

Keywords: electrospinning technique, metal nanoparticles, cellulosic nanofibers, wound dressing

Procedia PDF Downloads 329
208 The Effect of Chitosan and Mycorrhization on Some Growth-Physiological Indices of Salvia leriifolia Benth.

Authors: Marzieh Fotovvat, Farzaneh Najafi, Ramazan Ali Khavari-Nejad, Daryush Talei, Farhad Rejali

Abstract:

Salvia leriifolia Benth. is one of the valuable and perennial medicinal plants of the Lamiaceae family, geographically growing in the south and tropical regions of Khorassan and Semnan provinces in Iran. In recent years, several medicinal properties such as antimicrobial, antifungal, anti-diabetic, analgesic, and anti-inflammatory effects have been reported from this plant. The use of elicitors such as chitosan and Arbuscular mycorrhizal fungi (AMF) symbiosis are the main methods for increasing the production of secondary metabolites, growth, and physiological factors in plants. The main aim of this study was to investigate the effects of foliar spraying applications by chitosan and/or the contribution of AMF (Glomus interaradices) on some growth factors and chlorophyll content of S. leriifolia under glasshouse conditions. The sterilized seeds were germinated by placing them into a cocopeat. After one month, seedlings that were in the 2-4 leaf stage were transferred to plastic pots (garden soil and pumice at 2:1) with or without mycorrhizal fungi. Chitosan (0, 50, 100, 200, and 400 mg L-1) was sprayed four times in the fourth month of the vegetative period. The results showed that fresh leaf weight, fresh root weight, root height, and chlorophyll content could change in the plant treated with chitosan and AMF symbiosis. So that the highest chlorophyll content and fresh weight of roots and leaves were observed in the interaction of chitosan and G. interaradices. In general, by optimizing the chitosan concentration and the use of appropriate AMF symbiosis, it is possible to improve the growth and quality of the medicinal plant S. leriifolia.

Keywords: chitosan, chlorophyll, growth factors, mycorrhiza

Procedia PDF Downloads 81
207 Cannabidiol (CBD) Resistant Salmonella Strains Are Susceptible to Epsilon 34 Phage Tailspike Protein

Authors: Ibrahim Iddrisu, Joseph Ayariga, Junhuan Xu, Ayomide Adebanjo, Boakai K. Robertson, Michelle Samuel-Foo, Olufemi Ajayi

Abstract:

The rise of antimicrobial resistance is a global public health crisis that threatens the effective control and prevention of infections. Due to the emergence of pan drug-resistant bacteria, most antibiotics have lost their efficacy. Bacteriophages or their components are known to target bacterial cell walls, cell membranes, and lipopolysaccharides (LPS) and hydrolyze them. Bacteriophages, being the natural predators of pathogenic bacteria, are inevitably categorized as ‘human friends’, thus fulfilling the adage that ‘the enemy of my enemy is my friend’. Leveraging on their lethal capabilities against pathogenic bacteria, researchers are searching for more ways to overcome the current antibiotic resistance challenge. In this study, we expressed and purified epsilon 34 phage tail spike protein (E34 TSP) from the E34 TSP gene, then assessed the ability of this bacteriophage protein in the killing of two CBD-resistant strains of Salmonella spp. We also assessed the ability of the tail spike protein to cause bacteria membrane disruption and dehydrogenase depletion. We observed that the combined treatment of CBD-resistant strains of Salmonella with CBD and E34 TSP showed poor killing ability, whereas the mono treatment with E34 TSP showed considerably higher killing efficiency. This study demonstrates that the inhibition of the bacteria by E34 TSP was due in part to membrane disruption and dehydrogenase inactivation by the protein. The results of this work provide an interesting background to highlight the crucial role phage proteins such as E34 TSP could play in pathogenic bacterial control.

Keywords: cannabidiol, resistance, Salmonella, antimicrobials, phages

Procedia PDF Downloads 69
206 Culturable Microbial Diversity of Agave Artisanal Fermentations from Central Mexico

Authors: Thalía Moreno-García Malo, Santiago Torres-Ríos, María G. González-Cruz, María M. Hernández-Arroyo, Sergio R. Trejo-Estrada

Abstract:

Agave atrovirens is the main source of agave sap, the raw material for the production of pulque, an artisanal fermented beverage, traditional since prehispanic times in the highlands of central Mexico. Agave sap is rich in glucose, sucrose and fructooligosaccharides, and strongly differs from agave syrup from A. tequilana, which is mostly a high molecular weight fructan. Agave sap is converted into pulque by a highly diverse microbial community which includes bacteria, yeast and even filamentous fungi. The bacterial diversity has been recently studied. But the composition of consortia derived from directed enrichments differs sharply from the whole fermentative consortium. Using classical microbiology methods, and selective liquid and solid media formulations, either bacterial or fungal consortia were developed and analyzed. Bacterial consortia able to catabolize specific prebiotic saccharides were selected and preserved for future developments. Different media formulations, selective for bacterial genera such as Bifidobacterium, Lactobacillus, Pediococcus, Lactococcus and Enterococcus were also used. For yeast, specific media, osmotic pressure and unique carbon sources were used as selective agents. Results show that most groups are represented in the enrichment cultures; although very few are recoverable from the whole consortium in artisanal pulque. Diversity and abundance vary among consortia. Potential bacterial probiotics obtained from agave sap and agave juices show tolerance to hydrochloric acid, as well as strong antimicrobial activity.

Keywords: Agave, pulque, microbial consortia, prebiotic activity

Procedia PDF Downloads 396
205 Streptococcus anginosus Infections; Clinical and Bacteriologic Characteristics: A 6-Year Retrospective Study of Adult Patients in Qatar

Authors: Adila Shaukat, Hussam Al Soub, Muna Al Maslamani, Abdullatif Al Khal

Abstract:

Background: The aim of this study was to assess clinical presentation and antimicrobial susceptibility of Streptococcus (S.) anginosus group infections in Hamad General Hospital, a tertiary care hospital in the state of Qatar, which is a multinational community. The S. anginosus group is a subgroup of viridans streptococci that consist of 3 different species: S. anginosus, S. constellatus, and S. intermedius. Although a part of the human bacteria flora, they have potential to cause suppurative infections. Method: We studied a total of 101 patients with S. anginosus group infections from January 2006 until March 2012 by reviewing medical records and identification of organisms by VITEK 2 and MALDI-TOF. Results: The most common sites of infection were skin and soft tissue, intra-abdominal, and bacteremia (28.7%, 24.8%, and 22.7%, respectively). Abscess formation was seen in approximately 30% of patients. Streptococcus constellatus was the most common isolated species (40%) followed by S. anginosus(30%) and S. intermedius(7%). In 23% of specimens, the species was unidentified. The most common type of specimen for organism isolation was blood followed by pus and tissue (50%, 22%, and 8%, respectively). Streptococcus constellatus was more frequently associated with abdominal and skin and soft tissue infections than the other 2 species, whereas S. anginosus was isolated more frequently from blood. All isolates were susceptible to penicillin, ceftriaxone, and vancomycin. Susceptibility to erythromycin and clindamycin was also good, reaching 91% and 95%, respectively. Forty percent of patients needed surgical drainage along with antibiotic therapy. Conclusions: Identification of S. anginosus group to species level is helpful in clinical practice because different species exhibit different pathogenic potentials.

Keywords: abscess, bacterial infection, bacteremia, Streptococcus anginosus

Procedia PDF Downloads 143
204 Screening and Isolation of Lead Molecules from South Indian Plant Extracts against NDM-1 Producing Escherichia coli

Authors: B. Chandar, M. K. Ramasamy, P. Madasamy

Abstract:

The discovery and development of newer antibiotics are limited with the increase in resistance of such multi-drug resistant bacteria creating the need for alternative new therapeutic agents. The recently discovered New Delhi Metallo-betalactamase-1 (NDM-1), which confers antibiotic resistance to most of the currently available β-lactams, except colistin and tigecycline, is a global concern. Several antibacterial drugs approved are natural products or their semisynthetic derivatives, but plant extracts remain to be explored to find molecules that are effective against NDM-1 bacteria. Therefore, it is necessary to explore the possibility of finding new and effective antibacterial compounds against NDM-1 bacteria. In the present study, we have screened a diverse set South Indian plant species, and report most plant species as a potential source for antimicrobial compounds against NDM-1 bacteria. Ethanol extracts from the leaves of taxonomically diverse South Indian medicinal plants were screened for antibacterial activity against NDM-1 E. coli using streak plate method. Among the plant screened against NDM-1 E. coli, the ethanol extracts from many plant extracts showed minimum bactericidal concentration between 5 and 15 mg /ml and MIC between 2.54 and 5.12 mg/ml. These extracts also showed a potent synergistic effect when combined with antibiotics colistin and tetracycline. Combretum albidum that was effective was taken for further analysis. At 5mg/L concentration, these extracts inhibited the NDM-1 enzyme in vitro, and residual activity for Combretum albidum was 33.09%. Treatment of NDM-1 E. coli with the extracts disrupted the cell wall integrity and caused 89.7% cell death. The plant extract of Combretum albidum that was effective was subjected to fractionation and the fraction was further subjected to HPLC, LC-MS for identification of antibacterial compound.

Keywords: antibacterial activity, combretum albidum, Escherichia coli, NDM-1

Procedia PDF Downloads 455
203 4-Allylpyrocatechol Loaded Polymeric Micelles for Solubility Enhancing and Effects on Streptococcus mutans Biofilms

Authors: Siriporn Okonogi, Pimpak Phumat, Sakornrat Khongkhunthian

Abstract:

Piper betle has been extensively reported for various pharmacological effects including antimicrobial activity. 4-Allylpyrocatechol (AC) is a principle active compound found in P. betle. However, AC has a problem of solubility in water. The aims of the present study were to prepare AC loaded polymeric micelles for enhancing its water solubility and to evaluate its anti-biofilm activity against oral phathogenic bacteria. AC was loaded in polymeric micelles (PM) of Pluronic F127 by using thin film hydration method to obtain AC loaded PM (PMAC). The results revealed that AC in the form of PMAC possessed high water solubility. PMAC particles were characterized using a transmission electron microscope and photon correlation spectroscopy. Determination of entrapment efficiency (EE) and loading capacity (LC) of PMAC was done by using high-performance liquid chromatography. The highest EE (86.33 ± 14.27 %) and LC (19.25 ± 3.18 %) of PMAC were found when the weight ratio of polymer to AC was 4 to 1. At this ratio, the particles showed spherical in shape with the size of 38.83 ± 1.36 nm and polydispersity index of 0.28 ± 0.10. Zeta potential of the particles is negative with the value of 16.43 ± 0.55 mV. Crystal violet assay and confocal microscopy were applied to evaluate the effects of PMAC on Streptococcus mutans biofilms using chlorhexidine (CHX) as a positive control. PMAC contained 1.5 mg/mL AC could potentially inhibit (102.01 ± 9.18%) and significantly eradicate (85.05 ± 2.03 %) these biofilms (p < 0.05). Comparison with CHX, PMAC showed slightly similar biofilm inhibition but significantly stronger biofilm eradication (p < 0.05) than CHX. It is concluded that PMAC can enhance water solubility and anti-biofilm activity of AC.

Keywords: pluronic, polymeric micelles, solubility, 4-allylpyrocathecol, Streptococcus mutans, anti-biofilm

Procedia PDF Downloads 144