Search results for: ammoniacal nitrogen
480 Molecular Profiling of an Oleaginous Trebouxiophycean Alga Parachlorella kessleri Subjected to Nutrient Deprivation
Authors: Pannaga Pavan Jutur
Abstract:
Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amounts of oil, i.e., lipids under nutrient-deprived (-N, -P, and -S) conditions. Understanding their metabolic imprints is important for elucidating the physiological mechanisms of lipid accumulations in this microalga subjected to nutrient deprivation. Metabolic and lipidomic profiles were obtained respectively using gas chromatography-mass spectrometry (GC-MS) of P. kessleri under nutrient starvation (-N, -P and -S) conditions. Relative quantities of more than 100 metabolites were systematically compared in all these three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, nitrogen assimilation, etc. In conclusion, the metabolomics and lipidomic profiles have identified a few common metabolites such as citric acid, valine, and trehalose to play a significant role in the overproduction of oil by this microalga subjected to nutrient deprivation. Understanding the entire system through untargeted metabolome profiling will lead to identifying relevant metabolites involved in the biosynthesis and degradation of precursor molecules that may have the potential for biofuel production, aiming towards the vision of tomorrow’s bioenergy needs.Keywords: algae, biofuels, nutrient stress, omics
Procedia PDF Downloads 274479 Preparation and Characterization of Nanostructured FeN Electrocatalyst for Air Cathode Microbial Fuel Cell (MFC)
Authors: Md. Maksudur Rahman Khan, Chee Wai Woon, Huei Ruey Ong, Vignes Rasiah, Chin Kui Cheng, Kar Min Chan, E. Baranitharan
Abstract:
The present work represents a preparation of non-precious iron-based electrocatalyst (FeN) for ORR in air-cathode microbial fuel cell by pyrolysis treatment. Iron oxalate which recovered from the industrial wastewater and Phenanthroline (Phen) were used as the iron and nitrogen precursors, respectively in preparing FeN catalyst. The performance of as prepared catalyst (FeN) was investigated in a single chambered air cathode MFC in which anaerobic sludge was used as inoculum and palm oil mill effluent as substrate. The maximum open circuit potential (OCV) and the highest power density recorded were 0.543 V and 4.9 mW/m2, respectively. Physical characterization of FeN was elucidated by using Brunauner Emmett Teller (BET), X-Ray Diffraction (XRD) analysis and Field Emission Scanning Electron Microscopy (FESEM) while the electrochemical properties were characterized by cyclic voltammetry (CV) analysis. The presence of biofilm on anode surface was examined using FESEM and confirmed using Infrared Spectroscopy and Thermogravimetric Analysis. The findings of this study demonstrated that FeN is electrochemically active and further modification is needed to increase the ORR catalytic activity.Keywords: iron based catalyst, microbial fuel cells, oxygen reduction reaction, palm oil mill effluent
Procedia PDF Downloads 332478 The Prospects of Optimized KOH/Cellulose 'Papers' as Hierarchically Porous Electrode Materials for Supercapacitor Devices
Authors: Dina Ibrahim Abouelamaiem, Ana Jorge Sobrido, Magdalena Titirici, Paul R. Shearing, Daniel J. L. Brett
Abstract:
Global warming and scarcity of fossil fuels have had a radical impact on the world economy and ecosystem. The urgent need for alternative energy sources has hence elicited an extensive research for exploiting efficient and sustainable means of energy conversion and storage. Among various electrochemical systems, supercapacitors attracted significant attention in the last decade due to their high power supply, long cycle life compared to batteries and simple mechanism. Recently, the performance of these devices has drastically improved, as tuning of nanomaterials provided efficient charge and storage mechanisms. Carbon materials, in various forms, are believed to pioneer the next generation of supercapacitors due to their attractive properties that include high electronic conductivities, high surface areas and easy processing and functionalization. Cellulose has eco-friendly attributes that are feasible to replace man-made fibers. The carbonization of cellulose yields carbons, including activated carbon and graphite fibers. Activated carbons successively are the most exploited candidates for supercapacitor electrode materials that can be complemented with pseudocapacitive materials to achieve high energy and power densities. In this work, the optimum functionalization conditions of cellulose have been investigated for supercapacitor electrode materials. The precursor was treated with potassium hydroxide (KOH) at different KOH/cellulose ratios prior to the carbonization process in an inert nitrogen atmosphere at 850 °C. The chalky products were washed, dried and characterized with different techniques including transmission electron microscopy (TEM), x-ray tomography and nitrogen adsorption-desorption isotherms. The morphological characteristics and their effect on the electrochemical performances were investigated in two and three-electrode systems. The KOH/cellulose ratios of 0.5:1 and 1:1 exhibited the highest performances with their unique hierarchal porous network structure, high surface areas and low cell resistances. Both samples acquired the best results in three-electrode systems and coin cells with specific gravimetric capacitances as high as 187 F g-1 and 20 F g-1 at a current density of 1 A g-1 and retention rates of 72% and 70%, respectively. This is attributed to the morphology of the samples that constituted of a well-balanced micro-, meso- and macro-porosity network structure. This study reveals that the electrochemical performance doesn’t solely depend on high surface areas but also an optimum pore size distribution, specifically at low current densities. The micro- and meso-pore contribution to the final pore structure was found to dominate at low KOH loadings, reaching ‘equilibrium’ with macropores at the optimum KOH loading, after which macropores dictate the porous network. The wide range of pore sizes is detrimental for the mobility and penetration of electrolyte ions in the porous structures. These findings highlight the influence of various morphological factors on the double-layer capacitances and high performance rates. In addition, they open a platform for the investigation of the optimized conditions for double-layer capacitance that can be coupled with pseudocapacitive materials to yield higher energy densities and capacities.Keywords: carbon, electrochemical performance, electrodes, KOH/cellulose optimized ratio, morphology, supercapacitor
Procedia PDF Downloads 217477 Synthesis of 2-Aminoisocoumarinoselenazoles via Transition Metal-Free Alkylation and Ru(II)-Catalyzed [4+2] Alkyne Annulation
Authors: Sunil Kumar, Sandip Dhole, Deepak Salunke, Chung-ming Sun
Abstract:
Heterocycles bearing nitrogen, oxygen, and selenium are present in innumerable biologically active compounds. For instance, coumarin containing dicoumarol acts as naturally occurring anticoagulant. 2-Acylamido selenazole works as Store-Operated Calcium (SOC) channel regulator. Therefore, due to biologically significance of selenazole and coumarin and our quest to develop efficient methodologies for the synthesis of complex heterocycles, the trisubstituted angular isocoumarinoselenazole synthesis was proposed and achieved by starting from nitrobenzoic acid derivative, available commercially. Synthetic procedure involves three steps: i) the construction of 2-aminobenzoselenazoles, ii) their regioselective N-alkylation at position-2 and iii) alkyne insertion via Ru catalyzed C-H activation. Transition metal free synthesis of benzoselenazoles was successfully brought about by the addition/elimination reaction via intramolecular C-Se bond formation. In the next step, N-alkylation of selenazole furnished two regioisomers. Both the isomers exhibited different reactivity towards [4+2] alkyne annulation reaction. The fusion of α-pyrone ring on the benzo[1,3-d]selenazole skeleton was achieved via Ru(II)-catalyzed C-H activation and alkyne insertion. As evident from mechanism, the selenazole 'N' plays an important role for the experiential selectivity.Keywords: alkylation, alkyne insertion, coumarin, selenazole
Procedia PDF Downloads 123476 Bacterial Diversity and Antibiotic Resistance in Coastal Sediments of Izmir Bay, Aegean Sea
Authors: Ilknur Tuncer, Nihayet Bizsel
Abstract:
The scarcity of research in bacterial diversity and antimicrobial resistance in coastal environments as in Turkish coasts leads to difficulties in developing efficient monitoring and management programs. In the present study, biogeochemical analysis of sediments and antimicrobial susceptibility analysis of bacteria in Izmir Bay, eastern Aegean Sea under high anthropogenic pressure were aimed in summer period when anthropogenic input was maximum and at intertidal zone where the first terrigenious contact occurred for aquatic environment. Geochemical content of the intertidal zone of Izmir Bay was firstly illustrated such that total and organic carbon, nitrogen and phosphorus contents were high and the grain size distribution varied as sand and gravel. Bacterial diversity and antibiotic resistance were also firstly given for Izmir Bay. Antimicrobially assayed isolates underlined the multiple resistance in the inner, middle and outer bays with overall 19% high MAR (multiple antibiotic resistance) index. Phylogenetic analysis of 16S rRNA gene sequences indicated that 67 % of isolates belonged to the genus Bacillus and the rest included the families Alteromonadaceae, Bacillaceae, Exiguobacteriaceae, Halomonadaceae, Planococcaceae, and Staphylococcaceae.Keywords: bacterial phylogeny, multiple antibiotic resistance, 16S rRNA genes, Izmir Bay, Aegean Sea
Procedia PDF Downloads 469475 Indoor Emissions Produced by Kerosene Heating, Determining Its Formation Potential of Secondary Particulate Matter and Transport
Authors: J. M. Muñoz, Y. Vasquez, P. Oyola, M. Rubio
Abstract:
All emissions of contaminants inside of homes, offices, school and another enclosure closer that affect the health of those who inhabit or use them are cataloged how indoor pollution. The importance of this study is because individuals spend most of their time in indoors ambient. The main indoor pollutants are oxides of nitrogen (NOₓ), sulfur dioxide (SO₂), carbon monoxide (CO) and particulate matter (PM). Combustion heaters are an important source of pollution indoors. It will be measured: NOₓ, SO₂, CO, PM₂,₅ y PM₁₀ continuous and discreet form at indoor and outdoor of two households with different heating energy; kerosene and electricity (control home) respectively, in addition to environmental parameters such as temperature. With the values obtained in the 'control home' it will be possible estimate the contaminants transport from outside to inside of the household and later the contribution generated by kerosene heating. Transporting the emissions from burning kerosene to a photochemical chamber coupled to a continuous and discreet measuring system of contaminants it will be evaluated the oxidation of the emissions and formation of secondary particulate matter. It will be expected watch a contaminants transport from outside to inside of the household and the kerosene emissions present a high potential of formation secondary particulate matter.Keywords: heating, indoor pollution, kerosene, secondary particulate matter
Procedia PDF Downloads 214474 Cold Spray Deposition of SS316L Powders on Al5052 Substrates and Their Potential Using for Biomedical Applications
Authors: B. Dikici, I. Ozdemir, M. Topuz
Abstract:
The corrosion behaviour of 316L stainless steel coatings obtained by cold spray method was investigated in this study. 316L powders were deposited onto Al5052 aluminum substrates. The coatings were produced using nitrogen (N2) process gas. In order to further improve the corrosion and mechanical properties of the coatings, heat treatment was applied at 250 and 750 °C. The corrosion performances of the coatings were compared using the potentiodynamic scanning (PDS) technique under in-vitro conditions (in Ringer’s solution at 37 °C). In addition, the hardness and porosity tests were carried out on the coatings. Microstructural characterization of the coatings was carried out by using scanning electron microscopy attached with energy dispersive spectrometer (SEM-EDS) and X-ray diffraction (XRD) technique. It was found that clean surfaces and a good adhesion were achieved for particle/substrate bonding. The heat treatment process provided both elimination of the anisotropy in the coating and resulting in healing-up of the incomplete interfaces between the deposited particles. It was found that the corrosion potential of the annealed coatings at 750 °C was higher than that of commercially 316 L stainless steel. Moreover, the microstructural investigations after the corrosion tests revealed that corrosion preferentially starts at inter-splat boundaries.Keywords: biomaterials, cold spray, 316L, corrosion, heat treatment
Procedia PDF Downloads 369473 Decision Support System in Air Pollution Using Data Mining
Authors: E. Fathallahi Aghdam, V. Hosseini
Abstract:
Environmental pollution is not limited to a specific region or country; that is why sustainable development, as a necessary process for improvement, pays attention to issues such as destruction of natural resources, degradation of biological system, global pollution, and climate change in the world, especially in the developing countries. According to the World Health Organization, as a developing city, Tehran (capital of Iran) is one of the most polluted cities in the world in terms of air pollution. In this study, three pollutants including particulate matter less than 10 microns, nitrogen oxides, and sulfur dioxide were evaluated in Tehran using data mining techniques and through Crisp approach. The data from 21 air pollution measuring stations in different areas of Tehran were collected from 1999 to 2013. Commercial softwares Clementine was selected for this study. Tehran was divided into distinct clusters in terms of the mentioned pollutants using the software. As a data mining technique, clustering is usually used as a prologue for other analyses, therefore, the similarity of clusters was evaluated in this study through analyzing local conditions, traffic behavior, and industrial activities. In fact, the results of this research can support decision-making system, help managers improve the performance and decision making, and assist in urban studies.Keywords: data mining, clustering, air pollution, crisp approach
Procedia PDF Downloads 426472 Numerical Analysis of Engine Performance and Emission of a 2-Stroke Opposed Piston Hydrogen Engine
Authors: Bahamin Bazooyar, Xinyan Wang, Hua Zhao
Abstract:
As a zero-carbon fuel, hydrogen can be used in combustion engines to avoid carbon emissions. This paper numerically investigates the engine performance of a two-stroke opposed piston hydrogen engine by using three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations. The engine displacement is 12.2 cm, and the compression ratio of 39. RANS simulations with the k-ε turbulence model and coupled chemistry combustion models are performed at an engine speed of 4500 rpm and hydrogen flow rate of up to 100 gr/s. In order to model the hydrogen injection process, the hydrogen nozzle was meshed with refined mesh, and injection pressure varied between 100 and 200 bars. In order to optimize the hydrogen combustion process, the injection timing was optimized between 15 before the top dead center and 10. The results showed that the combustion efficiency was mostly influenced by the injection pressures due to its impact on the fuel/air mixing and charge inhomogeneity. Nitrogen oxide (NOₓ) emissions are well correlated with engine peak temperatures, demonstrating that the thermal NO mechanism is dominant under engine conditions. Through the optimization of hydrogen injection timing and pressure, the peak thermal efficiency of 45 and NOx emission of 15 ppm/kWh can be achieved at an injection timing of 350 CA and pressure of 160 bars.Keywords: engine, hydrogen, diesel, two-stroke, opposed-piston, decarbonisation
Procedia PDF Downloads 3471 Characterization of Martensitic Stainless Steel Japanese Grade AISI 420A
Authors: T. Z. Butt, T. A. Tabish, K. Anjum, H. Hafeez
Abstract:
A study of martensitic stainless steel surgical grade AISI 420A produced in Japan was carried out in this research work. The sample was already annealed at about 898˚C. The sample were subjected to chemical analysis, hardness, tensile and metallographic tests. These tests were performed on as received annealed and heat treated samples. In the annealed condition the sample showed 0HRC. However, on tensile testing, in annealed condition the sample showed maximum elongation. The heat treatment is carried out in vacuum furnace within temperature range 980-1035°C. The quenching of samples was carried out using liquid nitrogen. After hardening, the samples were subjected to tempering, which was carried out in vacuum tempering furnace at a temperature of 220˚C. The hardened samples were subjected to hardness and tensile testing. In hardness testing, the samples showed maximum hardness values. In tensile testing the sample showed minimum elongation. The sample in annealed state showed coarse plates of martensite structure. Therefore, the studied steels can be used as biomaterials.Keywords: biomaterials, martensitic steel, microsrtucture, tensile testing, hardening, tempering, bioinstrumentation
Procedia PDF Downloads 276470 The Nutritive Value of Fermented Sago Pith (Metroxylon sago Rottb) Enriched with Micro Nutrients for Poultry Feed
Authors: Wizna, Helmi Muis, Hafil Abbas
Abstract:
An experiment was conducted to improve the nutrient value of sago pith (Metroxylon sago Rottb) supplemented with Zn, Sulfur and urea through fermentation by using cellulolytic bacteria (Bacillus amyloliquefaciens) as inoculums. The experiment was determination of the optimum dose combination (dosage of Zn, S and urea) for sago pith fermentation based on nutrient quality and quantity of these fermented products. The study was conducted in experimental method, using the completely randomized design in factorial with 3 treatments consist of: factor A (Dose of urea: A1 = 2.0%, A2 = 3.0%), factor B (Dose of S: B1 = 0.2%, B2 = 0.4%) and factor C (Dose of Zn: C1 = 0.0025%, C2 = 0.005%). Results of study showed that optimum condition for fermentation process of sago pith with B. amyloliquefaciens caused a change of nutrient content was obtained at urea (3%), S (0,2%), and Zn (0,0025%). This fermentation process was able to increase amino acid average, reduce crude fiber content by 67% and increase crude protein by 433%, which made the nutritional value of the product based on dry matter was 18.22% crude protein, 12.42% crude fiber, 2525 Kcal/kg metabolic energy and 65.73% nitrogen retention.Keywords: fermentation, sago pith, sulfur, Zn, urea, Bacillus amyloliquefaciens
Procedia PDF Downloads 508469 Capnography for Detection of Return of Spontaneous Circulation Pseudo-Pea
Authors: Yiyuan David Hu, Alex Lindqwister, Samuel B. Klein, Karen Moodie, Norman A. Paradis
Abstract:
Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) is a reliable indicator of the return of spontaneous circulation (ROSC) in ventricular fibrillation and true-PEA but has not been studied p-PEA. Hypothesis: ET-CO2 can be used as an independent indicator of ROSC in p-PEA resuscitation. Methods: 30kg female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic Ao less than 40 mmHg. The statistical relationships between ET-CO2 and ROSC are reported. Results: ET-CO2 during resuscitation strongly correlated with ROSC (Figure 1). Mean ET-CO2 during p-PEA was 28.4 ± 8.4, while mean ET-CO2 in ROSC for 100% O2 cohort was 42.2 ± 12.6 (p < 0.0001), mean ET-CO2 in ROSC for 100% O2 + CPR was 33.0 ± 15.4 (p < 0.0001). Analysis of slope was limited to one minute of resuscitation data to capture local linearity; assessment began 10 seconds after resuscitation started to allow the ventilator to mix 100% O2. Pigs who would recover with 100% O2 had a slope of 0.023 ± 0.001, oxygen + CPR had a slope of 0.018 ± 0.002, and oxygen + CPR + epinephrine had a slope of 0.0050 ± 0.0009. Conclusions: During resuscitation from porcine hypoxic p-PEA, a rise in ET-CO2 is indicative of ROSC.Keywords: ET-CO2, resuscitation, capnography, pseudo-PEA
Procedia PDF Downloads 186468 Chiral Ruthenium Aminophosphine and Phosphine Iminopyridine Complexes: Synthesis and Application to Asymmetric Hydrogenation and Transfer Hydrogenation
Authors: Littlelet N. Scarlet, Kamaluddin Abdur-Rashid, Paul T. Maragh, Tara Dasgupta
Abstract:
Aminophosphines are a privileged class of ancillary ligands with emerging importance in homogeneous catalysis. The unique combination of soft phosphorus (P) and hard nitrogen (N) centres affords a variety of transition metal complexes as potential pre-catalysts for synthetically useful reactions. Herein three ligand systems will be reported; two bidentate ligands - (S)-8-(diphenyl-phosphino)-1,2,3,4-tetrahydronaphthalen-1-amine, (S)THNANH2, and (Rc)-1-((Sp)-2-diphenylphosphino) ferrocenylethylamine, (RcSp)PPFNH2 - and a tridentate (Rc)-1-((Sp)-2-diphenylphosphino) ferrocenylimino-pyridine, (RcSp)PPFNNH2 ligand; the latter prepared from the condensation of selected ferrocene aminophosphines with pyridine-2-carboxaldehyde. Suitable combinations of these aminophosphine ligands with ruthenium precursors have afforded highly efficient systems for the asymmetric hydrogenation and transfer hydrogenation of selected ketones in 2-propanol. The Ru-(S)THNANH2 precatalyst was the most efficient in the asymmetric hydrogenation of selected ketones with 100% conversions within 4 hours at a catalyst loading of 0.1 mol%. The Ru-(RcSp)PPFNNH2 precatalyst was the most efficient in the asymmetric transfer hydrogenation of the ketones with conversions as high as 98% with 0.1 mol% catalyst. However, the enantioselectivities were generally low.Keywords: aminophosphine, asymmetric hydrogenation, homogeneous catalysis, ruthenium (II), transfer hydrogenation
Procedia PDF Downloads 260467 The Evaluation of Substitution of Acacia villosa in Ruminants Ration
Authors: Hadriana Bansi, Elizabeth Wina, Toto Toharmat
Abstract:
Acacia villosa is thornless shrub legume which contents high crude protein. However, the utilization of A. villosa as ruminant feed is limited by its secondary compounds. The aim of this article is to find out the maximum of substitution A. villosa in sheep ration. The nutritional evaluation consisted of in vitro two stages, in vivo, and in vitro gas production trials. The secondary compounds of A. villosa also were analyzed. Evaluating digestibility of increasing level of substitution A. villosa replacing Pennisetum purpureum was using in vitro two stages. The substitution of 30% A. villosa was compared to 100% P. purpureum by in vitro gas production technique and in vivo digestibility. The results of two stages in vitro showed that total phenol, condensed tannin, and non-protein amino acid (NPAA) were high. Substitution 15% A. villosa reached the highest digestibility for both dry matter (DM) and crude protein (CP) which were 67% and 86% respectively, but it was shown that DM and CP digestibility of substitution 30% of A. villosa was still high which were 61.82% and 75-67% respectively. The pattern of gas production showed that first 8 hours total gas production substitution of 30% A. villosa was higher than 100% P. purpureum and declined after 10 hours incubation. In vivo trials showed that substitution of 30% A. villosa significantly increased CP intake, CP digestibility, and nitrogen retention. It can be concluded that substitution A. villosa until 30% still gave the good impact even though it has high secondary compounds.Keywords: Acacia villosa, digestibility, gas production, secondary compounds
Procedia PDF Downloads 162466 Dielectric Properties of PANI/h-BN Composites
Authors: Seyfullah Madakbas, Emrah Cakmakci
Abstract:
Polyaniline (PANI), the most studied member of the conductive polymers, has a wide range of uses from several electronic devices to various conductive high-technology applications. Boron nitride (BN) is a boron and nitrogen containing compound with superior chemical and thermal resistance and thermal conductivity. Even though several composites of PANI was prepared in literature, the preparation of h-BN/PANI composites is rare. In this work PANI was polymerized in the presence of different amounts of h-BN (1, 3 and 5% with respect to PANI) by using 0.1 M solution of NH4S2O8 in HCl as the oxidizing agent and conductive composites were prepared. Composites were structurally characterized with FTIR spectroscopy and X-Ray Diffraction (XRD). Thermal properties of conductive composites were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric measurements were performed in the frequency range of 106–108 Hz at room temperature. The corresponding bands for the benzenoid and quinoid rings at around 1593 and 1496 cm-1 in the FTIR spectra of the composites proved the formation of polyaniline. Together with the FTIR spectra, XRD analysis also revealed the existence of the interactions between PANI and h-BN. Glass transition temperatures (Tg) of the composites increased with the increasing amount of PANI (from 87 to 101). TGA revealed that the char yield of the composites increased as the amount of h-BN was increased in the composites. Finally the dielectric permittivity of 3 wt.%h-BN-containing composite was measured and found as approximately 17. This work was supported by Marmara University, Commission of Scientific Research Project.Keywords: dielectric permittivity, h-BN, PANI, thermal analysis
Procedia PDF Downloads 276465 Evaluating the Effect of Structural Reorientation to Thermochemical and Energetic Properties of 1,4-Diamino-3,6-Dinitropyrazolo[4,3- C]Pyrazole
Authors: Lamla Thungathaa, Conrad Mahlasea, Lisa Ngcebesha
Abstract:
1,4-Diamino-3,6-dinitropyrazolo[4,3-c]pyrazole (LLM-119) and its structural isomer 3,6-dinitropyrazolo[3,4-c]pyrazole-1,4(6H)-diamine were designed by structural reorientation of the fused pyrazole rings and their respective substituents (-NO2 and -NH2). Structural reorientation involves structural rearrangement which result in different structural isomers, employing this approach, six structural isomers of LLM-119 were achieved. The effect of structural reorientation (isomerisation and derivatives) on the enthalpy of formation, detonation properties, impact sensitivity, and density of these molecules is studied Computationally. The computational method used are detailed in the document and they yielded results that are close to the literature values with a relative error of 2% for enthalpy of formation, 2% for density, 0.05% for detonation velocity, and 4% for detonation pressure. The correlation of the structural reorientation to the calculated thermochemical and detonation properties of the molecules indicated that molecules with a -NO2 group attached to a Carbon atom and -NH2 connected to a Nitrogen atom maximize the enthalpy of formation and detonation velocity. The joining of pyrazole molecules has less effect on these parameters. It was seen that density and detonation pressure improved when both –NO2 or -NH2 functional groups were on the same side of the molecular structure. The structural reorientation gave rise to 3,4-dinitropyrazolo[3,4-c]pyrazole-1,6-diamine which exhibited optimal density and detonation performance compared to other molecules.Keywords: LLM-119, fused rings, azole, structural isomers, detonation properties
Procedia PDF Downloads 90464 Morroniside Intervention Mechanism of Renal Lesions, a Combination Model of AGEs Exacerbation of STZ-Induced Diabetes Mellitus
Authors: Hui-Qin Xu, Xing Lv, Yu-Han Tao
Abstract:
The depth study aimed on the mechanism of morroniside in protecting diabetic nephropathy. The diabetic mice models with blood glucose above 15mmol/L were divided into model, aminoguanidine, metformin, captopril, morroniside low-dose, and morroniside high-dose groups. And normal group was set simultaneously. All groups were fed with high AGEs food except normal group. Each group was intragastric administration of the corresponding medicine except model and normal groups. After 12 weeks, all the indictors were measured. It showed that the morroniside could reduce blood glucose significantly, urinary protein, serum urea nitrogen, creatine, pathological changes, AGEs levels, renal cortex RAGE mRNA and RAGE protein expression levels; increase food consumption, water intake, urine volume, insulin secretion. As a conclusion, morroniside from cornus officinalis can protect renal in diabetic mice, its mechanism may be related to the proliferation of islet cells, rectify glycometabolism, reduce serum and kidney AGEs content, and descend renal RAGEmRNA and RAGE protein expression levels.Keywords: cornus officinalis, diabetic nephropathy, morroniside, RAGE protein
Procedia PDF Downloads 449463 The Post Thawing Quality of Boer Goat Semen after Freezing by Mr. Frosty System Using Commercial Diluter
Authors: Gatot Ciptadi, Mudawamah, R. P. Putra, S. Wahjuningsih, A. M. Munazaroh
Abstract:
The success rate of Artificial Insemination (AI) application, particularly in the field at the farmer level is highly dependent on the quality of the sperms one post thawing. The objective of this research was to determine the effect of freezing method (-1oC/ minute) using Mr. Frosty system with commercial diluents on the post-thawing quality of Boer goat semen. Method use is experimental design with the completely randomized design (CRD) with 4 treatments of commercial diluter percentage (v/v). Freezing semen was cryopreserved in 2 main final temperatures of –45 oC (Freezer) and –196 oC (liquid nitrogen). Result showed that different commercial diluter is influenced on viability motility and abnormalities of Boer semen. Pre-freezing qualities of viability, motilities and abnormalities was 88.67+4.16 %, 66.33 +1.53 % and 4.67+ 0.57 % respectively. Meanwhile, post-thawing qualities is considered as good as standard qualities at least more than 40 % (51.0+6.5%). The percentage of commercial diluents were influenced highly significant (P<0.01).The best diluents ration is 1:4 (v/v) for both final sperms stocked. However freezing sperm conserved in -196 oC is better than –45 oC (i.e. motility 39.3.94 % vs. 51.0 + 6.5 %). It was concluded that Mr. frosty system was considered as the feasible method for freezing semen in the reason for practical purposes.Keywords: sperm quality, goat, viability, diluteR
Procedia PDF Downloads 257462 Analytical Derivative: Importance on Environment and Water Analysis/Cycle
Authors: Adesoji Sodeinde
Abstract:
Analytical derivatives has recently undergone an explosive growth in areas of separation techniques, likewise in detectability of certain compound/concentrated ions. The gloomy and depressing scenario which charaterized the application of analytical derivatives in areas of water analysis, water cycle and the environment should not be allowed to continue unabated. Due to technological advancement in various chemical/biochemical analysis separation techniques is widely used in areas of medical, forensic and to measure and assesses environment and social-economic impact of alternative control strategies. This technological improvement was dully established in the area of comparison between certain separation/detection techniques to bring about vital result in forensic[as Gas liquid chromatography reveals the evidence given in court of law during prosecution of drunk drivers]. The water quality analysis,pH and water temperature analysis can be performed in the field, the concentration of dissolved free amino-acid [DFAA] can also be detected through separation techniques. Some important derivatives/ions used in separation technique. Water analysis : Total water hardness [EDTA to determine ca and mg ions]. Gas liquid chromatography : innovative gas such as helium [He] or nitrogen [N] Water cycle : Animal bone charcoal,activated carbon and ultraviolet light [U.V light].Keywords: analytical derivative, environment, water analysis, chemical/biochemical analysis
Procedia PDF Downloads 336461 Comparative Analysis of Pit Composting and Vermicomposting in a Tropical Environment
Authors: E. Ewemoje Oluseyi, T. A. Ewemoje, A. A. Adedeji
Abstract:
Biodegradable solid waste disposal and management has been a major problem in Nigeria and indiscriminate dumping of this waste either into watercourses or drains has led to environmental hazards affecting public health. The study investigated the nutrients level of pit composting and vermicomposting. Wooden bins 60 cm × 30 cm × 30 cm3 in size were constructed and bedding materials (sawdust, egg shell, paper and grasses) and red worms (Eisenia fetida) introduced to facilitate the free movement and protection of the worms against harsh weather. A pit of 100 cm × 100 cm × 100 cm3 was dug and worms were introduced into the pit, which was turned every two weeks. Food waste was fed to the red worms in the bin and pit, respectively. The composts were harvested after 100 days and analysed. The analyses gave: nitrogen has average value 0.87 % and 1.29 %; phosphorus 0.66 % and 1.78 %; potassium 4.35 % and 6.27 % for the pit and vermicomposting, respectively. Higher nutrient status of vermicomposting over pit composting may be attributed to the secretions in the intestinal tracts of worms which are more readily available for plant growth. However, iron and aluminium were more in the pit compost than the vermin compost and this may be attributed to the iron and aluminium already present in the soil before the composting took place. Other nutrients in ppm concentrations were aluminium 4,999.50 and 3,989.33; iron 2,131.83 and 633.40 for the pit and vermicomposting, respectively. These nutrients are only needed by plants in small quantities. Hence, vermicomposting has the higher concentration of essential nutrients necessary for healthy plant growth.Keywords: food wastes, pit composting, plant nutrient status, tropical environment, vermicomposting
Procedia PDF Downloads 336460 Chemical and Mineralogical Properties of Soils from an Arid Region of Misurata-Libya: Treated Wastewater Irrigation Impacts
Authors: Khalifa Alatresh, Mirac Aydin
Abstract:
This research explores the impacts of irrigation by treated wastewater (TWW) on the mineralogical and chemical attributes of sandy calcareous soils in the Southern region of Misurata. Soil samples obtained from three horizons (A, B, and C) of six TWW-irrigated pedons (29years) and six other pedons from nearby non-irrigated areas (dry-control). The results demonstrated that the TWW-irrigated pedons had significantly higher salinity (EC), sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), cation exchange capacity (CEC), available phosphor (AP), total nitrogen (TN), and organic matter (OM) relative to the control pedons. Nonetheless, all the values of interest (EC < 4000 µs/cm < SAR < 13, pH < 8.5 and ESP < 15) remained lower than the thresholds, showing no issues with sodicity or salinity. Irrigated pedons contained significantly higher amounts of total clay and showed an altered distribution of particle sizes and minerals identified (quartz, calcite, microcline, albite, anorthite, and dolomite) within the profile. The observed results included the occurrence of Margarite, Anorthite, Chabazite, and Tridymite minerals after the application of TWW in small quantities that are not enough to influence soil genesis and classification.0,51 cm.Keywords: treated wastewater, sandy calcareous soils, soil mineralogy, and chemistry
Procedia PDF Downloads 113459 Contrasting Patterns of Accumulation, Partitioning, and Reallocation Patterns of Dm and N Within the Maize Canopy Under Decreased N Availabilities
Authors: Panpan Fan, Bo Ming, Niels P. R. Anten, Jochem B. Evers, Yaoyao Li, Shaokun Li, Ruizhi Xie
Abstract:
The reallocation of dry matter (DM) and nitrogen (N) from vegetative tissues to the grain sinks are critical for grain yield. The objective of this study was to quantify the DM and N accumulation, partition, and reallocation at the single-leaf, different-organ, and individual-plant scales and clarify the responses to different levels of N availabilities. A two-year field experiment was conducted in Jinlin province, Northeast China, with three N fertilizer rates to create the different N availability levels: N0 (N deficiency), N1(low supply), and N2 (high supply). The results showed that grain N depends more on reallocations of vegetative organs compared with grain DM. Besides, vegetative organs reallocated more DM and N to grain under lower N availability, whereas more grain DM and grain N were derived from post-silking leaf photosynthesis and post-silking N uptake from the soil under high N availability. Furthermore, the reallocation amount and reallocation efficiency of leaf DM and leaf N content differed among leaf ranks and were regulated by N availability; specifically, the DM reallocation occurs mainly on senesced leaves, whereas the leaf N reallocation was in live leaves. These results provide a theoretical basis for deriving parameters in crop models for the simulation of the demand, uptake, partition, and reallocation processes of DM and N.Keywords: dry matter, leaf N content, leaf rank, N availability, reallocation efficiency
Procedia PDF Downloads 126458 Association of Serum Uric Acid Level and Bone Mineral Density of Menopausal Women
Authors: Soyeon Kang, Youn-Jee Chung, Jung Namkung
Abstract:
Objective: This retrospective study investigated the association between uric acid level and bone mineral density (BMD) in the postmenopausal period. Methods: The study included 328 menopausal women (mean age, 57.3 ± 6.5 years; mean serum uric acid level, 4.6 ± 1.0 mg/dL). Patients were divided into three groups by tertile of serum uric acid level. Patients who used hormone treatment (HT), bisphosphonates, or lipid-lowering agents were included. Results: Blood urea nitrogen, serum creatinine, and serum triglyceride levels were significantly higher in the upper uric acid tertiles. No significant difference was found in the mean uric acid levels between medication users and non-users. Distinct HT regimens showed different mean serum uric acid levels. In a cross-sectional analysis, higher serum uric acid levels showed a tendency toward increased BMD in the spine and femoral neck. Longitudinal analysis of 186 women who underwent follow-up examination at a mean interval of 14.6 months revealed a trend toward a smaller reduction in femoral neck BMD in women in the upper serum uric acid tertiles. Conclusion: A positive correlation exists between serum uric acid levels and BMD in menopausal women.Keywords: menopause, antioxidant, uric acid, bone mineral density
Procedia PDF Downloads 127457 Clinicopathological Findings of Partuberclosis in Camels: Possible Steps for Control Strategy
Authors: A. M. Almujalli, G. M. Al-Ghamdi
Abstract:
Mycobacterium avium subspecies paratuberculosis causes paratuberculosis, a chronic debilitating granulomatous enteritis, in camels as well as domestic and wild ruminants. The clinical manifestation of the disease in camel is not well characterized, therefore this study was aimed to investigate the clinical and pathological pictures of camels that are suffering from partuberculosis. Twelve young camels that were presented to the Veterinary Teaching Hospital, King Faisal University were investigated. Clinical and pathological examination were performed. The results revealed highly significant increase in creatinine, blood urea nitrogen, magnesium, AST and ALT in diseased camels, while glucose, total protein and albumin were highly significantly decreased in diseased camels when compared to healthy ones. Post-mortem testing indicated thickening, corrugation of the intestinal wall, folded mucosa, enlarged and oedemated ileocaecal and mesenteric lymph nodes. The microscopic findings detected short, blunt and distorted intestinal villi with hyperactive goblet cells of the villi and the crypts of lieberkuhn contained mucin droplets. The lamina propria was heavily infiltrated with mononuclear cells mostly macrophages. This clinical picture of paratuberculosis may be used to initiate control strategy to limit the spread of the disease in camel herds.Keywords: camel, partuberclosis, control, Saudi Arabia
Procedia PDF Downloads 196456 Probing Multiple Relaxation Process in Zr-Cu Base Alloy Using Mechanical Spectroscopy
Authors: A. P. Srivastava, D. Srivastava, D. J. Browne
Abstract:
Relaxation dynamics of Zr44Cu40Al8Ag8 bulk metallic glass (BMG) has been probed using dynamic mechanical analyzer. The BMG sample was casted in the form of a plate of dimension 55 mm x 40 mm x 3 mm using tilt casting technique. X-ray diffraction and transmission electron microscope have been used for the microstructural characterization of as-cast BMG. For the mechanical spectroscopy study, samples in the form of a bar of size 55 mm X 2 mm X 3 mm were machined from the BMG plate. The mechanical spectroscopy was performed on dynamic mechanical analyzer (DMA) by 50 mm 3-point bending method in a nitrogen atmosphere. It was observed that two glass transition process were competing in supercooled liquid region around temperature 390°C and 430°C. The supercooled liquid state was completely characterized using DMA and differential scanning calorimeter (DSC). In addition to the main α-relaxation process, presence of β relaxation process around temperature 360°C; below the glass transition temperature was also observed. The β relaxation process could be described by Arrhenius law with the activation energy of 160 kJ/mole. The volume of the flow unit associated with this relaxation process has been estimated. The results from DMA study has been used to characterize the shear transformation zone in terms of activation volume and size. High fragility parameter value of 34 and higher activation volume indicates that this alloy could show good plasticity in supercooled liquid region. The possible mechanism for the relaxation processes has been discussed.Keywords: DMA, glass transition, metallic glass, thermoplastic forming
Procedia PDF Downloads 293455 Pyrolysis of Mixed Plastic Fractions with PP, PET and PA
Authors: Rudi P. Nielsen, Karina H. Hansen, Morten E. Simonsen
Abstract:
To improve the possibility of the chemical recycling of mixed plastic waste, such as municipal plastic waste, work has been conducted to gain an understanding of the effect of typical polymers from waste (PP, PET, and PA) on the quality of the pyrolysis oil produced. Plastic fractions were pyrolyzed in a lab-scale reactor system, with mixture compositions of up to 15 wt.% PET and five wt.% PA in a PP matrix and processing conditions from 400 to 450°C. The experiments were conducted as a full factorial design and in duplicates to provide reliable results and the possibility to determine any interactions between the parameters. The products were analyzed using FT-IR and GC-MS for compositional information as well as the determination of calorific value, ash content, acid number, density, viscosity, and elemental analysis to provide further data on the fuel quality of the pyrolysis oil. Oil yield was found to be between 61 and 84 wt.%, while char yield was below 2.6 wt.% in all cases. The calorific value of the produced oil was between 32 and 46 MJ/kg, averaging at approx. 41 MJ/kg, thus close to that of heavy fuel oil. The oil product was characterized to contain aliphatic and cyclic hydrocarbons, alcohols, and ethers with chain lengths between 10 and 25 carbon atoms. Overall, it was found that the addition of PET decreased oil yield, while the addition of both PA and PET decreased oil quality in general by increasing acid number (PET), decreasing calorific value (PA), and increasing nitrogen content (PA). Furthermore, it was identified that temperature increased ammonia production from PA during pyrolysis, while ammonia production was decreased by the addition of PET.Keywords: PET, plastic waste, polyamide, polypropylene, pyrolysis
Procedia PDF Downloads 147454 Analysis of the Air Pollution Behavior Registered at MACAM Net Using DOAS, Associated with High Pollution Episodes
Authors: Francisca Rojas Martínez, T. Pedro Oyola
Abstract:
The combination of the geographical and meteorological conditions of the Santiago basin are unfavorable for the circulation of atmospheric pollution, especially in the autumn and winter months. The problem of environmental pollution in the Metropolitan Region has been studied since the 1960s because the city has presented high pollution levels for most of the year, levels that have even been compared with those in cities in developed countries, This implies serious consequences for the health of the population. Two of the most important gasses present in the contamination are NO2, and O3, the highest concentrations of nitrogen dioxide are measured during the winter, in addition, it is considered as a great contribution to the fine fraction of particulate matter and as a precursor of tropospheric ozone. On the other hand, tropospheric ozone is a pollutant of photochemical origin and is strongly enhanced by solar radiation, which is why its presence in the atmosphere is more significant in the spring and summer. The measurements were made at 3 different places in Santiago, and were used different equipment; a DOAS for gasses measures, SIMCA for Black Carbon Measure and the MACAM net for particulate matter and meteorological condition. The results shows an important relation between height and presence of pollution gasses, and additionally, pollution episodes are in common low temperature (< 10 °C) and high relative humidity (> 80%), which are factors that allows the air suspension of particulate matter and focus NH4+ and NO3-.Keywords: black carbon, DOAS, episodes, high pollution, simca
Procedia PDF Downloads 275453 Comparative Analysis of Photosynthetic and Antioxidative Responses of Two Species of Anabaena under Ni and As(III) Stress
Authors: Shivam Yadav, Neelam Atri
Abstract:
Cyanobacteria, the photosynthetic prokaryotes are indispensable components of paddy soil contribute substantially to the nitrogen economy however often appended with metal load. They are well known to play crucial roles in maintenance of soil fertility and rice productivity. Nickel is one such metal that plays a vital role in the cellular physiology, however at higher concentrations it exerts adverse effects. Arsenic is another toxic metalloid that negatively affects the cyanobacterial proliferation. However species-specific comparative responses under As and Ni is largely unknown. The present study focuses on the comparative effects of nickel (Ni2+) and arsenite (As(III)) on two diazotrophic cyanobacterial species (Anabaena doliolum and Anabaena sp. PCC7120) in terms of antioxidative aspects. Oxidative damage measured in terms of lipid peroxidation and peroxide content was significantly higher after As(III) than Ni treatment as compared to control. Similarly, all the studied enzymatic and non-enzymatic parameters of antioxidative defense system except glutathione reductase (GR) showed greater induction against As(III) than Ni. Moreover, integrating comparative analysis of all studied parameters also demonstrated interspecies variation in terms of stress adaptive strategies reflected through higher sensitivity of Anabaena doliolum over Anabaena PCC7120.Keywords: antioxidative system, arsenic, cyanobacteria, nickel
Procedia PDF Downloads 152452 The Admitting Hemogram as a Predictor for Severity and in-Hospital Mortality in Acute Pancreatitis
Authors: Florge Francis A. Sy
Abstract:
Acute pancreatitis (AP) is an inflammatory condition of the pancreas with local and systemic complications. Severe acute pancreatitis (SAP) has a higher mortality rate. Laboratory parameters like the neutrophil-to-lymphocyte ratio (NLR), red cell distribution width (RDW), and mean platelet volume (MPV) have been associated with SAP but with conflicting results. This study aims to determine the predictive value of these parameters on the severity and in-hospital mortality of AP. This retrospective, cross-sectional study was done in a private hospital in Cebu City, Philippines. One-hundred five patients were classified according to severity based on the modified Marshall scoring. The admitting hemogram, including the NLR, RDW, and MPV, was obtained from the complete blood count (CBC). Cut-off values for severity and in-hospital mortality were derived from the ROC. Association between NLR, RDW, and MPV with SAP and mortality were determined with a p-value of < 0.05 considered significant. The mean age for AP was 47.6 years, with 50.5% being male. Most had an unknown cause (49.5%), followed by a biliary cause (37.1%). Of the 105 patients, 23 patients had SAP, and 4 died. Older age, longer in-hospital duration, congestive heart failure, elevated creatinine, urea nitrogen, and white blood cell count were seen in SAP. The NLR was associated with in-hospital mortality using a cut-off of > 10.6 (OR 1.133, 95% CI, p-value 0.003) with 100% sensitivity, 70.3% specificity, 11.76% PPV and 100% NPV (AUC 0.855). The NLR was not associated with SAP. The RDW and MPV were not associated with SAP and mortality. The admitting NLR is, therefore, an easily accessible parameter that can predict in-hospital mortality in acute pancreatitis. Although the present study did not show an association of NLR with SAP nor RDW and MPV with both SAP and mortality, further studies are suggested to establish their clinical value.Keywords: acute pancreatitis, mean platelet volume, neutrophil-lymphocyte ratio, red cell distribution width
Procedia PDF Downloads 121451 Iron and/or Titanium Containing Microporous Silico-Alumino-Phosphates as a Photocatalyst for Hydrogen Production by Water Splitting
Authors: I. Ben Kaddour, S. Larbaoui
Abstract:
Since their first synthesis, the Silicoaluminophosphates materials have proved their efficiency as a good adsorbent and catalyst in several environmental and energetic applications. In this work, the photocatalytic hydrogen production from water splitting reactions has been conducted under visible radiations in the presence of a series of iron and/or titanium-containing microporous silico-alumino-phosphates materials synthesized by hydrothermal method, using triethylamine as an organic structuring agent to obtain the AFI structure type. These photo-catalysts were then characterized by various physicochemical methods to determine their structural, textural and morphological properties such as X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with X rays microanalysis, nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS), and X-rays photoelectron spectroscopy (XPS) and the analysis revealed that these materials have significant photocatalytic properties. The hydrogen production process has been followed by photoelectrochemical characterization (PEC). The results showed that hydrogen is the only gas produced, and the reaction takes place in the conduction band where water is reduced to hydrogen. The electron recombination has also been avoided, as holes are entrapped using hole scavengers. In addition, these catalysts have been shown to remain stable during reuse for up to five cycles.Keywords: photocatalysis, SAPO-5, hydrothermal synthesis, hydrogen production
Procedia PDF Downloads 60