Search results for: ecological materials
1977 Effect of Therapeutic Exercises with or without Positional Release Technique in Treatment of Chronic Mechanical Low Back Pain Patients a Randomized Controlled Trial
Authors: Ghada M. R. Koura, Mohamed N. Mohamed, Ahmed M. F. El Shiwi
Abstract:
Chronic mechanical Low back dysfunction (CMLBD) is the most common problem of the working-age population in modern industrial sociaty; it causes a substantial economic burden due to the wide use of medical services and absence from work. Aim of work: the aim of this study was to investigate the effect of positional release technique on patients with chronic mechanical low back pain. Materials and Methods: Thirty two patients from both sexes were diagnosed with CMLBP, aged 20 to 45 years and were divided randomly into two equal groups; sixteen patients each; group A (control group) received therapeutic exercises that include (Stretch and Strength exercises for back and abdominal muscles). Group B (experimental group) received therapeutic exercises with positional release technique; treatment was applied 3 days/week for 4 weeks. Pain was measured by Visual Analogue Scale, Lumbar range of motion was measured by Inclinometer and Functional disability was measured by Oswestry disability scale. Measurements were taken at two intervals pre-treatment and post-treatment. Results: Data obtained was analyzed via paired and unpaired t-Test. There were statistical differences between the 2 groups, where the experimental group showed greater improvement than control group. Conclusion: Positional release technique is considered as an effective treatment for reducing pain, functional disability and increasing lumbar range of motion in individuals with chronic mechanical low back pain.Keywords: chronic mechanical low back pain, traditional physical therapy program, positional release technique, randomized controlled trial
Procedia PDF Downloads 6011976 Dual Metal Organic Framework Derived N-Doped Fe3C Nanocages Decorated with Ultrathin ZnIn2S4 Nanosheets for Efficient Photocatalytic Hydrogen Generation
Authors: D. Amaranatha Reddy
Abstract:
Highly efficient and stable co-catalysts materials is of great important for boosting photo charge carrier’s separation, transportation efficiency, and accelerating the catalytic reactive sites of semiconductor photocatalysts. As a result, it is of decisive importance to fabricate low price noble metal free co-catalysts with high catalytic reactivity, but it remains very challenging. Considering this challenge here, dual metal organic frame work derived N-Doped Fe3C nanocages have been rationally designed and decorated with ultrathin ZnIn2S4 nanosheets for efficient photocatalytic hydrogen generation. The fabrication strategy precisely integrates co-catalyst nanocages with ultrathin two-dimensional (2D) semiconductor nanosheets by providing tightly interconnected nano-junctions and helps to suppress the charge carrier’s recombination rate. Furthermore, constructed highly porous hybrid structures expose ample active sites for catalytic reduction reactions and harvest visible light more effectively by light scattering. As a result, fabricated nanostructures exhibit superior solar driven hydrogen evolution rate (9600 µmol/g/h) with an apparent quantum efficiency of 3.6 %, which is relatively higher than the Pt noble metal co-catalyst systems and earlier reported ZnIn2S4 based nanohybrids. We believe that the present work promotes the application of sulfide based nanostructures in solar driven hydrogen production.Keywords: photocatalysis, water splitting, hydrogen fuel production, solar-driven hydrogen
Procedia PDF Downloads 1361975 Potential of Rice Husk Ash as a Partial Cement Replacement in Concrete for Highways Application
Authors: Ash Ahmed, Fraser Hyndman, Heni Fitriani, John Kamau
Abstract:
The highway pavement is the biggest structural asset a government can construct and maintain. Concrete rigid pavements are used to carry traffic in large volumes across countries safely and efficiently. Pavement quality concrete mixes have high levels of cement which contribute to up to 10% of global CO₂ emissions. Currently the UK specifies (ground granulated blastfurnace slag) GGBS and (pulverised fuel ash) PFA to reduce the quantity of cement used in pavement construction. GGBS and PFA come from heavy industry that should not be relied upon to improve the sustainability of construction materials. This report shows that cement in pavement quality concrete can be replaced with rice husk ash (RHA) without causing adverse effects to the mechanical properties required for highways. RHA comes from the food production industry and is vital for the growing global population. It is thus a socially responsible objective to use a pozzolan in highway pavement construction that is sourced from an environmentally friendly industry. The report investigates the properties of RHA mixes and compares them to existing pavement quality mixes already used and specified. The report found that sieving RHA and not grinding it gives the best performance. Due to the low density of RHA the investigation found that replacing cement by volume rather than weight provided the best results. Findings showed that CEM II mixed with 20% RHA meets the required specification for pavement quality concrete and mitigates using the comparative CEM I. The investigation also notes that RHA is observed to be more reactive with CEM II rather than CEM I and suits early strength gains required for pavement construction. The report concludes that RHA is a sustainable material that reduces the embodied CO₂ of pavement quality concrete, which is well suited for UK highway specifications and has the potential to improve the lives of people living in the developing countries.Keywords: pavement, pozzolan, rice husk ash, sustainable concrete
Procedia PDF Downloads 1751974 The Role Played by Awareness and Complexity through the Use of a Logistic Regression Analysis
Authors: Yari Vecchio, Margherita Masi, Jorgelina Di Pasquale
Abstract:
Adoption of Precision Agriculture (PA) is involved in a multidimensional and complex scenario. The process of adopting innovations is complex and social inherently, influenced by other producers, change agents, social norms and organizational pressure. Complexity depends on factors that interact and influence the decision to adopt. Farm and operator characteristics, as well as organizational, informational and agro-ecological context directly affect adoption. This influence has been studied to measure drivers and to clarify 'bottlenecks' of the adoption of agricultural innovation. Making decision process involves a multistage procedure, in which individual passes from first hearing about the technology to final adoption. Awareness is the initial stage and represents the moment in which an individual learns about the existence of the technology. 'Static' concept of adoption has been overcome. Awareness is a precondition to adoption. This condition leads to not encountering some erroneous evaluations, arose from having carried out analysis on a population that is only in part aware of technologies. In support of this, the present study puts forward an empirical analysis among Italian farmers, considering awareness as a prerequisite for adoption. The purpose of the present work is to analyze both factors that affect the probability to adopt and determinants that drive an aware individual to not adopt. Data were collected through a questionnaire submitted in November 2017. A preliminary descriptive analysis has shown that high levels of adoption have been found among younger farmers, better educated, with high intensity of information, with large farm size and high labor-intensive, and whose perception of the complexity of adoption process is lower. The use of a logit model permits to appreciate the weight played by the intensity of labor and complexity perceived by the potential adopter in PA adoption process. All these findings suggest important policy implications: measures dedicated to promoting innovation will need to be more specific for each phase of this adoption process. Specifically, they should increase awareness of PA tools and foster dissemination of information to reduce the degree of perceived complexity of the adoption process. These implications are particularly important in Europe where is pre-announced the reform of Common Agricultural Policy, oriented to innovation. In this context, these implications suggest to the measures supporting innovation to consider the relationship between various organizational and structural dimensions of European agriculture and innovation approaches.Keywords: adoption, awareness, complexity, precision agriculture
Procedia PDF Downloads 1401973 Anaerobic Co-Digestion of Pressmud with Bagasse and Animal Waste for Biogas Production Potential
Authors: Samita Sondhi, Sachin Kumar, Chirag Chopra
Abstract:
The increase in population has resulted in an excessive feedstock production, which has in return lead to the accumulation of a large amount of waste from different resources as crop residues, industrial waste and solid municipal waste. This situation has raised the problem of waste disposal in present days. A parallel problem of depletion of natural fossil fuel resources has led to the formation of alternative sources of energy from the waste of different industries to concurrently resolve the two issues. The biogas is a carbon neutral fuel which has applications in transportation, heating and power generation. India is a nation that has an agriculture-based economy and agro-residues are a significant source of organic waste. Taking into account, the second largest agro-based industry that is sugarcane industry producing a high quantity of sugar and sugarcane waste byproducts such as Bagasse, Press Mud, Vinasse and Wastewater. Currently, there are not such efficient disposal methods adopted at large scales. According to manageability objectives, anaerobic digestion can be considered as a method to treat organic wastes. Press mud is lignocellulosic biomass and cannot be accumulated for Mono digestion because of its complexity. Prior investigations indicated that it has a potential for production of biogas. But because of its biological and elemental complexity, Mono-digestion was not successful. Due to the imbalance in the C/N ratio and presence of wax in it can be utilized with any other fibrous material hence will be digested properly under suitable conditions. In the first batch of Mono-digestion of Pressmud biogas production was low. Now, co-digestion of Pressmud with Bagasse which has desired C/N ratio will be performed to optimize the ratio for maximum biogas from Press mud. In addition, with respect to supportability, the main considerations are the monetary estimation of item result and ecological concerns. The work is designed in such a way that the waste from the sugar industry will be digested for maximum biogas generation and digestive after digestion will be characterized for its use as a bio-fertilizer for soil conditioning. Due to effectiveness demonstrated by studied setups of Mono-digestion and Co-digestion, this approach can be considered as a viable alternative for lignocellulosic waste disposal and in agricultural applications. Biogas produced from the Pressmud either can be used for Powerhouses or transportation. In addition, the work initiated towards the development of waste disposal for energy production will demonstrate balanced economy sustainability of the process development.Keywords: anaerobic digestion, carbon neutral fuel, press mud, lignocellulosic biomass
Procedia PDF Downloads 1751972 The Marketing Development of Cloth Products Woven in Krasaesin, Songkhla Province
Authors: Auntika Thipjumnong
Abstract:
This research study aimed to investigate the production process and the market target of Kraseasin’s woven cloth including the customers’ behaviors towards the local woven products. The suggestions of a better process of production were recommended in this study. This survey research was conducted by using a questionnaire and interview, which were considered as the practical instruments to collect the data. The 200 Kraseasin’s woven makers and consumers were subjects by using a purposive sampling. Percentages, means and standard deviation were used to analyze data. The findings revealed that only 22 local woven members owned their 18 manual weavers in producing the raw materials like cotton or fiber. The main products were flowery woven cloth e.g. pikul, puangchompoo, pakakrong and ban mai roo roiy, and the others were rainy, glass wall, dice glass ball and yok dok etc. At the present, all local woven products were applied to be modernized but the strong point of those products were keeping the quality standard and firming textures, not thickness. The main objective of producing these local woven products was to earn and increase their extra incomes. Moreover, there were two dominant sales: Firstly, the makers sold their own products by themselves in their community and malls; and secondly, they would weave their products by customers’ orders. The prices’ allocation was on the difficulties in producing process. The government officials and non-government officials in local were normally customers. However the drawback of producing this local product was lack of raw material and this brought about the higher investment. The community’s customers were now lacking of interest in wearing these local products, even though they maintained their quality standard. The factors in customers’ purchasing decision were product (M = 3.93), price (M = 3.74), distribution (M = 3.73) and promotion (M = 3.97) for marketing mix well-known. Suggestion was a designing pattern of products had to be matched to the customers’ needs.Keywords: marketing, consumer behavior, cloth products weaves, Songkhla Thailand
Procedia PDF Downloads 2891971 Father Involvement in Delaying Sexual Debut among Adolescents in Nigeria Schools
Authors: Ofole Ndidi
Abstract:
Context: Empirical studies show that through dual primary attachment mothers and fathers contribute to children’s development and behaviours. While the contribution of mothers is well documented in past researches, fathers’ involvement in Nigeria has received much less attention. As such, exploring fathers’ involvement in sexual behaviours will provide insight for policy implementation and programming designed to delay sexual debut among sexually inexperienced young people in Nigeria. Objective of study: This study examined the extent to which father involvement (father’s parenting style, attitude, father-child communication, father’s marital status, and father’s socio-economic status) could predict delay in sexual debut of a representative sample of Nigeria adolescents in lower secondary. Materials and Methods: Multistage sampling technique was adopted to draw a cross section of 1023 adolescents with the age range of 10-23 years and mean years of 12±2.1 who reported sexually inexperience from six geographical zones in Nigeria. Multiple Regressions was used to analyze the data collected with four standardized self-report measures at 0.05 level of significance. Results: Findings of this study revealed that the independent variables (father’s parenting style, paternal attitudes, paternal–child communication, paternal marital status and paternal socio–economic status) contributed significantly to the delay of sexual debut. However, fathers’ attitude made the most potent contribution (β = 0.255, P < 0.05). Conclusions: The outcomes of this study have implications for programs that are designed to reduce high-risk behaviors among adolescents. It concluded that sexuality education and interventions should involve the fathers in a more integrated and collaborative fashion.Keywords: father, sexual debut, adolescents, Nigeria
Procedia PDF Downloads 3181970 Effect of Thermal Aging on Low Cycle Fatigue of Alloy 690
Authors: Kushal Gowda Jayaram, Joseph Huret, Jonathan Quibel, Walter-John Chitty, Gilbert Henaff
Abstract:
Thermal aging is one of the concerns for the long-term operation of nuclear power plants. Indeed, components in the primary circuit undergo thermal aging while exposed to the chemically active environment of Pressurized Water Reactors (PWRs) over time. Among the materials used in the reactor components, Alloy 690 can be found in some critical components for nuclear safety. Despite its importance, research on the effect of thermal aging on the microstructural changes and low cycle fatigue (LCF) behavior of Alloy 690 remains limited. This study aims to assess the impact of thermal aging on the fatigue life of Alloy 690. The as-received sample underwent aging at 420°C for 4000 hours, representing the equivalent aging of 60 years in reactor working conditions. First, the characterization of the area and density of intergranular and intragranular precipitates was performed to understand the microstructural changes in the aged specimen. Then, low cycle fatigue tests were conducted on the as received and aged samples at varying strain amplitudes. To investigate the influence of thermal aging on the fatigue behavior of Alloy 690, fracture surfaces were analyzed to estimate fatigue crack growth rates based on striation spacing measurements. Additionally, the axially cut fractured samples have undergone analysis using Electron Backscatter Diffraction (EBSD) to understand the effect of aging on strain localization near the crack path. Results indicate that while the characterization of the area and density of intergranular precipitates in the aged specimen (for 2000 hours, approximately 30 years) showed no significant changes, there was a slight increase in the area and density of intragranular precipitates under the same conditions.Keywords: alloy 690, thermal aging, low cycle fatigue, precipitates
Procedia PDF Downloads 441969 The Effect of Object Presentation on Action Memory in School-Aged Children
Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf
Abstract:
Enacted tasks are typically remembered better than when the same task materials are only verbally encoded, a robust finding referred to as the enactment effect. It has been assumed that enactment effect is independent of object presence but the size of enactment effect can be increased by providing objects at study phase in adults. To clarify the issues in children, free recall and cued recall performance of action phrases with or without using real objects were compared in 410 school-aged children from four age groups (8, 10, 12 and 14 years old). In this study, subjects were instructed to learn a series of action phrases under three encoding conditions, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). Then, free recall and cued recall memory tests were administrated. The results revealed that the real object compared with imaginary objects improved recall performance in SPTs and EPTs, but more so in VTs. It was also found that the object presence was not necessary for the occurrence of the enactment effect but it was changed the size of enactment effect in all age groups. The size of enactment effect was more pronounced for imaginary objects than the real object in both free recall and cued recall memory tests in children. It was discussed that SPTs and EPTs deferentially facilitate item-specific and relation information processing and providing the objects can moderate the processing underlying the encoding conditions.Keywords: action memory, enactment effect, item-specific processing, object, relational processing, school-aged children
Procedia PDF Downloads 2441968 Harnessing the Power of Large Language Models in Orthodontics: AI-Generated Insights on Class II and Class III Orthopedic Appliances: A Cross-Sectional Study
Authors: Laiba Amin, Rashna H. Sukhia, Mubassar Fida
Abstract:
Introduction: This study evaluates the accuracy of responses from ChatGPT, Google Bard, and Microsoft Copilot regarding dentofacial orthopedic appliances. As artificial intelligence (AI) increasingly enhances various fields, including healthcare, understanding its reliability in specialized domains like orthodontics becomes crucial. By comparing the accuracy of different AI models, this study aims to shed light on their effectiveness and potential limitations in providing technical insights. Materials and Methods: A total of 110 questions focused on dentofacial orthopedic appliances were posed to each AI model. The responses were then evaluated by five experienced orthodontists using a modified 5-point Likert scale to ensure a thorough assessment of accuracy. This structured approach allowed for consistent and objective rating, facilitating a meaningful comparison between the AI systems. Results: The results revealed that Google Bard demonstrated the highest accuracy at 74%, followed by Microsoft Copilot, with an accuracy of 72.2%. In contrast, ChatGPT was found to be the least accurate, achieving only 52.2%. These results highlight significant differences in the performance of the AI models when addressing orthodontic queries. Conclusions: Our study highlights the need for caution in relying on AI for orthodontic insights. The overall accuracy of the three chatbots was 66%, with Google Bard performing best for removable Class II appliances. Microsoft Copilot was more accurate than ChatGPT, which, despite its popularity, was the least accurate. This variability emphasizes the importance of human expertise in interpreting AI-generated information. Further research is necessary to improve the reliability of AI models in specialized healthcare settings.Keywords: artificial intelligence, large language models, orthodontics, dentofacial orthopaedic appliances, accuracy assessment.
Procedia PDF Downloads 221967 Changes in Heavy Metals Bioavailability in Manure-Derived Digestates and Subsequent Hydrochars to Be Used as Soil Amendments
Authors: Hellen L. De Castro e Silva, Ana A. Robles Aguilar, Erik Meers
Abstract:
Digestates are residual by-products, rich in nutrients and trace elements, which can be used as organic fertilisers on soils. However, due to the non-digestibility of these elements and reduced dry matter during the anaerobic digestion process, metal concentrations are higher in digestates than in feedstocks, which might hamper their use as fertilisers according to the threshold values of some country policies. Furthermore, there is uncertainty regarding the required assimilated amount of these elements by some crops, which might result in their bioaccumulation. Therefore, further processing of the digestate to obtain safe fertilizing products has been recommended. This research aims to analyze the effect of applying the hydrothermal carbonization process to manure-derived digestates as a thermal treatment to reduce the bioavailability of heavy metals in mono and co-digestates derived from pig manure and maize from contaminated land in France. This study examined pig manure collected from a novel stable system (VeDoWs, province of East Flanders, Belgium) that separates the collection of pig urine and feces, resulting in a solid fraction of manure with high up-concentration of heavy metals and nutrients. Mono-digestion and co-digestion processes were conducted in semi-continuous reactors for 45 days at mesophilic conditions, in which the digestates were dried at 105 °C for 24 hours. Then, hydrothermal carbonization was applied to a 1:10 solid/water ratio to guarantee controlled experimental conditions in different temperatures (180, 200, and 220 °C) and residence times (2 h and 4 h). During the process, the pressure was generated autogenously, and the reactor was cooled down after completing the treatments. The solid and liquid phases were separated through vacuum filtration, in which the solid phase of each treatment -hydrochar- was dried and ground for chemical characterization. Different fractions (exchangeable / adsorbed fraction - F1, carbonates-bound fraction - F2, organic matter-bound fraction - F3, and residual fraction – F4) of some heavy metals (Cd, Cr, Ni, and Cr) have been determined in digestates and derived hydrochars using the modified Community Bureau of Reference (BCR) sequential extraction procedure. The main results indicated a difference in the heavy metals fractionation between digestates and their derived hydrochars; however, the hydrothermal carbonization operating conditions didn’t have remarkable effects on heavy metals partitioning between the hydrochars of the proposed treatments. Based on the estimated potential ecological risk assessment, there was one level decrease (considerate to moderate) when comparing the HMs partitioning in digestates and derived hydrochars.Keywords: heavy metals, bioavailability, hydrothermal treatment, bio-based fertilisers, agriculture
Procedia PDF Downloads 1021966 Antimutagenic Activity of a Protein, Lectin Fraction from Urtica Dioica L.
Authors: Nijole Savickiene, Antonella Di Sotto, Gabriela Mazzanti, Rasa Starselskyte, Silvia Di Giacomo, Annabella Vitalone
Abstract:
Plant lectins are non-enzymic and non-immune origin proteins that specifically recognize and bind to various sugar structures and possess the activity to agglutinate cells and/or precipitate polysaccharides and glycoconjugates. The emerging evidences showed that plant lectins contribute not only to tumour cell recognition but also to cell adhesion and localization, to signal transduction, to mitogenic cytotoxicity and apoptosis. Among chitin-binding lectins, the Urtica dioica agglutinin (UDA), which is a complex of different isoforms, has been poorly studied for its biological activity. In this context and according to the increasing interest for lectins as novel antitumor drugs, present paper aimed at evaluating the potential antimutagenic activity of a lectin-like glycoprotein-enriched fraction from aerial part of Urtica dioica L. Aim: to evaluate the potential chemopreventive properties of a protein - lectin fraction from the aerial part of Urtica dioica. Materials and methods: Protein – lectin fraction has been tested for the antimutagenic activity in bacteria (50–800 mg/plate; Ames test by the preincubation method) and for the cytotoxicity on human hepatoma HepG2 cells (0.06–2 mg/mL; 24 and 48 h incubation). Results: Protein – lectin fraction from stinging nettle was not cytotoxic on HepG2 cells up to 2 mg/mL; conversely, it exhibited a strong antimutagenic activity against the mutagen 2-aminoanthracene (2AA) in all strains tested (maximum inhibition of 56.78 and 61% in TA98, TA100, and WP2uvrA strains, respectively, at 800 mg/plate). Discussion and conclusions: Protein – lectin fraction from Urtica dioica L. possesses antimutagenic and radical scavenging properties. Being 2AA a pro-carcinogenic agent, we hypothesize that the antimutagenicity of it can be due to the inhibition of CYP450-isoenzymes, involved in the mutagen bioactivation.Keywords: lectins, antimutagenicity, chemoprevention, Urtica dioica
Procedia PDF Downloads 4281965 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation
Authors: Arezoo Assarian, Reza Javaherdashti
Abstract:
Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)
Procedia PDF Downloads 1711964 Unravelling Green Entrepreneurial: Insights From a Hybrid Systematic Review
Authors: Shivani, Seema Sharma, Shveta Singh, Akriti Chandra
Abstract:
Business activities contribute to various environmental issues such as deforestation, waste generation, and pollution. Therefore, integration of environmental concerns within manufacturing operations is vital for the long-term survival of businesses. In this context, green entrepreneurial orientation (GEO) is recognized as a firm-level internal strategy to mitigate ecological damage through initiating green business practices. However, despite the surge in research on GEO in recent years, ambiguity remains on the genesis of GEO and the mechanism through which GEO impacts various organizational outcomes. This prompts an examination of the ongoing scholarly discourse about GEO and its domain knowledge structure within the entrepreneurship literature using bibliometric analysis and the Theories, Contexts, Characteristics, and Methodologies (TCCM) framework. The authors analyzed a dataset comprising 73 scientific documents sourced from the Scopus and Web of Science database from 2005 to 2024 to provide insights into the publication trends, prominent journals, authors, articles, countries' collaboration, and keyword analysis in GEO research. The findings indicate that the number of relevant papers and citations has increased consistently, with authors from China being the main contributors. The articles are mainly published in Business Strategy and the Environment and Sustainability. Dynamic capability view is the dominant framework applied in the GEO domain, with large manufacturing firms and SMEs constituting the majority of the sample. Further, various antecedents of GEO have been identified at an organizational level to which managers can focus their attention. The studies have used various contextual factors to explain when GEO translates into superior organizational outcomes. The Method analysis reveals that PLS-SEM is the commonly used approach for analyzing the primary data collected through surveys. Moreover, the content analysis indicates four emerging research frontiers identified as unidimensional vs. multidimensional perspectives of GEO, typologies of green innovation, environmental management in the hospitality industry, and tech-savvy sustainability in the agriculture sector. This study is one of the earliest to apply quantitative methods to synthesize the extant literature on GEO. This research holds relevance for management practice due to the escalating levels of carbon emissions, energy consumption, and waste discharges observed in recent years, resulting in increased apprehension about climate change.Keywords: green entrepreneurship, sustainability, SLR, TCCM
Procedia PDF Downloads 191963 Gap Formation into Bulk InSb Crystals Grown by the VDS Technique Revealing Enhancement in the Transport Properties
Authors: Dattatray Gadkari, Dilip Maske, Manisha Joshi, Rashmi Choudhari, Brij Mohan Arora
Abstract:
The vertical directional solidification (VDS) technique has been applied to the growth of bulk InSb crystals. The concept of practical stability is applied to the case of detached bulk crystal growth on earth in a simplified design. By optimization of the set up and growth parameters, 32 ingots of 65-75 mm in length and 10-22 mm in diameter have been grown. The results indicate that the wetting angle of the melt on the ampoule wall and the pressure difference across the interface are the crucial factors effecting the meniscus shape and stability. Taking into account both heat transfer and capillarity, it is demonstrated that the process is stable in case of convex menisci (seen from melt), provided that pressure fluctuations remain in a stable range. During the crystal growth process, it is necessary to keep a relationship between the rate of the difference pressure controls and the solidification to maintain the width of gas gap. It is concluded that practical stability gives valuable knowledge of the dynamics and could be usefully applied to other crystal growth processes, especially those involving capillary shaping. Optoelectronic properties were investigated in relation to the type of solidification attached and detached ingots growth. These samples, room temperature physical properties such as Hall mobility, FTIR, Raman spectroscopy and microhardness achieved for antimonide samples grown by VDS technique have shown the highest values gained till at this time. These results reveal that these crystals can be used to produce InSb with high mobility for device applications.Keywords: alloys, electronic materials, semiconductors, crystal growth, solidification, etching, optical microscopy, crystal structure, defects, Hall effect
Procedia PDF Downloads 4221962 Analysis of Solid Waste Management Practices and the Implications for Human Health and the Environment: A Case Study of Kayamandi Informal Settlement
Authors: Peter Iyobosa Asemota
Abstract:
This study on solid waste management practices addressed aspects of environmental and health impacts resulting from poor management of solid waste. The study was occasioned by the observed rate and volume of illegal and indiscriminate dumping of solid waste materials especially in informal settlements. The main focus of this study was to establish the impact of waste management practices on human health and the environment. The study, therefore, presents a critical analysis of the state of solid waste management in the study area and the implications for human health and the environment. The study was carried out in Kayamandi informal settlement within Stellenbosch municipality. The sustainable management of solid waste is very important in order to minimize the environmental and public health risks associated with improper solid waste management. There is no denying the fact that the problems of waste management will become critical as time goes on because of improper and inefficient waste management practices. Towns and cities exhibit the burdens of waste management which is a characteristics feature of most African cities. The study critically assess the implementation of waste management practices by the residents of the informal settlement; identify the factors affecting management issues in the operation of solid waste management system by the municipality; identify factors militating against the implementation of waste management policies and legislation. Furthermore, a waste assessment study was carried out to assess the generation; composition of the waste stream and also determine the attitudes and behavior of the residents with regard to waste management practices. Findings from the study revealed that Kayamandi is not different from other informal settlements with regards to waste management. People are of the opinion that solid waste management is the sole responsibility of municipal authorities and as such, the government should be responsible for bearing the cost of solid waste management.Keywords: environment, waste, waste composition, waste stream, policy, waste categories, sanitary landfill, waste collection, integrated solid waste management
Procedia PDF Downloads 7031961 Hydrogeological Factors of the Ore Genesis in the Sedimentary Basins
Authors: O. Abramova, L. Abukova, A. Goreva, G. Isaeva
Abstract:
The present work was made for the purpose of evaluating the interstitial water’s role in the mobilization of metal elements of clay deposits and occurrences in sedimentary formation in the hydro-geological basins. The experiments were performed by using a special facility, which allows adjusting the pressure, temperature, and the frequency of the acoustic vibrations. The dates for study were samples of the oil shales (Baltic career, O2kk) and clay rocks, mainly montmorillonite composition (Borehole SG-12000, the depth of selection 1000–3600 m, the Azov-Kuban trough, N1). After interstitial water squeezing from the rock samples, decrease in the original content of the rock forming components including trace metals V, Cr, Co, Ni, Cu, Zn, Zr, Mo, Pb, W, Ti, and others was recorded. The experiments made it possible to evaluate the ore elements output and organic matters with the interstitial waters. Calculations have shown that, in standard conditions, from each ton of the oil shales, 5-6 kg of ore elements and 9-10 kg of organic matter can be escaped. A quantity of matter, migrating from clays in the process of solidification, is changed depending on the lithogenesis stage: more recent unrealized deposits lose more ore and organic materials than the clay rocks, selected from depth over 3000 m. Each ton of clays in the depth interval 1000-1500 m is able to generate 3-5 kg of the ore elements and 6-8 kg of the organic matters. The interstitial waters are a freight forwarder over transferring these matters in the reservoir beds. It was concluded that the interstitial waters which escaped from the study samples are solutions with abnormal high concentrations of the metals and organic matters. In the discharge zones of the sediment basins, such fluids can create paragenetic associations of the sedimentary-catagenetic ore and hydrocarbon mineral resources accumulations.Keywords: hydrocarbons, ore genesis, paragenesis, pore water
Procedia PDF Downloads 2601960 Performance Analysis of Modified Solar Water Heating System for Climatic Condition of Allahabad, India
Authors: Kirti Tewari, Rahul Dev
Abstract:
Solar water heating is a thermodynamic process of heating water using sunlight with the help of solar water heater. Thus, solar water heater is a device used to harness solar energy. In this paper, a modified solar water heating system (MSWHS) has been proposed over flat plate collector (FPC) and Evacuated tube collector (ETC). The modifications include selection of materials other than glass, and glass wool which are conventionally used for fabricating FPC and ETC. Some modifications in design have also been proposed. Its collector is made of double layer of semi-cylindrical acrylic tubes and fibre reinforced plastic (FRP) insulation base. Water tank is made of double layer of acrylic sheet except base and north wall. FRP is used in base and north wall of the water tank. A concept of equivalent thickness has been utilised for calculating the dimensions of collector plate, acrylic tube and tank. A thermal model for the proposed design of MSWHS is developed and simulation is carried out on MATLAB for the capacity of 200L MSWHS having collector area of 1.6 m2, length of acrylic tubes of 2m at an inclination angle 25° which is taken nearly equal to the latitude of the given location. Latitude of Allahabad is 24.45° N. The results show that the maximum temperature of water in tank and tube has been found to be 71.2°C and 73.3°C at 17:00hr and 16:00hr respectively in March for the climatic data of Allahabad. Theoretical performance analysis has been carried out by varying number of tubes of collector, the tank capacity and climatic data for given months of winter and summer.Keywords: acrylic, fibre reinforced plastic, solar water heating, thermal model, conventional water heaters
Procedia PDF Downloads 3391959 Linear and Nonlinear Resonance of Flat Bottom Hole in an Aluminum Plate
Authors: Biaou Jean-Baptiste Kouchoro, Anissa Meziane, Philippe Micheau, Mathieu Renier, Nicolas Quaegebeur
Abstract:
Numerous experimental and numerical studies have shown the interest of the local defects resonance (LDR) for the Non-Destructive Testing of metallic and composite plates. Indeed, guided ultrasonic waves such as Lamb waves, which are increasingly used for the inspection of these flat structures, enable the generation of local resonance phenomena by their interaction with a damaged area, allowing the detection of defects. When subjected to a large amplitude motion, a nonlinear behavior can predominate in the damaged area. This work presents a 2D Finite Element Model of the local resonance of a 12 mm long and 5 mm deep Flat Bottom Hole (FBH) in a 6 mm thick aluminum plate under the excitation induced by an incident A0 Lamb mode. The analysis of the transient response of the FBH enables the precise determination of its resonance frequencies and the associate modal deformations. Then, a linear parametric study varying the geometrical properties of the FBH highlights the sensitivity of the resonance frequency with respect to the plate thickness. It is demonstrated that the resonance effect disappears when the ratio of thicknesses between the FBH and the plate is below 0.1. Finally, the nonlinear behavior of the FBH is considered and studied introducing geometrical (taken into account the nonlinear component of the strain tensor) nonlinearities that occur at large vibration amplitudes. Experimental analysis allows observation of the resonance effects and nonlinear response of the FBH. The differences between these experimental results and the numerical results will be commented on. The results of this study are promising and allow to consider more realistic defects such as delamination in composite materials.Keywords: guided waves, non-destructive testing, dynamic field testing, non-linear ultrasound/vibration
Procedia PDF Downloads 1381958 Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing
Authors: Tim Dunne, Jiaxiang Ren, Lei Zhao, Peng Cheng, Yi Song, Yu Liu, Wenhan Yue, Xiongwen Yang
Abstract:
Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1” square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 °C, at a rate of 0.005”/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude.Keywords: equal channel angular processing, dissolvable magnesium, frac plug, mechanical properties
Procedia PDF Downloads 1211957 Adsorption of Pb(II) with MOF [Co2(Btec)(Bipy)(DMF)2]N in Aqueous Solution
Authors: E. Gil, A. Zepeda, J. Rivera, C. Ben-Youssef, S. Rincón
Abstract:
Water pollution has become one of the most serious environmental problems. Multiple methods have been proposed for the removal of Pb(II) from contaminated water. Among these, adsorption processes have shown to be more efficient, cheaper and easier to handle with respect to other treatment methods. However, research for adsorbents with high adsorption capacities is still necessary. For this purpose, we proposed in this work the study of metal-organic Framework [Co2(btec)(bipy)(DMF)2]n (MOF-Co) as adsorbent material of Pb (II) in aqueous media. MOF-Co was synthesized by a simple method. Firstly 4, 4’ dipyridyl, 1,2,4,5 benzenetetracarboxylic acid, cobalt (II) and nitrate hexahydrate were first mixed each one in N,N dimethylformamide (DMF) and then, mixed in a reactor altogether. The obtained solution was heated at 363 K in a muffle during 68 h to complete the synthesis. It was washed and dried, obtaining MOF-Co as the final product. MOF-Co was characterized before and after the adsorption process by Fourier transforms infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The Pb(II) in aqueous media was detected by Absorption Atomic Spectroscopy (AA). In order to evaluate the adsorption process in the presence of Pb(II) in aqueous media, the experiments were realized in flask of 100 ml the work volume at 200 rpm, with different MOF-Co quantities (0.0125 and 0.025 g), pH (2-6), contact time (0.5-6 h) and temperature (298,308 and 318 K). The kinetic adsorption was represented by pseudo-second order model, which suggests that the adsorption took place through chemisorption or chemical adsorption. The best adsorption results were obtained at pH 5. Langmuir, Freundlich and BET equilibrium isotherms models were used to study the adsorption of Pb(II) with 0.0125 g of MOF-Co, in the presence of different concentration of Pb(II) (20-200 mg/L, 100 mL, pH 5) with 4 h of reaction. The correlation coefficients (R2) of the different models show that the Langmuir model is better than Freundlich and BET model with R2=0.97 and a maximum adsorption capacity of 833 mg/g. Therefore, the Langmuir model can be used to best describe the Pb(II) adsorption in monolayer behavior on the MOF-Co. This value is the highest when compared to other materials such as the graphene/activated carbon composite (217 mg/g), biomass fly ashes (96.8 mg/g), PVA/PAA gel (194.99 mg/g) and MOF with Ag12 nanoparticles (120 mg/g).Keywords: adsorption, heavy metals, metal-organic frameworks, Pb(II)
Procedia PDF Downloads 2161956 Ecofriendly Multi-Layer Polymer Treatment for Hydrophobic and Water Repellent Porous Cotton Fabrics
Authors: Muhammad Zahid, Ilker S. Bayer, Athanassia Athanassiou
Abstract:
Fluorinated polymers having C8 chemistry (chemicals with 8 fluorinated carbon atoms) are well renowned for their excellent low surface tension and water repelling properties. However, these polymers degrade into highly toxic heavy perfluoro acids in the environment. When the C8 chemistry is reduced to C6 chemistry, this environmental concern is eliminated at the expense of reduced liquid repellent performance. In order to circumvent this, in this study, we demonstrate pre-treatment of woven cotton fabrics with a fluorinated acrylic copolymer with C6 chemistry and subsequently with a silicone polymer to render them hydrophobic. A commercial fluorinated acrylic copolymer was blended with silica nanoparticles to form hydrophobic nano-roughness on cotton fibers and a second coating layer of polydimethylsiloxane (PDMS) was applied on the fabric. A static water contact angle (for 5µl) and rolling angle (for 12.5µl) of 147°±2° and 31° were observed, respectively. Hydrostatic head measurements were also performed to better understand the performance with 26±1 cm and 2.56kPa column height and static pressure respectively. Fabrication methods (with rod coater etc.) were kept simple, reproducible, and scalable and cost efficient. Moreover, the robustness of applied coatings was also evaluated by sonication cleaning and abrasion methods. Water contact angle (WCA), water shedding angle (WSA), hydrostatic head, droplet bouncing-rolling off and prolonged staining tests were used to characterize hydrophobicity of materials. For chemical and morphological analysis, various characterization methods were used such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM) and scanning electron microscopy (SEM).Keywords: fluorinated polymer, hydrophobic, polydimethylsiloxane, water contact angle
Procedia PDF Downloads 3301955 Prolonged Synthesis of Chitin Polysaccharide from Chlorovirus System
Authors: Numfon Rakkhumkaew, Takeru Kawasaki, Makoto Fujie, Takashi Yamada
Abstract:
Chlorella viruses or chloroviruses contain a gene that encodes a function for chitin synthesis, which is expressed early in viral infection to produce chitin polysaccharide, a polymer of β-1, 4-linked GlcNAc, on the outside of Chlorella cell wall. Interestingly, chlorovirus system is an eco-friendly system which converses CO2 and solar energy from the environment into useful materials. However, infected Chlorella cells are lysed at the final stage of viral infection, and this phenomenon is caused the breaking down of polysaccharide. To postpone the lysing period and prolong the synthesis of chitin polysaccharide on cells, the slow growing virus incorporated with aphidicolin treatment, an inhibitor of DNA synthesis, was investigated. In this study, a total of 25 virus isolates from water samples in Japan region were analyzed for CHS (the gene for CH synthase) gene by PCR (polymerase chain reaction). The accumulation and appearance of chitin polysaccharide on infected cells were detected by biotinylated chitin-binding proteins WGA (wheat germ agglutinin)-biotin for chitin in conjunction with avidin-Cy 2 or Cy 3 and investigated by fluorescence microscopy, observed as green or yellow fluorescence over the cell surface. Among all chlorovirus isolates, cells infected with CNF1 revealed the accumulation of chitin over the cell surface within 30 min p.i. and continued to accumulate on cells until 4 h p.i. before cell lyses which was 1.6 times longer accumulation period than cells infected with CVK2 (prototype virus). Furthermore, addition of aphidicolin could extend the chitin accumulation on cells infected with CNF1 until 8 h p.i. before cell lyses. Whereas, CVK2-infected cells treated with aphidicolin could prolong the chitin synthesis only for 6 h p.i. before cell lyses. Therefore, chitin synthesis by Chlorella-virus system could be prolonged by using slow-growing viral isolates and with aphidicolin.Keywords: chitin, chlorovirus, Chlorella virus, aphidicolin
Procedia PDF Downloads 2151954 Bioprospecting for Indigenous Ruderal Plants with Potentials for Phytoremediation of Soil Heavy Metals in the Southern Guinea Savanna of North Western Nigeria
Authors: Sunday Paul Bako, Augustine Uwanekwu Ezealor, Yahuza Tanimu
Abstract:
In a study to evaluate the response of indigenous ruderal plants to the metal deposition regime imposed by anthropogenic modification in the Southern Guinea Savanna of north Western Nigeria during the dry and wet seasons, herbaceous plants and samples of soils were collected in three 5m by 5m quadrats laid around the environs of the Kaduna Refinery and Petrochemical Company and the banks of River Kaduna. Heavy metal concentration (Cd, Ni, Cr, Cu, Fe, Mn and Zn) in soil and plant samples was determined using Energy Dispersive X-ray Fluorescence. Concentrations of heavy metals in soils were generally observed to be higher during the wet season in both locations although the differences were not statistically significant (P > 0.05). Concentrations of Cd, Zn, Cr, Cu and Ni in all the plants observed were found to be below levels described as phytotoxic to plants. However, above ‘normal’ concentrations of Cr was observed in most of the plant species sampled. The concentrations of Cr, Cu, Ni and Zn in soils around the KRPC and RKB were found to be above the acceptable limits. Although no hyper accumulator plant species was encountered in this study, twenty (20) plant species were identified to have high bioconcentration (BCF > 1.0) of Cd and Cu, which indicated tolerance of these plants to excessive or phytotoxic concentrations of these metals. In addition, they generally produce high above ground biomass, due to rapid vegetative growth. These are likely species for phytoextraction. Elevated concentration of metals in both soil and plant materials may cause a decrease in biodiversity due to direct toxicity. There are also risks to humans and other animals due to bioaccumulation across the food chain. There are further possibilities of further evaluating and genetically improving metal tolerance traits in some of these plant species in relation to their potential use in phytoremediation programmes in metal polluted sites.Keywords: bioprospecting, phytoremediation, heavy metals, Nigeria
Procedia PDF Downloads 2881953 The Impact of CSR Satisfaction on Employee Commitment
Authors: Silke Bustamante, Andrea Pelzeter, Andreas Deckmann, Rudi Ehlscheidt, Franziska Freudenberger
Abstract:
Many companies increasingly seek to enhance their attractiveness as an employer to bind their employees. At the same time, corporate responsibility for social and ecological issues seems to become a more important part of an attractive employer brand. It enables the company to match the values and expectations of its members, to signal fairness towards them and to increase its brand potential for positive psychological identification on the employees’ side. In the last decade, several empirical studies have focused this relationship, confirming a positive effect of employees’ CSR perception and their affective organizational commitment. The current paper aims to take a slightly different view by analyzing the impact of another factor on commitment: the weighted employee’s satisfaction with the employer CSR. For that purpose, it is assumed that commitment levels are rather a result of the fulfillment or disappointment of expectations. Hence, instead of merely asking how CSR perception affects commitment, a more complex independent variable is taken into account: a weighted satisfaction construct that summarizes two different factors. Therefore, the individual level of commitment contingent on CSR is conceptualized as a function of two psychological processes: (1) the individual significance that an employee ascribes to specific employer attributes and (2) the individual satisfaction based on the fulfillment of expectation that rely on preceding perceptions of employer attributes. The results presented are based on a quantitative survey that was undertaken among employees of the German service sector. Conceptually a five-dimensional CSR construct (ecology, employees, marketplace, society and corporate governance) and a two-dimensional non-CSR construct (company and workplace) were applied to differentiate employer characteristics. (1) Respondents were asked to indicate the importance of different facets of CSR-related and non-CSR-related employer attributes. By means of a conjoint analysis, the relative importance of each employer attribute was calculated from the data. (2) In addition to this, participants stated their level of satisfaction with specific employer attributes. Both indications were merged to individually weighted satisfaction indexes on the seven-dimensional levels of employer characteristics. The affective organizational commitment of employees (dependent variable) was gathered by applying the established 15-items Organizational Commitment Questionnaire (OCQ). The findings related to the relationship between satisfaction and commitment will be presented. Furthermore, the question will be addressed, how important satisfaction with CSR is in relation to the satisfaction with other attributes of the company in the creation of commitment. Practical as well as scientific implications will be discussed especially with reference to previous results that focused on CSR perception as a commitment driver.Keywords: corporate social responsibility, organizational commitment, employee attitudes/satisfaction, employee expectations, employer brand
Procedia PDF Downloads 2721952 Numerical Analysis of the Flexural Behaviour of Concrete-Filled Rectangular Flange Girders
Authors: R. Al-Dujele, K. A. Cashell
Abstract:
A tubular flange girder is an I-shaped steel girder with either one of both of the usual flat flange plates replaced with a hollow section. Typically, these hollow sections are either rectangular or circular in shape. Concrete filled tubular flange girders (CFTFGs) are unconventional I-shaped beams that use a hollow structural section as the top flange which is filled with concrete. The resulting section offers very high lateral torsional buckling strength and stiffness compared with conventional steel I-beams of similar depth, width and weight, typically leading to a reduction in lateral bracing requirements. This paper is focussed on investigating the ultimate capacity of concrete filled rectangular tubular flange girders (CFRTFGs). These are complex members and their behaviour is governed by a number of inter-related parameters. The FE model is developed using ABAQUS software, 3-D finite element (FE) model for simply supported CFRTFGs subjected to two point loads applied at the third-span points is built. An initial geometrical imperfection of (L/1000), as well as geometrical and material nonlinearities, are introduced into the model, where L denotes the span of the girder. In this numerical model, the concrete and steel materials are modelled using eight-node solid and four-node shell elements, respectively. In addition to the FE model, simplified analytical expressions for the flexural capacity are also proposed, and the results are compared to those from the FE analyses. The analytical expressions, which are suitable for design, are also shown to be capable of providing an accurate depiction of the bending moment capacity.Keywords: concrete-filled rectangular tubular flange girders, ultimate capacity, confining effect, finite element analysis
Procedia PDF Downloads 1481951 Encouraging Collaboration and Innovation: The New Engineering Oriented Educational Reform in Urban Planning, Tianjin University, China
Authors: Tianjie Zhang, Bingqian Cheng, Peng Zeng
Abstract:
Engineering science and technology progress and innovation have become an important engine to promote social development. The reform exploration of "new engineering" in China has drawn extensive attention around the world, with its connotation as "to cultivate future diversified, innovative and outstanding engineering talents by taking ‘fostering character and civic virtue’ as the guide, responding to changes and shaping the future as the construction concept, and inheritance and innovation, crossover and fusion, coordination and sharing as the principal approach". In this context, Tianjin University, as a traditional Chinese university with advantages in engineering, further launched the CCII (Coherent-Collaborative-Interdisciplinary-Innovation) program, raising the cultivation idea of integrating new liberal arts education, multidisciplinary engineering education and personalized professional education. As urban planning practice in China has undergone the evolution of "physical planning -- comprehensive strategic planning -- resource management-oriented planning", planning education has also experienced the transmutation process of "building foundation -- urban scientific foundation -- multi-disciplinary integration". As a characteristic and advantageous discipline of Tianjin University, the major of Urban and Rural Planning, in accordance with the "CCII Program of Tianjin University", aims to build China's top and world-class major, and implements the following educational reform measures: 1. Adding corresponding English courses, such as advanced course on GIS Analysis, courses on comparative studies in international planning involving ecological resources and the sociology of the humanities, etc. 2. Holding "Academician Forum", inviting international academicians to give lectures or seminars to track international frontier scientific research issues. 3. Organizing "International Joint Workshop" to provide students with international exchange and design practice platform. 4. Setting up a business practice base, so that students can find problems from practice and solve them in an innovative way. Through these measures, the Urban and Rural Planning major of Tianjin University has formed a talent training system with multi-disciplinary cross integration and orienting to the future science and technology.Keywords: China, higher education reform, innovation, new engineering education, rural and urban planning, Tianjin University
Procedia PDF Downloads 1241950 Temperature Dependent Current-Voltage (I-V) Characteristics of CuO-ZnO Nanorods Based Heterojunction Solar Cells
Authors: Venkatesan Annadurai, Kannan Ethirajalu, Anu Roshini Ramakrishnan
Abstract:
Copper oxide (CuO) and zinc oxide (ZnO) based coaxial (CuO-ZnO nanorods) heterojunction has been the interest of various research communities for solar cells, light emitting diodes (LEDs) and photodetectors applications. Copper oxide (CuO) is a p-type material with the band gap of 1.5 eV and it is considered to be an attractive absorber material in solar cells applications due to its high absorption coefficient and long minority carrier diffusion length. Similarly, n-type ZnO nanorods possess many attractive advantages over thin films such as, the light trapping ability and photosensitivity owing to the presence of oxygen related hole-traps at the surface. Moreover, the abundant availability, non-toxicity, and inexpensiveness of these materials make them suitable for potentially cheap, large area, and stable photovoltaic applications. However, the efficiency of the CuO-ZnO nanorods heterojunction based devices is greatly affected by interface defects which generally lead to the poor performance. In spite of having much potential, not much work has been carried out to understand the interface quality and transport mechanism involved across the CuO-ZnO nanorods heterojunction. Therefore, a detailed investigation of CuO-ZnO heterojunction is needed to understand the interface which affects its photovoltaic performance. Herein, we have fabricated the CuO-ZnO nanorods based heterojunction by simple hydrothermal and electrodeposition technique and investigated its interface quality by carrying out temperature (300 –10 K) dependent current-voltage (I-V) measurements under dark and illumination of visible light. Activation energies extracted from the temperature dependent I-V characteristics reveals that recombination and tunneling mechanism across the interfacial barrier plays a significant role in the current flow.Keywords: heterojunction, electrical transport, nanorods, solar cells
Procedia PDF Downloads 2271949 Enhanced Growth of Microalgae Chlamydomonas reinhardtii Cultivated in Different Organic Waste and Effective Conversion of Algal Oil to Biodiesel
Authors: Ajith J. Kings, L. R. Monisha Miriam, R. Edwin Raj, S. Julyes Jaisingh, S. Gavaskar
Abstract:
Microalgae are a potential bio-source for rejuvenated solutions in various disciplines of science and technology, especially in medicine and energy. Biodiesel is being replaced for conventional fuels in automobile industries with reduced pollution and equivalent performance. Since it is a carbon neutral fuel by recycling CO2 in photosynthesis, global warming potential can be held in control using this fuel source. One of the ways to meet the rising demand of automotive fuel is to adopt with eco-friendly, green alternative fuels called sustainable microalgal biodiesel. In this work, a microalga Chlamydomonas reinhardtii was cultivated and optimized in different media compositions developed from under-utilized waste materials in lab scale. Using the optimized process conditions, they are then mass propagated in out-door ponds, harvested, dried and oils extracted for optimization in ambient conditions. The microalgal oil was subjected to two step esterification processes using acid catalyst to reduce the acid value (0.52 mg kOH/g) in the initial stage, followed by transesterification to maximize the biodiesel yield. The optimized esterification process parameters are methanol/oil ratio 0.32 (v/v), sulphuric acid 10 vol.%, duration 45 min at 65 ºC. In the transesterification process, commercially available alkali catalyst (KOH) is used and optimized to obtain a maximum biodiesel yield of 95.4%. The optimized parameters are methanol/oil ratio 0.33(v/v), alkali catalyst 0.1 wt.%, duration 90 min at 65 ºC 90 with smooth stirring. Response Surface Methodology (RSM) is employed as a tool for optimizing the process parameters. The biodiesel was then characterized with standard procedures and especially by GC-MS to confirm its compatibility for usage in internal combustion engine.Keywords: microalgae, organic media, optimization, transesterification, characterization
Procedia PDF Downloads 2391948 Tc-99m MIBI Scintigraphy to Differentiate Malignant from Benign Lesions, Detected on Planar Bone Scan
Authors: Aniqa Jabeen
Abstract:
The aim of this study was to evaluate the effectiveness of Tc-99m MIBI (Technetium 99-methoxy-iso-butyl-isonitrile) scintigraphy to differentiate malignancies from benign lesions, which were detected on planar bone scans. Materials and Methods: 59 patients with bone lesions were enrolled in the study. The scintigraphic findings were compared with the clinical, radiological and the histological findings. Each patient initially underwent a three-phase bone scan with Tc-99m MDP (Methylene Diphosphonate) and if evidence of lesion found, the patient then underwent a dynamic and static MIBI scintigraphy after three to four days. The MDP and MIBI scans were evaluated visually and quantitatively. For quantitative analysis count ratios of lesions and contralateral normal side (L/C) were taken by region of interests drawn on scans. The Student T test was applied to assess the significant difference between benign and malignant lesions p-value < 0.05 was considered significant. Result: The MDP scans showed the increase tracer uptake, but there was no significant difference between benign and malignant uptake of the radiotracer. However significant difference (p-value 0.015), in uptake was seen in malignant (L/C = 3.51 ± 1.02) and benign lesion (L/C = 2.50±0.42) on MIBI scan. Three of thirty benign lesions did not show significant MIBI uptake. Seven malignant appeared as false negatives. Specificity of the scan was 86.66%, and its Negative Predictive Value (NPV) was 81.25% whereas the sensitivity of scan was 79.31%. In excluding the axial metastasis from the lesions, the sensitivity of MIBI scan increased to 91.66% and the NPV also increased to 92.85%. Conclusion: MIBI scintigraphy provides its usefulness by distinguishing malignant from benign lesions. MIBI also correctly identifies metastatic lesions. The negative predictive value of the scan points towards its ability to accurately diagnose the normal (benign) cases. However, biopsy remains the gold standard and a definitive diagnostic modality in musculoskeletal tumors. MIBI scan provides useful information in preoperative assessment and in distinguishing between malignant and benign lesions.Keywords: benign, malignancies, MDP bone scan, MIBI scintigraphy
Procedia PDF Downloads 406