Search results for: solid tumors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2533

Search results for: solid tumors

1963 Directional Search for Dark Matter Using Nuclear Emulsion

Authors: Ali Murat Guler

Abstract:

A variety of experiments have been developed over the past decades, aiming at the detection of Weakly Interactive Massive Particles (WIMPs) via their scattering in an instrumented medium. The sensitivity of these experiments has improved with a tremendous speed, thanks to a constant development of detectors and analysis methods. Detectors capable of reconstructing the direction of the nuclear recoil induced by the WIMP scattering are opening a new frontier to possibly extend Dark Matter searches beyond the neutrino background. Measurement of WIMP’s direction will allow us to detect the galactic origin of dark matter and, therefore to have a clear signal-background separation. The NEWSdm experiment, based on nuclear emulsions, is intended to measure the direction of WIMP-induced nuclear coils with a solid-state detector, thus with high sensitivity. We discuss the discovery potential of a directional experiment based on the use of a solid target made of newly developed nuclear emulsions and novel read-out systems achieving nanometric resolution. We also report results of a technical test conducted in Gran Sasso.

Keywords: dark matter, direct detection, nuclear emulsion, WIMPS

Procedia PDF Downloads 272
1962 Exploiting Charges on Medicinal Synthetic Aluminum Magnesium Silicate's {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃} Nanoparticles in Treating Viral Diseases, Tumors, Antimicrobial Resistant Infections

Authors: M. C. O. Ezeibe, F. I. O. Ezeibe

Abstract:

Reasons viral diseases (including AI, HIV/AIDS, and COVID-19), tumors (including Cancers and Prostrate enlargement), and antimicrobial-resistant infections (AMR) are difficult to cure are features of the pathogens which normal cells do not have or need (biomedical markers) have not been identified; medicines that can counter the markers have not been invented; strategies and mechanisms for their treatments have not been developed. When cells become abnormal, they acquire negative electrical charges, and viruses are either positively charged or negatively charged, while normal cells remain neutral (without electrical charges). So, opposite charges' electrostatic attraction is a treatment mechanism for viral diseases and tumors. Medicines that have positive electrical charges would mop abnormal (infected and tumor) cells and DNA viruses (negatively charged), while negatively charged medicines would mop RNA viruses (positively charged). Molecules of Aluminum-magnesium silicate [AMS: Al₂Mg₃ (SiO₄)₃], an approved medicine and pharmaceutical stabilizing agent, consist of nanoparticles which have both positive electrically charged ends and negative electrically charged ends. The very small size (0.96 nm) of the nanoparticles allows them to reach all cells in every organ. By stabilizing antimicrobials, AMS reduces the rate at which the body metabolizes them so that they remain at high concentrations for extended periods. When drugs remain at high concentrations for longer periods, their efficacies improve. Again, nanoparticles enhance the delivery of medicines to effect targets. Both remaining at high concentrations for longer periods and better delivery to effect targets improve efficacy and make lower doses achieve desired effects so that side effects of medicines are reduced to allow the immunity of patients to be enhanced. Silicates also enhance the immune responses of treated patients. Improving antimicrobial efficacies and enhancing patients` immunity terminate infections so that none remains that could develop resistance. Some countries do not have natural deposits of AMS, but they may have Aluminum silicate (AS: Al₄ (SiO₄)₃) and Magnesium silicate (MS: Mg₂SiO₄), which are also approved medicines. So, AS and MS were used to formulate an AMS-brand, named Medicinal synthetic AMS {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃}. To overcome the challenge of AMS, AS, and MS being un-absorbable, Dextrose monohydrate is incorporated in MSAMS-formulations for the simple sugar to convey the electrically charged nanoparticles into blood circulation by the principle of active transport so that MSAMS-antimicrobial formulations function systemically. In vitro, MSAMS reduced (P≤0.05) titers of viruses, including Avian influenza virus and HIV. When used to treat virus-infected animals, it cured Newcastle disease and Infectious bursa disease of chickens, Parvovirus disease of dogs, and Peste des petits ruminants disease of sheep and goats. A number of HIV/AIDS patients treated with it have been reported to become HIV-negative (antibody and antigen). COVID-19 patients are also reported to recover and test virus negative when treated with MSAMS. PSA titers of prostate cancer/enlargement patients normalize (≤4) following treatment with MSAMS. MSAMS has also potentiated ampicillin trihydrate, sulfadimidin, cotrimoxazole, piparazine citrate and chloroquine phosphate to achieve ≥ 95 % infection-load reductions (AMR-prevention). At 75 % of doses of ampicillin, cotrimoxazole, and streptomycin, supporting MSAMS-formulations' treatments with antioxidants led to the termination of even already resistant infections.

Keywords: electrical charges, viruses, abnormal cells, aluminum-magnesium silicate

Procedia PDF Downloads 63
1961 CFD Study on the Effect of Primary Air on Combustion of Simulated MSW Process in the Fixed Bed

Authors: Rui Sun, Tamer M. Ismail, Xiaohan Ren, M. Abd El-Salam

Abstract:

Incineration of municipal solid waste (MSW) is one of the key scopes in the global clean energy strategy. A computational fluid dynamics (CFD) model was established. In order to reveal these features of the combustion process in a fixed porous bed of MSW. Transporting equations and process rate equations of the waste bed were modeled and set up to describe the incineration process, according to the local thermal conditions and waste property characters. Gas phase turbulence was modeled using k-ε turbulent model and the particle phase was modeled using the kinetic theory of granular flow. The heterogeneous reaction rates were determined using Arrhenius eddy dissipation and the Arrhenius-diffusion reaction rates. The effects of primary air flow rate and temperature in the burning process of simulated MSW are investigated experimentally and numerically. The simulation results in bed are accordant with experimental data well. The model provides detailed information on burning processes in the fixed bed, which is otherwise very difficult to obtain by conventional experimental techniques.

Keywords: computational fluid dynamics (CFD) model, waste incineration, municipal solid waste (MSW), fixed bed, primary air

Procedia PDF Downloads 402
1960 Metastasis of Breast Cancer to the Lungs: Implications of Molecular Biology and Treatment Options

Authors: Fakhrosadat Sajjadian

Abstract:

The majority of deaths in cancer patients are caused by distant metastasis. Breast cancer shows a unique spread pattern, often affecting bone, liver, lung, and brain. Breast cancer can be categorized into various subtypes according to gene expression patterns, and these subtypes exhibit specific preferences for organs where metastasis occurs. Breast tumors with luminal characteristics have a preference for spreading to the bone, whereas basal-like breast cancer (BLBC) shows a tendency to metastasize to the lungs. Still, the mechanisms behind this particular pattern of metastasis in organs have yet to be fully understood. In this evaluation, we will outline the latest progress in molecular signaling pathways and treatment methods for breast cancer lung metastasis.

Keywords: lung cancer, liver cancer, diagnosis, BLBC, metastasis

Procedia PDF Downloads 48
1959 Geospatial Assessment of Waste Disposal System in Akure, Ondo State, Nigeria

Authors: Babawale Akin Adeyemi, Esan Temitayo, Adeyemi Olabisi Omowumi

Abstract:

The paper analyzed waste disposal system in Akure, Ondo State using GIS techniques. Specifically, the study identified the spatial distribution of collection points and existing dumpsite; evaluated the accessibility of waste collection points and their proximity to each other with the view of enhancing better performance of the waste disposal system. Data for the study were obtained from both primary and secondary sources. Primary data were obtained through the administration of questionnaire. From field survey, 35 collection points were identified in the study area. 10 questionnaires were administered around each collection point making a total of 350 questionnaires for the study. Also, co-ordinates of each collection point were captured using a hand-held Global Positioning System (GPS) receiver which was used to analyze the spatial distribution of collection points. Secondary data used include administrative map collected from Akure South Local Government Secretariat. Data collected was analyzed using the GIS analytical tools which is neighborhood function. The result revealed that collection points were found in all parts of Akure with the highest concentration around the central business district. The study also showed that 80% of the collection points enjoyed efficient waste service while the remaining 20% does not. The study further revealed that most collection points in the core of the city were in close proximity to each other. In conclusion, the paper revealed the capability of Geographic Information System (GIS) as a technique in management of waste collection and disposal technique. The application of Geographic Information System (GIS) in the evaluation of the solid waste management in Akure is highly invaluable for the state waste management board which could also be beneficial to other states in developing a modern day solid waste management system. Further study on solid waste management is also recommended especially for updating of information on both spatial and non-spatial data.

Keywords: assessment, geospatial, system, waste disposal

Procedia PDF Downloads 239
1958 Functionalization of Polypropylene with Chiral Monomer for Improving Hemocompatibility

Authors: Xiaodong Xu, Dan Zhao, Xiujuan Chang, Chunming Li, Huiyun Zhou, Xin Li, Qiang Shi, Shifang Luan, Jinghua Yin

Abstract:

Polypropylene (PP) is one of the most commonly used plastics because of its low density, outstanding mechanical properties, and low cost. However, its drawbacks such as low surface energy, poor dyeability, lack of chemical functionalities, and poor compatibility with polar polymers and inorganic materials, have restricted the application of PP. To expand its application in biomedical materials, functionalization is considered to be the most effective way. In this study, PP was functionalized with a chiral monomer, (S)-1-acryloylpyrrolidine-2-carboxylic acid ((S)-APCA), by free-radical grafting in the solid phase. The grafting degree of PP-g-APCA was determined by chemical titration method, and the chemical structure of functionalized PP was characterized by FTIR spectroscopy, which confirmed that the chiral monomer (S)-APCA was successfully grafted onto PP. Static water contact angle results suggested that the surface hydrophilicity of PP was significantly improved by solid phase grafting and assistance of surface water treatment. Protein adsorption and platelet adhesion results showed that hemocompatibility of PP was greatly improved by grafting the chiral monomer.

Keywords: functionalization, polypropylene, chiral monomer, hemocompatibility

Procedia PDF Downloads 381
1957 Biomass Production Improvement of Beauveria bassiana at Laboratory Scale for a Biopesticide Development

Authors: G. Quiroga-Cubides, M. Cruz, E. Grijalba, J. Sanabria, A. Ceballos, L. García, M. Gómez

Abstract:

Beauveria sp. has been used as an entomopathogenic microorganism for biological control of various plant pests such as whitefly, thrips, aphids and chrysomelidaes (including Cerotoma tingomariana species), which affect soybean crops in Colombia´s Altillanura region. Therefore, a biopesticide prototype based on B. bassiana strain Bv060 was developed at Corpoica laboratories. For the production of B. bassiana conidia, a baseline fermentation was performed at laboratory in a solid medium using broken rice as a substrate, a temperature of 25±2 °C and a relative humidity of 60±10%. The experimental design was completely randomized, with a three-time repetition. These culture conditions resulted in an average conidial concentration of 1.48x10^10 conidia/g, a yield of 13.07 g/kg dry substrate and a productivity of 8.83x10^7 conidia/g*h were achieved. Consequently, the objective of this study was to evaluate the influence of the particle size reduction of rice (<1 mm) and the addition of a complex nitrogen source over conidia production and efficiency parameters in a solid-state fermentation, in a completely randomized experiment with a three-time repetition. For this aim, baseline fermentation conditions of temperature and humidity were employed in a semisolid culture medium with powdered rice (10%) and a complex nitrogen source (8%). As a result, it was possible to increase conidial concentration until 9.87x10^10 conidia/g, yield to 87.07 g/g dry substrate and productivity to 3.43x10^8 conidia/g*h. This suggested that conidial concentration and yield in semisolid fermentation increased almost 7 times compared with baseline while the productivity increased 4 times. Finally, the designed system for semisolid-state fermentation allowed to achieve an easy conidia recovery, which means reduction in time and costs of the production process.

Keywords: Beauveria bassiana, biopesticide, solid state fermentation, semisolid medium culture

Procedia PDF Downloads 301
1956 Production of Neutrons by High Intensity Picosecond Laser Interacting with Thick Solid Target at XingGuangIII

Authors: Xi Yuan, Xuebin Zhu, Bojun Li

Abstract:

This work describes the experiment to produce high-intensity pulsed neutron beams on XingGuangIII laser facility. The high-intensity laser is utilized to drive protons and deuterons, which hit a thick solid target to produce neutrons. The pulse duration of the laser used in the experiment is about 0.8 ps, and the laser energy is around 100 J. Protons and deuterons are accelerated from a 10-μm-thick deuterated polyethylene (CD₂) foil and diagnosed by a Thomson parabola ion-spectrometer. The energy spectrum of neutrons generated via ⁷Li(d,n) and ⁷Li(p,n) reaction when proton and deuteron beams hit a 5-mm-thick LiF target is measured by a scintillator-based time-of-flight spectrometer. Results from the neuron measurements show that the maximum neutron energy is about 12.5 MeV and the neutron yield is up to 2×10⁹/pulse. The high-intensity pulsed neutron beams demonstrated in this work can provide a valuable neutron source for material research, fast neutron induced fission research, and so on.

Keywords: picosecond laser driven, fast neutron, time-of-flight spectrometry, XinggungIII

Procedia PDF Downloads 165
1955 Investigation of Biochar from Banana Peel

Authors: Anurita Selvarajoo, Svenja Hanson

Abstract:

Growing energy needs and increasing environmental issues are creating awareness for alternative energy which substitutes the non-renewable and polluting fossil fuels. Agricultural wastes are a good feedstock for biochar production through the pyrolysis process. There is potential to generate solid fuel from agricultural wastes, as there are large quantities of agricultural wastes available in Malaysia. This paper outlines the experimental study on the pyrolysis of banana peel. The effects of pyrolysis temperatures on the yield of biochar from the banana peel were investigated. Banana peel was pyrolysed in a horizontal tubular reactor under inert atmosphere by varying the temperatures between 300 and 700 0C. With increasing temperature, the total biochar yield decreased with increased heating value. It was found that the pyrolysis temperature had major effect on the yield of biochar product. It also exerted major influence on the heating value and C,H and O composition. The obtained biochar ranged between 31.9 to 56.7 %wt, at different pyrolysis temperatures. The optimum biochar yield was obtained at 325 0C. Biochar yield obtained at optimum temperature was 47 % wt with a heating value of 25.9 MJ kg-1. The study has been performed in order to demonstrate that agricultural wastes like banana peel are also important source of solid fuel.

Keywords: agricultural Wastes, banana peel, biochar, pyrolysis

Procedia PDF Downloads 297
1954 The Relations of Volatile Compounds, Some Parameters and Consumer Preference of Commercial Fermented Milks in Thailand

Authors: Suttipong Phosuksirikul, Rawichar Chaipojjana, Arunsri Leejeerajumnean

Abstract:

The aim of research was to define the relations between volatile compounds, some parameters (pH, titratable acidity (TA), total soluble solid (TSS), lactic acid bacteria count) and consumer preference of commercial fermented milks. These relations tend to be used for controlling and developing new fermented milk product. Three leading commercial brands of fermented milks in Thailand were evaluated by consumers (n=71) using hedonic scale for four attributes (sweetness, sourness, flavour, and overall liking), volatile compounds using headspace-solid phase microextraction (HS-SPME) GC-MS, pH, TA, TSS and LAB count. Then the relations were analyzed by principal component analysis (PCA). The PCA data showed that all of four attributes liking scores were related to each other. They were also related to TA, TSS and volatile compounds. The related volatile compounds were mainly on fermented produced compounds including acetic acid, furanmethanol, furfural, octanoic acid and the volatiles known as artificial fruit flavour (beta pinene, limonene, vanillin, and ethyl vanillin). These compounds were provided the information about flavour addition in commercial fermented milk in Thailand.

Keywords: fermented milk, volatile compounds, preference, PCA

Procedia PDF Downloads 364
1953 A Study on Mesh Size Dependency on Bed Expansion Zone in a Three-Phase Fluidized Bed Reactor

Authors: Liliana Patricia Olivo Arias

Abstract:

The present study focused on the hydrodynamic study in a three-phase fluidized bed reactor and the influence of important aspects, such as volume fractions (Hold up), velocity magnitude of gas, liquid and solid phases (hydrogen, gasoil, and gamma alumina), interactions of phases, through of drag models with the k-epsilon turbulence model. For this purpose was employed a Euler-Euler model and also considers the system is constituted of three phases, gaseous, liquid and solid, characterized by its physical and thermal properties, the transport processes that are developed within the transient regime. The proposed model of the three-phase fluidized bed reactor was solved numerically using the ANSYS-Fluent software with different mesh refinements on bed expansion zone in order to observe the influence of the hydrodynamic parameters and convergence criteria. With this model and the numerical simulations obtained for its resolution, it was possible to predict the results of the volume fractions (Hold ups) and the velocity magnitude for an unsteady system from the initial and boundaries conditions were established.

Keywords: three-phase fluidized bed system, CFD simulation, mesh dependency study, hydrodynamic study

Procedia PDF Downloads 166
1952 Large Eddy Simulation of Particle Clouds Using Open-Source CFD

Authors: Ruo-Qian Wang

Abstract:

Open-source CFD has become increasingly popular and promising. The recent progress in multiphase flow enables new CFD applications, which provides an economic and flexible research tool for complex flow problems. Our numerical study using four-way coupling Euler-Lagrangian Large-Eddy Simulations to resolve particle cloud dynamics with OpenFOAM and CFDEM will be introduced: The fractioned Navier-Stokes equations are numerically solved for fluid phase motion, solid phase motion is addressed by Lagrangian tracking for every single particle, and total momentum is conserved by fluid-solid inter-phase coupling. The grid convergence test was performed, which proves the current resolution of the mesh is appropriate. Then, we validated the code by comparing numerical results with experiments in terms of particle cloud settlement and growth. A good comparison was obtained showing reliability of the present numerical schemes. The time and height at phase separations were defined and analyzed for a variety of initial release conditions. Empirical formulas were drawn to fit the results.

Keywords: four-way coupling, dredging, land reclamation, multiphase flows, oil spill

Procedia PDF Downloads 429
1951 The Behavior of Masonry Wall Constructed Using Biaxial Interlocking Concrete Block, Solid Concrete Block and Cement Sand Brick Subjected to the Compressive Load

Authors: Fauziah Aziz, Mohd.fadzil Arshad, Hazrina Mansor, Sedat Kömürcü

Abstract:

Masonry is an isotropic and heterogeneous material due to the presence of the different components within the assembly process. Normally the mortar plays a significant role in the compressive behavior of the traditional masonry structures. Biaxial interlocking concrete block is a masonry unit that comes out with the interlocking concept. This masonry unit can improve the quality of the construction process, reduce the cost of labor, reduce high skill workmanship, and speeding the construction time. Normally, the interlocking concrete block masonry unit in the market place was designed in a way interlocking concept only either x or y-axis, shorter in length, and low compressive strength value. However, the biaxial interlocking concrete block is a dry-stack concept being introduced in this research, offered the specialty compared to the normal interlocking concrete available in the market place due to its length and the geometry of the groove and tongue. This material can be used as a non-load bearing wall, or load-bearing wall depends on the application of the masonry. But, there is a lack of technical data that was produced before. This paper presents a finding on the compressive resistance of the biaxial interlocking concrete block masonry wall compared to the other traditional masonry walls. Two series of biaxial interlocking concrete block masonry walls, namely M1 and M2, a series of solid concrete block and cement sand brick walls M3, and M4 have tested the compressive resistance. M1 is the masonry wall of a hollow biaxial interlocking concrete block meanwhile; M2 is the grouted masonry wall, M3 is a solid concrete block masonry wall, and M4 is a cement sand brick masonry wall. All the samples were tested under static compressive load. The results examine that M2 is higher in compressive resistance compared to the M1, M3, and M4. It shows that the compressive strength of the concrete masonry units plays a significant role in the capacity of the masonry wall.

Keywords: interlocking concrete block, compressive resistance, concrete masonry unit, masonry

Procedia PDF Downloads 166
1950 Flame Spread along Fuel Cylinders in High Pressures

Authors: Yanli Zhao, Jian Chen, Shouxiang Lu

Abstract:

Flame spread over solid fuels in high pressure situations such as nuclear containment shells and hyperbaric oxygen chamber has potential to result in catastrophic disaster, thus requiring best knowledge. This paper reveals experimentally the flame spread behaviors over fuel cylinders in high pressures. The fuel used in this study is polyethylene and polymethyl methacrylate cylinders with 4mm diameter. Ambient gas is fixed as air and total pressures are varied from naturally normal pressure (100kPa) to elevated pressure (400kPa). Flame appearance, burning rate and flame spread were investigated experimentally and theoretically. Results show that high pressure significantly affects the flame appearance, which is as the pressure increases, flame color changes from luminous yellow to orange and the orange part extends down towards the base of flame. Besides, the average flame width and height, and the burning rate are proved to increase with increasing pressure. What is more, flame spread rates become higher as pressure increases due to the enhancement of heat transfer from flame to solid surface in elevated pressure by performing a simplified heat balance analysis.

Keywords: cylinder fuel, flame spread, heat transfer, high pressure

Procedia PDF Downloads 378
1949 Yields and Composition of the Gas, Liquid and Solid Fractions Obtained by Conventional Pyrolysis of Different Lignocellulosic Biomass Residues

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

Nowadays, fossil resources are main precursors for fuel production. Due to their contribution to the greenhouse effect and their future depletion, there is a constant search for environmentally friendly feedstock alternatives. Biomass residues constitute an interesting replacement for fossil resources because of their zero net CO₂ emissions. One of the main routes to convert biomass into energy and chemicals is pyrolysis. In this work, conventional pyrolysis of different biomass residues highly available such as almond shells, hemp hurds, olive stones, and Kraft lignin, was studied. In a typical experiment, the biomass was crushed and loaded into a fixed bed reactor under continuous nitrogen flow. The influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/min) on the pyrolysis yield and composition of the different fractions has been studied. In every case, the mass yields revealed that the solid fraction decreased with temperature, while liquid and gas fractions increased due to depolymerization and cracking reactions at high temperatures. The composition of every pyrolysis fraction was studied in detail. The results showed that the composition of the gas fraction was mainly CO, CO₂ when working at low temperatures, and mostly CH₄ and H₂at high temperatures. The solid fraction developed an incipient microporosity, with narrow micropore volume of 0.21 cm³/g. Regarding the liquid fraction, pyrolysis of almond shell, hemp hurds, and olive stones led mainly to a high content in aliphatic acids and furans, due to the high volatile matter content of these biomass (>74 %wt.), and phenols to a lesser degree, which were formed due to the degradation of lignin at higher temperatures. However, when Kraft lignin was used as bio-oil precursor, the presence of phenols was very prominent, and aliphatic compounds were also detected in a lesser extent.

Keywords: Bio-oil, biomass, conventional pyrolysis, lignocellulosic

Procedia PDF Downloads 134
1948 Characterization of Vegetable Wastes and Its Potential Use for Hydrogen and Methane Production via Dark Anaerobic Fermentation

Authors: Ajay Dwivedi, M. Suresh Kumar, A. N. Vaidya

Abstract:

The problem of fruit and vegetable waste management is a grave one and with ever increasing need to feed the exponentially growing population, more and more solid waste in the form of fruit and vegetables waste are generated and its management has become one of the key issues in protection of environment. Energy generation from fruit and vegetables waste by dark anaerobic fermentation is a recent an interesting avenue effective management of solid waste as well as for generating free and cheap energy. In the present study 17 vegetables were characterized for their physical as well as chemical properties, these characteristics were used to determine the hydrogen and methane potentials of vegetable from various models, and also lab scale batch experiments were performed to determine their actual hydrogen and methane production capacity. Lab scale batch experiments proved that vegetable waste can be used as effective substrate for bio hydrogen and methane production, however the expected yield of bio hydrogen and methane was much lower than predicted by models, this was due to the fact that other vital experimental parameters such as pH, total solids content, food to microorganism ratio was not optimized.

Keywords: vegetable waste, physico-chemical characteristics, hydrogen, methane

Procedia PDF Downloads 428
1947 Energy Interaction among HVAC and Supermarket Environment

Authors: Denchai Woradechjumroen, Haorong Li, Yuebin Yu

Abstract:

Supermarkets are the most electricity-intensive type of commercial buildings. The unsuitable indoor environment of a supermarket provided by abnormal HVAC operations incurs waste energy consumption in refrigeration systems. This current study briefly describes significantly solid backgrounds and proposes easy-to-use analysis terminology for investigating the impact of HVAC operations on refrigeration power consumption using the field-test data obtained from building automation system (BAS). With solid backgrounds and prior knowledge, expected energy interactions between HVAC and refrigeration systems are proposed through Pearson’s correlation analysis (R value) by considering correlations between equipment power consumption and dominantly independent variables (driving force conditions). The R value can be conveniently utilized to evaluate how strong relations between equipment operations and driving force parameters are. The calculated R values obtained from field data are compared to expected ranges of R values computed by energy interaction methodology. The comparisons can separate the operational conditions of equipment into faulty and normal conditions. This analysis can simply investigate the condition of equipment operations or building sensors because equipment could be abnormal conditions due to routine operations or faulty commissioning processes in field tests. With systematically solid and easy-to-use backgrounds of interactions provided in the present article, the procedures can be utilized as a tool to evaluate the proper commissioning and routine operations of HVAC and refrigeration systems to detect simple faults (e.g. sensors and driving force environment of refrigeration systems and equipment set-point) and optimize power consumption in supermarket buildings. Moreover, the analysis will be used to further study FDD research for supermarkets in future.

Keywords: energy interaction, HVAC, R-value, supermarket buildings

Procedia PDF Downloads 428
1946 A Frictional-Collisional Closure Model for the Saturated Granular Flow: Experimental Evidence and Two Phase Modelling

Authors: Yunhui Sun, Qingquan Liu, Xiaoliang Wang

Abstract:

Dense granular flows widely exist in geological flows such as debris flow, landslide, or sheet flow, where both the interparticle and solid-liquid interactions are important to modify the flow. So, a two-phase approach with both phases correctly modelled is important for a better investigation of the saturated granular flows. However, a proper closure model covering a wide range of flowing states for the solid phase is still lacking. This study first employs a chute flow experiment based on the refractive index matching method, which makes it possible to obtain internal flow information such as velocity, shear rate, granular fluctuation, and volume fraction. The granular stress is obtained based on a steady assumption. The kinetic theory is found to describe the stress dependence on the flow state well. More importantly, the granular rheology is found to be frictionally dominated under weak shear and collisionally dominated under strong shear. The results presented thus provide direct experimental evidence on a possible frictional-collisional closure model for the granular phase. The data indicates that both frictional stresses exist over a wide range of the volume fraction, though traditional theory believes it vanishes below a critical volume fraction. Based on the findings, a two-phase model is used to simulate the chute flow. Both phases are modelled as continuum media, and the inter-phase interactions, such as drag force and pressure gradient force, are considered. The frictional-collisional model is used for the closure of the solid phase stress. The profiles of the kinematic properties agree well with the experiments. This model is further used to simulate immersed granular collapse, which is unsteady in nature, to study the applicability of this model, which is derived from steady flow.

Keywords: closure model, collision, friction, granular flow, two-phase model

Procedia PDF Downloads 59
1945 Ferric Sulphate Catalyzed Esterification of High Free Fatty Acids Content Used Coconut Oil for Biodiesel Synthesis

Authors: G. N. Maheshika, J. A. R. H. Wijerathna, S. H. P. Gunawardena

Abstract:

Feedstock with high free fatty acids (FFAs) content can be successfully employed for biodiesel synthesis once the high FFA content is reduced to the desired levels. In the present study, the applicability of ferric sulphate as the solid acid catalyst for esterification of FFA in used coconut oil was evaluated at varying catalyst concentration and methanol:oil molar ratios. 1.25, 2.5, 3.75 and 5.0% w/w Fe2(SO4)3 on oil basis was used at methanol:oil ratios of 3:1, 4.5:1, and 6:1 and at the reaction temperature of 60 0C. The FFA reduction increased with the increase in catalyst and methanol:oil molar ratios while the time requirement to reach the esterification equilibrium reduced. Satisfactory results for esterification could be obtained within a small reaction period in the presence of only a small amount of Fe2(SO4)3 catalyst concentration and at low reaction temperature, which then can be subjected for trans-esterification process. At the end of the considering reaction period the solid Fe2(SO4)3 catalyst could be separated from the reaction system. The economics of the Fe2(SO4)3 catalyzed esterification of high FFA content used coconut oil for biodiesel is at favorable conditions.

Keywords: biodiesel, esterification, ferric sulphate, Free fatty acids, used coconut oil

Procedia PDF Downloads 548
1944 Numerical Study of Heat Transfer in Silica Aerogel

Authors: Amal Maazoun, Abderrazak Mezghani, Ali Ben Moussa

Abstract:

Aerogel consists of a ramified and inter-connected solid skeleton enclosing a very important number of nano-sized pores filled with air that occupies most of the volume and makes very low density. The thermal conductivity of this material can reach lower values than those of any other material, and it changes with the type of the aerogel and its composition. So, in order to explain the causes of the super-insulation of our material and to determine the factors in which depends on its conductivity we used a numerical simulation. We have developed a numerical code that generates random fractal structure of silica aerogel with pre-defined concentration, properties of the backbone and the gas in the pores as well as the size of the particles. The calculation of the conductivity at any point of domain shows that it is not constant and that it depends on the pore size and the location in the pore. A numerical method based on resolution by inversion of block tridiagonal matrices is used to calculate the equivalent thermal conductivity of the whole fractal structure. The average conductivity calculated for each concentration is in good agreement with those of typical aerogels. And we found that the equivalent thermal conductivity of a silica aerogel depends strongly not only on the porosity but also on the tortuosity of the solid backbone.

Keywords: aerogel, fractal structure, numerical study, porous media, thermal conductivity

Procedia PDF Downloads 291
1943 Valorization of Sargassum: Use of Twin-Screw Extrusion to Produce Biomolecules and Biomaterials

Authors: Bauta J., Raynaud C., Vaca-Medina G., Simon V., Roully A., Vandenbossche V.

Abstract:

Sargassum is a brown algae, originally found in the Sargasso Sea, located in the Caribbean region and the Gulf of Mexico. The flow of Sargassum is becoming a critical environmental problem all over the Caribbean islands particularly. In Guadeloupe alone, around 80,000 tons of seaweed are stranded during the season. Since the appearance of the first waves of Sargassum algae, several measures have been taken to collect them to keep the beaches clean. Nevertheless, 90% of the collected algae are currently stored without recovery. The lack of research initiative demands a more in-depth exploration of Sargassum algae chemistry, targeted towards added value applications and their development. In this context, the aim of the study was to develop a biorefinery process to valorize Sargassum as a source of bioactive natural substances and as raw material to produce biomaterials simultaneously. The technology used was the twin-screw extrusion, which allows to achieve continuously in the same machine different unit fractionation operations. After the identification of the molecules of interest in Sargassum algae, different operating conditions of thermo-mechanical treatment were applied in a twin-screw extruder. The nature of the solvent, the configuration of the extruder, the screw profile, and the temperature profile were studied in order to fractionate the algal biomass and to allow the recovery of a bioactive liquid fraction of interest and a solid residue suitable for the production of biomaterials. Each bioactive liquid fraction was characterized and strategic ways of adding value were proposed. In parallel, the possibility of using the solid residue to produce biomaterials was studied by setting up Dynamic Vapour Sorption (DVS) and basic Pressure-Volume-Temperature (PVT) analyses. The solid residue was molded by compression cooking. The obtained materials were finally characterized mechanically. The results obtained were very comforting and gave some perspectives to find an interesting valorization for the Sargassum algae.

Keywords: seaweeds, twin-screw extrusion, fractionation, bioactive compounds, biomaterials, biomass

Procedia PDF Downloads 127
1942 Effect of Wheat Germ Agglutinin- and Lactoferrin-Grafted Catanionic Solid Lipid Nanoparticles on Targeting Delivery of Etoposide to Glioblastoma Multiforme

Authors: Yung-Chih Kuo, I-Hsin Wang

Abstract:

Catanionic solid lipid nanoparticles (CASLNs) with surface wheat germ agglutinin (WGA) and lactoferrin (Lf) were formulated for entrapping and releasing etoposide (ETP), crossing the blood–brain barrier (BBB), and inhibiting the growth of glioblastoma multiforme (GBM). Microemulsified ETP-CASLNs were modified with WGA and Lf for permeating a cultured monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and for treating malignant U87MG cells. Experimental evidence revealed that an increase in the concentration of catanionic surfactant from 5 μM to 7.5 μM reduced the particle size. When the concentration of catanionic surfactant increased from 7.5 μM to 12.5 μM, the particle size increased, yielding a minimal diameter of WGA-Lf-ETP-CASLNs at 7.5 μM of catanionic surfactant. An increase in the weight percentage of BW from 25% to 75% enlarged WGA-Lf-ETP-CASLNs. In addition, an increase in the concentration of catanionic surfactant from 5 to 15 μM increased the absolute value of zeta potential of WGA-Lf-ETP-CASLNs. It was intriguing that the increment of the charge as a function of the concentration of catanionic surfactant was approximately linear. WGA-Lf-ETP-CASLNs revealed an integral structure with smooth particle contour, displayed a lighter exterior layer of catanionic surfactant, WGA, and Lf and showed a rigid interior region of solid lipids. A variation in the concentration of catanionic surfactant between 5 μM and 15 μM yielded a maximal encapsulation efficiency of ETP ata 7.5 μM of catanionic surfactant. An increase in the concentration of Lf/WGA decreased the grafting efficiency of Lf/WGA. Also, an increase in the weight percentage of ETP decreased its encapsulation efficiency. Moreover, the release rate of ETP from WGA-Lf-ETP-CASLNs reduced with increasing concentration of catanionic surfactant, and WGA-Lf-ETP-CASLNs at 12.5 μM of catanionic surfactant exhibited a feature of sustained release. The order in the viability of HBMECs was ETP-CASLNs ≅ Lf-ETP-CASLNs ≅ WGA-Lf-ETP-CASLNs > ETP. The variation in the transendothelial electrical resistance (TEER) and permeability of propidium iodide (PI) was negligible when the concentration of Lf increased. Furthermore, an increase in the concentration of WGA from 0.2 to 0.6 mg/mL insignificantly altered the TEER and permeability of PI. When the concentration of Lf increased from 2.5 to 7.5 μg/mL and the concentration of WGA increased from 2.5 to 5 μg/mL, the enhancement in the permeability of ETP was minor. However, 10 μg/mL of Lf promoted the permeability of ETP using Lf-ETP-CASLNs, and 5 and 10 μg/mL of WGA could considerably improve the permeability of ETP using WGA-Lf-ETP-CASLNs. The order in the efficacy of inhibiting U87MG cells was WGA-Lf-ETP-CASLNs > Lf-ETP-CASLNs > ETP-CASLNs > ETP. As a result, WGA-Lf-ETP-CASLNs reduced the TEER, enhanced the permeability of PI, induced a minor cytotoxicity to HBMECs, increased the permeability of ETP across the BBB, and improved the antiproliferative efficacy of U87MG cells. The grafting of WGA and Lf is crucial to control the medicinal property of ETP-CASLNs and WGA-Lf-ETP-CASLNs can be promising colloidal carriers in GBM management.

Keywords: catanionic solid lipid nanoparticle, etoposide, glioblastoma multiforme, lactoferrin, wheat germ agglutinin

Procedia PDF Downloads 237
1941 A Novel All-Solid-State Microsupercapacitor Based on Carbon Nanotube Sheets

Authors: Behnoush Dousti, Ye Choi, Gil S. Lee

Abstract:

Supercapacitors which are also known as ultra supercapacitors play a significant role in development of energy storage devices owing to their high power density and rate capability. Nobel research has been conducted on micro scale energy storage systems currently to address the demand for smaller wearable technology and portable devices. Improving the performance of these microsupercapacitors have been always a challenge. Here, we demonstrate a facile fabrication of a microsupercapacitor (MSC) with interdigitated electrodes using novel structure of carbon nanotube sheets which are spun directly from as-grown carbon nanotube forests. Stability and performance of the device was tested using an aqueous PVA-H3PO4 gel electrolyte that also offers desirable electrochemical capacitive properties. High Coulombic efficiency around 100%, great rate capability and excellent capacitance retention over 15,000 cycles were obtained. Capacitive performance greatly improved with surface modification with acid and nitrogen doping of the CNT sheets. The high power density and stable cycling performance make this microsupercapacitor a suitable candidate for verity of energy storage application.

Keywords: carbon nanotube sheet, energy storage, solid state electrolyte, supercapacitor

Procedia PDF Downloads 142
1940 Comparison of Stereotactic Craniotomy for Brain Metastasis, as Compared to Stereotactic Radiosurgery

Authors: Mostafa El Khashab

Abstract:

Our experience with 50 patients with metastatic tumors located in different locations of the brain by a stereotactic-guided craniotomy and total microsurgical resection. Patients ranged in age from 36 to 73 years. There were 28 women and 22 men. Thirty-four patients presented with hemiparesis and 6 with aphasia and the remaining presented with psychological manifestations and memory issues. Gross total resection was accomplished in all cases, with postoperative imaging confirmation of complete removal. Forty patients were subjected to whole brain irradiation. One patient developed a stroke postoperatively and another one had a flap infection. 4 patients developed different postoperative but unrelated morbidities, including pneumonia and DVT. No mortality was encountered. We believe that with the assistance of stereotactic localization, metastases in vital regions of the brain can be removed with very low neurologic morbidity and that, in comparison to other modalities, they fare better regarding their long-term outcome.

Keywords: stereotactic, craniotomy, radiosurgery, patient

Procedia PDF Downloads 91
1939 Structural, Vibrational, Magnetic, and Electronic Properties of La₂MMnO₆ Double Perovskites with M = Ni, Co, and Zn

Authors: Hamza Ouachtouk, Amine Harbi, Said Azerblou, Youssef Naimi, El Mostafa Tace

Abstract:

This study delves into the structural, vibrational, magnetic, and electronic properties of La₂MMnO₆ double perovskites, where M denotes Ni, Co, and Zn. Recognized for their versatile ionic configurations within the A and B sub-lattices, double perovskite oxides have attracted considerable interest due to their extensive array of physical properties, which include multiferroic behavior, colossal magnetoresistance, and ferroelectric/piezoelectric functionalities. These materials are pivotal for energy-related technologies like solid oxide fuel cells and water-splitting catalysis, attributed to their superior oxygen ion transport and storage capabilities. This research places particular emphasis on La₂NiMnO₆ and La₂CoMnO₆, known for their distinct magnetic, electric, and multiferroic properties, and extends the investigation to La₂ZnMnO₆, synthesized via high-temperature solid-state chemistry. This addition aims to ascertain the impact of zinc substitution on these properties. Structural analysis through X-ray diffraction has confirmed a monoclinic structure within the P2₁/n space group. Comprehensive vibrational studies utilizing infrared and Raman spectroscopy, alongside additional XRD assessments, provide a detailed examination of the dynamic and electronic behaviors of these compounds. The results underscore the significant role of chemical composition in modulating their functional properties. Comparatively, this study highlights that zinc substitution notably alters the electronic and magnetic responses, which could enhance the applicability of these materials in advanced energy technologies. This expanded analysis not only reinforces our understanding of La₂MMnO₆'s physical characteristics but also highlights its potential applications in the next generation of energy solutions.

Keywords: double perovskites, structural analysis, vibrational spectroscopy, magnetic properties, electronic properties, high-temperature solid-state chemistry, La₂MMnO₆, monoclinic structure, x-ray diffraction

Procedia PDF Downloads 53
1938 The Using of Hybrid Superparamagnetic Magnetite Nanoparticles (Fe₃O₄)- Graphene Oxide Functionalized Surface with Collagen, to Target the Cancer Stem Cell

Authors: Ahmed Khalaf Reyad Raslan

Abstract:

Cancer stem cells (CSCs) describe a class of pluripotent cancer cells that behave analogously to normal stem cells in their ability to differentiate into the spectrum of cell types observed in tumors. The de-differentiation processes, such as an epithelial-mesenchymal transition (EMT), are known to enhance cellular plasticity. Here, we demonstrate a new hypothesis to use hybrid superparamagnetic magnetite nanoparticles (Fe₃O₄)- graphene oxide functionalized surface with Collagen to target the cancer stem cell as an early detection tool for cancer. We think that with the use of magnetic resonance imaging (MRI) and the new hybrid system would be possible to track the cancer stem cells.

Keywords: hydrogel, alginate, reduced graphene oxide, collagen

Procedia PDF Downloads 145
1937 The Invaluable Contributions of Radiography and Radiotherapy in Modern Medicine

Authors: Sahar Heidary

Abstract:

Radiography and radiotherapy have emerged as crucial pillars of modern medical practice, revolutionizing diagnostics and treatment for a myriad of health conditions. This abstract highlights the pivotal role of radiography and radiotherapy in favor of healthcare and society. Radiography, a non-invasive imaging technique, has significantly advanced medical diagnostics by enabling the visualization of internal structures and abnormalities within the human body. With the advent of digital radiography, clinicians can obtain high-resolution images promptly, leading to faster diagnoses and informed treatment decisions. Radiography plays a pivotal role in detecting fractures, tumors, infections, and various other conditions, allowing for timely interventions and improved patient outcomes. Moreover, its widespread accessibility and cost-effectiveness make it an indispensable tool in healthcare settings worldwide. On the other hand, radiotherapy, a branch of medical science that utilizes high-energy radiation, has become an integral component of cancer treatment and management. By precisely targeting and damaging cancerous cells, radiotherapy offers a potent strategy to control tumor growth and, in many cases, leads to cancer eradication. Additionally, radiotherapy is often used in combination with surgery and chemotherapy, providing a multifaceted approach to combat cancer comprehensively. The continuous advancements in radiotherapy techniques, such as intensity-modulated radiotherapy and stereotactic radiosurgery, have further improved treatment precision while minimizing damage to surrounding healthy tissues. Furthermore, radiography and radiotherapy have demonstrated their worth beyond oncology. Radiography is instrumental in guiding various medical procedures, including catheter placement, joint injections, and dental evaluations, reducing complications and enhancing procedural accuracy. On the other hand, radiotherapy finds applications in non-cancerous conditions like benign tumors, vascular malformations, and certain neurological disorders, offering therapeutic options for patients who may not benefit from traditional surgical interventions. In conclusion, radiography and radiotherapy stand as indispensable tools in modern medicine, driving transformative improvements in patient care and treatment outcomes. Their ability to diagnose, treat, and manage a wide array of medical conditions underscores their favor in medical practice. As technology continues to advance, radiography and radiotherapy will undoubtedly play an ever more significant role in shaping the future of healthcare, ultimately saving lives and enhancing the quality of life for countless individuals worldwide.

Keywords: radiology, radiotherapy, medical imaging, cancer treatment

Procedia PDF Downloads 69
1936 Dynamic Investigation of Brake Squeal Problem in The Presence of Kinematic Nonlinearities

Authors: Shahroz Khan, Osman Taha Şen

Abstract:

In automotive brake systems, brake noise has been a major problem, and brake squeal is one of the critical ones which is an instability issue. The brake squeal produces an audible sound at high frequency that is irritating to the human ear. To study this critical problem, first a nonlinear mathematical model with three degree of freedom is developed. This model consists of a point mass that simulates the brake pad and a sliding surface that simulates the brake rotor. The model exposes kinematic and clearance nonlinearities, but no friction nonlinearity. In the formulation, the friction coefficient is assumed to be constant and the friction force does not change direction. The nonlinear governing equations of the model are first obtained, and numerical solutions are sought for different cases. Second, a computational model for the squeal problem is developed with a commercial software, and computational solutions are obtained with two different types of contact cases (solid-to-solid and sphere-to-plane). This model consists of three rigid bodies and several elastic elements that simulate the key characteristics of a brake system. The response obtained from this model is compared with numerical solutions in time and frequency domain.

Keywords: contact force, nonlinearities, brake squeal, vehicle brake

Procedia PDF Downloads 246
1935 3D Structuring of Thin Film Solid State Batteries for High Power Demanding Applications

Authors: Alfonso Sepulveda, Brecht Put, Nouha Labyedh, Philippe M. Vereecken

Abstract:

High energy and power density are the main requirements of today’s high demanding applications in consumer electronics. Lithium ion batteries (LIB) have the highest energy density of all known systems and are thus the best choice for rechargeable micro-batteries. Liquid electrolyte LIBs present limitations in safety, size and design, thus thin film all-solid state batteries are predominantly considered to overcome these restrictions in small devices. Although planar all-solid state thin film LIBs are at present commercially available they have low capacity (<1mAh/cm2) which limits their application scenario. By using micro-or nanostructured surfaces (i.e. 3D batteries) and appropriate conformal coating technology (i.e. electrochemical deposition, ALD) the capacity can be increased while still keeping a high rate performance. The main challenges in the introduction of solid-state LIBs are low ionic conductance and limited cycle life time due to mechanical stress and shearing interfaces. Novel materials and innovative nanostructures have to be explored in order to overcome these limitations. Thin film 3D compatible materials need to provide with the necessary requirements for functional and viable thin-film stacks. Thin film electrodes offer shorter Li-diffusion paths and high gravimetric and volumetric energy densities which allow them to be used at ultra-fast charging rates while keeping their complete capacities. Thin film electrolytes with intrinsically high ion conductivity (~10-3 S.cm) do exist, but are not electrochemically stable. On the other hand, electronically insulating electrolytes with a large electrochemical window and good chemical stability are known, but typically have intrinsically low ionic conductivities (<10-6 S cm). In addition, there is the need for conformal deposition techniques which can offer pinhole-free coverage over large surface areas with large aspect ratio features for electrode, electrolyte and buffer layers. To tackle the scaling of electrodes and the conformal deposition requirements on future 3D batteries we study LiMn2O4 (LMO) and Li4Ti5O12 (LTO). These materials are among the most interesting electrode candidates for thin film batteries offering low cost, low toxicity, high voltage and high capacity. LMO and LTO are considered 3D compatible materials since they can be prepared through conformal deposition techniques. Here, we show the scaling effects on rate performance and cycle stability of thin film cathode layers of LMO created by RF-sputtering. Planar LMO thin films below 100 nm have been electrochemically characterized. The thinnest films show the highest volumetric capacity and the best cycling stability. The increased stability of the films below 50 nm allows cycling in both the 4 and 3V potential region, resulting in a high volumetric capacity of 1.2Ah/cm3. Also, the creation of LTO anode layers through a post-lithiation process of TiO2 is demonstrated here. Planar LTO thin films below 100 nm have been electrochemically characterized. A 70 nm film retains 85% of its original capacity after 100 (dis)charging cycles at 10C. These layers can be implemented into a high aspect ratio structures. IMEC develops high aspect Si pillars arrays which is the base for the advance of 3D thin film all-solid state batteries of future technologies.

Keywords: Li-ion rechargeable batteries, thin film, nanostructures, rate performance, 3D batteries, all-solid state

Procedia PDF Downloads 338
1934 Numerical Investigation of Flow Characteristics inside the External Gear Pump Using Urea Liquid Medium

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

In selective catalytic reduction (SCR) unit, the injection system is provided with unique dosing pump to govern the urea injection phenomenon. The urea based operating liquid from the AdBlue tank links up directly with the dosing pump unit to furnish appropriate high pressure for examining the flow characteristics inside the liquid pump. This work aims in demonstrating the importance of external gear pump to provide pertinent high pressure and respective mass flow rate for each rotation. Numerical simulations are conducted using immersed solid method technique for better understanding of unsteady flow characteristics within the pump. Parametric analyses have been carried out for the gear speed and mass flow rate to find the behavior of pressure fluctuations. In the simulation results, the outlet pressure achieves maximum magnitude with the increase in rotational speed and the fluctuations grow higher.

Keywords: AdBlue tank, external gear pump, immersed solid method, selective catalytic reduction

Procedia PDF Downloads 280