Search results for: dynamic ensemble learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10946

Search results for: dynamic ensemble learning

10376 Organizational Learning Strategies for Building Organizational Resilience

Authors: Stephanie K. Douglas, Gordon R. Haley

Abstract:

Organizations face increasing disruptions, changes, and uncertainties through the rapid shifts in the economy and business environment. A capacity for resilience is necessary for organizations to survive and thrive in such adverse conditions. Learning is an essential component of an organization's capability for building resilience. Strategic human resource management is a principal component of learning and organizational resilience. To achieve organizational resilience, human resource management strategies must support individual knowledge, skills, and ability development through organizational learning. This study aimed to contribute to the comprehensive knowledge of the relationship between strategic human resource management and organizational learning to build organizational resilience. The organizational learning dimensions of knowledge acquisition, knowledge distribution, knowledge interpretation, and organizational memory can be fostered through human resource management strategies and then aggregated to the organizational level to build resilience.

Keywords: human resource development, human resource management, organizational learning, organizational resilience

Procedia PDF Downloads 135
10375 Calcium Silicate Bricks – Ultrasonic Pulse Method: Effects of Natural Frequency of Transducers on Measurement Results

Authors: Jiri Brozovsky

Abstract:

Modulus of elasticity is one of the important parameters of construction materials, which considerably influence their deformation properties and which can also be determined by means of non-destructive test methods like ultrasonic pulse method. However, measurement results of ultrasonic pulse methods are influenced by various factors, one of which is the natural frequency of the transducers. The paper states knowledge about influence of natural frequency of the transducers (54; 82 and 150kHz) on ultrasonic pulse velocity and dynamic modulus of elasticity (Young's Dynamic modulus of elasticity). Differences between ultrasonic pulse velocity and dynamic modulus of elasticity were found with the same smallest dimension of test specimen in the direction of sounding and density their value decreases as the natural frequency of transducers grew.

Keywords: calcium silicate brick, ultrasonic pulse method, ultrasonic pulse velocity, dynamic modulus of elasticity

Procedia PDF Downloads 415
10374 A Tool for Rational Assessment of Dynamic Trust in Networked Organizations

Authors: Simon Samwel Msanjila

Abstract:

Networked environments which provides platforms and environments for business organizations are configured in different forms depending on many factors including life time, member characteristics, communication structure, and business objectives, among others. With continuing advances in digital technologies the distance has become a less barrier for business minded collaboration among organizations. With the need and ease to make business collaborate nowadays organizations are sometimes forced to co-work with others that are either unknown or less known to them in terms of history and performance. A promising approach for sustaining established collaboration has been establishment of trust relationship among organizations based on assessed trustworthiness for each participating organization. It has been stated in research that trust in organization is dynamic and thus assessment of trust level must address such dynamic nature. This paper assess relevant aspects of trust and applies the concepts to propose a semi-automated system for assessing the Sustainability and Evolution of trust in organizations participating in specific objective in a networked organizations environment.

Keywords: trust evolution, trust sustainability, networked organizations, dynamic trust

Procedia PDF Downloads 429
10373 Reinforcement Learning For Agile CNC Manufacturing: Optimizing Configurations And Sequencing

Authors: Huan Ting Liao

Abstract:

In a typical manufacturing environment, computer numerical control (CNC) machining is essential for automating production through precise computer-controlled tool operations, significantly enhancing efficiency and ensuring consistent product quality. However, traditional CNC production lines often rely on manual loading and unloading, limiting operational efficiency and scalability. Although automated loading systems have been developed, they frequently lack sufficient intelligence and configuration efficiency, requiring extensive setup adjustments for different products and impacting overall productivity. This research addresses the job shop scheduling problem (JSSP) in CNC machining environments, aiming to minimize total completion time (makespan) and maximize CNC machine utilization. We propose a novel approach using reinforcement learning (RL), specifically the Q-learning algorithm, to optimize scheduling decisions. The study simulates the JSSP, incorporating robotic arm operations, machine processing times, and work order demand allocation to determine optimal processing sequences. The Q-learning algorithm enhances machine utilization by dynamically balancing workloads across CNC machines, adapting to varying job demands and machine states. This approach offers robust solutions for complex manufacturing environments by automating decision-making processes for job assignments. Additionally, we evaluate various layout configurations to identify the most efficient setup. By integrating RL-based scheduling optimization with layout analysis, this research aims to provide a comprehensive solution for improving manufacturing efficiency and productivity in CNC-based job shops. The proposed method's adaptability and automation potential promise significant advancements in tackling dynamic manufacturing challenges.

Keywords: job shop scheduling problem, reinforcement learning, operations sequence, layout optimization, q-learning

Procedia PDF Downloads 23
10372 Calculating All Dark Energy and Dark Matter Effects through Dynamic Gravity Theory

Authors: Sean Michael Kinney

Abstract:

In 1666, Newton created the Law of Universal Gravitation. And in 1915, Einstein improved it to incorporate factors such as time dilation and gravitational lensing. But currently, there is a problem with this “universal” law. The math doesn’t work outside the confines of our solar system. And something is missing; any evidence of what gravity actually is and how it manifests. This paper explores the notion that gravity must obey the law of conservation of energy as all other forces in this universe have been shown to do. Explaining exactly what gravity is and how it manifests itself. And looking at many different implications that would be created are explained. And finally, use the math of Dynamic gravity to calculate Dark Energy and Dark Matter effects to explain all observations without the need for exotic measures.

Keywords: dynamic gravity, gravity, dark matter, dark energy

Procedia PDF Downloads 76
10371 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: audit, machine learning, assessment, metrics

Procedia PDF Downloads 268
10370 The Determinants of Senior Students, Behavioral Intention on the Blended E-Learning for the Ceramics Teaching Course at the Active Aging University

Authors: Horng-Jyh Chen, Yi-Fang Chen, Chien-Liang Lin

Abstract:

In this paper, the authors try to investigate the determinants of behavioral intention of the blended e-learning course for senior students at the Active Ageing University in Taiwan. Due to lower proficiency in the use of computers and less experience on learning styles of the blended e-learning course for senior students will be expected quite different from those for most young students. After more than five weeks course for two years the questionnaire survey is executed to collect data for statistical analysis in order to understand the determinants of the behavioral intention for senior students. The object of this study is at one of the Active Ageing University in Taiwan total of 84 senior students in the blended e-learning for the ceramics teaching course. The research results show that only the perceived usefulness of the blended e-learning course has significant positive relationship with the behavioral intention.

Keywords: Active Aging University, blended e-learning, ceramics teaching course, behavioral intention

Procedia PDF Downloads 409
10369 Learner-Centered E-Learning in English Language Classes in Vietnam: Teachers’ Challenges and Recommendations

Authors: Thi Chang Duyen Can

Abstract:

Althoughthe COVID-19 epidemic is under control, online education technology in Vietnam will still thrive in the learner-centered trend. Most of the Vietnamese students are now ready to familiarize themselves with and access to online learning. Even in some cases, online learning, if combined with new tools, is far more effective and exciting for students than some traditional instruction. However, little research has been conducted to explore Vietnamese teachers’ difficulties in moderating learner-centered E-learning. Therefore, the study employed the mixed method (n=9) to (i) uncover the challenges faced by Vietnamese teachers in English language online classes using learner-centred approach and (ii) propose the recommendations to improve the quality of online training in universities.

Keywords: learner-centered e-learning, english language classes, teachers' challenges, online learning

Procedia PDF Downloads 83
10368 The Influence of Using Soft Knee Pads on Static and Dynamic Balance among Male Athletes and Non-Athletes

Authors: Yaser Kazemzadeh, Keyvan Molanoruzy, Mojtaba Izady

Abstract:

The balance is the key component of motor skills to maintain postural control and the execution of complex skills. The present study was designed to evaluate the impact of soft knee pads on static and dynamic balance of male athletes. For this aim, thirty young athletes in different sport fields with 3 years professional sport training background and thirty healthy young men nonathletic (age: 24.5 ± 2.9, 24.3 ± 2.4, weight: 77.2 ± 4.3 and 80/9 ± 6/3 and height: 175 ± 2/84, 172 ± 5/44 respectively) as subjects selected. Then, subjects in two manner (without knee and with soft knee pads made of neoprene) execute standard error test (BESS) to assess static balance and star test to assess dynamic balance. For analyze of data, t-tests and one-way ANOVA were significant 05/0 ≥ α statistical analysis. The results showed that the use of soft knee significantly reduced error rate in static balance test (p ≥ 0/05). Also, use a soft knee pads decreased score of athlete group and increased score of nonathletic group in star test (p ≥ 0/05). These findings, indicates that use of knees affects static and dynamic balance in athletes and nonathletic in different manner and may increased athletic performance in sports that rely on static balance and decreased performance in sports that rely on dynamic balance.

Keywords: static balance, dynamic balance, soft knee, athletic men, non athletic men

Procedia PDF Downloads 286
10367 Immersive Learning in University Classrooms

Authors: Raminder Kaur

Abstract:

This paper considers the emerging area of integrating Virtual Reality (VR) technologies into the teaching of Visual Anthropology, Research Methods, and the Anthropology of Contemporary India in the University of Sussex. If deployed in a critical and self-reflexive manner, there are several advantages to VR-based immersive learning: (i) Based on data available for British schools, it has been noted that ‘Learning through experience can boost knowledge retention by up to 75%’. (ii) It can tutor students to learn with and from virtual worlds, devising new collaborative methods where suited. (iii) It can foster inclusive learning by aiding students with SEN and disabilities who may not be able to explore such areas in the physical world. (iv) It can inspire and instill confidence in students with anxieties about approaching new subjects, realms, or regions. (v) It augments our provision of ‘smart classrooms’ synchronised to the kinds of emerging immersive learning environments that students come from in schools.

Keywords: virtual reality, anthropology, immersive learning, university

Procedia PDF Downloads 78
10366 Transformative Pedagogy and Online Adult Education

Authors: Glenn A. Palmer, Lorenzo Bowman, Juanita Johnson-Bailey

Abstract:

The ubiquitous economic upheaval that has gripped the global environment in the past few years displaced many workers through unemployment or underemployment. Globally, this disruption has caused many adult workers to seek additional education or skills to remain competitive, and acquire the ability and options to find gainful employment. While many learners have availed themselves of some opportunities to be retrained and retooled at locations within their communities, others have explored those options through the online learning environment. This paper examines the empirical research that explores the various strategies that are used in the adult online learning community that could also foster transformative learning.

Keywords: online learning, transformational learning, adult education, economic crisis, unemployment

Procedia PDF Downloads 463
10365 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches

Authors: Chaima Babi, Said Gadri

Abstract:

The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.

Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification

Procedia PDF Downloads 93
10364 A Student Centered Learning Environment in Engineering Education: Design and a Longitudinal Study of Impact

Authors: Tom O'Mahony

Abstract:

This article considers the design of a student-centered learning environment in engineering education. The learning environment integrates a number of components, including project-based learning, collaborative learning, two-stage assignments, active learning lectures, and a flipped-classroom. Together these elements place the individual learner and their learning at the center of the environment by focusing on understanding, enhancing relevance, applying learning, obtaining rich feedback, making choices, and taking responsibility. The evolution of this environment from 2014 to the present day is outlined. The impact of this environment on learners and their learning is evaluated via student questionnaires that consist of both open and closed-ended questions. The closed questions indicate that students found the learning environment to be really interesting and enjoyable (rated as 4.7 on a 5 point scale) and encouraged students to adopt a deep approach towards studying the course materials (rated as 4.0 on a 5 point scale). A content analysis of the open-ended questions provides evidence that the project, active learning lectures, and flipped classroom all contribute to the success of this environment. Furthermore, this analysis indicates that the two-stage assessment process, in which feedback is provided between a draft and final assignment, is the key component and the dominant theme. A limitation of the study is the small class size (less than 20 learners per year), but, to some degree, this is compensated for by the longitudinal nature of the study.

Keywords: deep approaches, formative assessment, project-based learning, student-centered learning

Procedia PDF Downloads 111
10363 Efficacy of Technology for Successful Learning Experience; Technology Supported Model for Distance Learning: Case Study of Botho University, Botswana

Authors: Ivy Rose Mathew

Abstract:

The purpose of this study is to outline the efficacy of technology and the opportunities it can bring to implement a successful delivery model in Distance Learning. Distance Learning has proliferated over the past few years across the world. Some of the current challenges faced by current students of distance education include lack of motivation, a sense of isolation and a need for greater and improved communication. Hence the author proposes a creative technology supported model for distance learning exactly mirrored on the traditional face to face learning that can be adopted by distance learning providers. This model suggests the usage of a range of technologies and social networking facilities, with the aim of creating a more engaging and sustaining learning environment to help overcome the isolation often noted by distance learners. While discussing the possibilities, the author also highlights the complexity and practical challenges of implementing such a model. Design/methodology/approach: Theoretical issues from previous research related to successful models for distance learning providers will be considered. And also the analysis of a case study from one of the largest private tertiary institution in Botswana, Botho University will be included. This case study illustrates important aspects of the distance learning delivery model and provides insights on how curriculum development is planned, quality assurance is done, and learner support is assured for successful distance learning experience. Research limitations/implications: While some of the aspects of this study may not be applicable to other contexts, a number of new providers of distance learning can adapt the key principles of this delivery model.

Keywords: distance learning, efficacy, learning experience, technology supported model

Procedia PDF Downloads 246
10362 Second Order Statistics of Dynamic Response of Structures Using Gamma Distributed Damping Parameters

Authors: Badreddine Chemali, Boualem Tiliouine

Abstract:

This article presents the main results of a numerical investigation on the uncertainty of dynamic response of structures with statistically correlated random damping Gamma distributed. A computational method based on a Linear Statistical Model (LSM) is implemented to predict second order statistics for the response of a typical industrial building structure. The significance of random damping with correlated parameters and its implications on the sensitivity of structural peak response in the neighborhood of a resonant frequency are discussed in light of considerable ranges of damping uncertainties and correlation coefficients. The results are compared to those generated using Monte Carlo simulation techniques. The numerical results obtained show the importance of damping uncertainty and statistical correlation of damping coefficients when obtaining accurate probabilistic estimates of dynamic response of structures. Furthermore, the effectiveness of the LSM model to efficiently predict uncertainty propagation for structural dynamic problems with correlated damping parameters is demonstrated.

Keywords: correlated random damping, linear statistical model, Monte Carlo simulation, uncertainty of dynamic response

Procedia PDF Downloads 280
10361 Investigation of Extreme Gradient Boosting Model Prediction of Soil Strain-Shear Modulus

Authors: Ehsan Mehryaar, Reza Bushehri

Abstract:

One of the principal parameters defining the clay soil dynamic response is the strain-shear modulus relation. Predicting the strain and, subsequently, shear modulus reduction of the soil is essential for performance analysis of structures exposed to earthquake and dynamic loadings. Many soil properties affect soil’s dynamic behavior. In order to capture those effects, in this study, a database containing 1193 data points consists of maximum shear modulus, strain, moisture content, initial void ratio, plastic limit, liquid limit, initial confining pressure resulting from dynamic laboratory testing of 21 clays is collected for predicting the shear modulus vs. strain curve of soil. A model based on an extreme gradient boosting technique is proposed. A tree-structured parzan estimator hyper-parameter tuning algorithm is utilized simultaneously to find the best hyper-parameters for the model. The performance of the model is compared to the existing empirical equations using the coefficient of correlation and root mean square error.

Keywords: XGBoost, hyper-parameter tuning, soil shear modulus, dynamic response

Procedia PDF Downloads 200
10360 A Topological Approach for Motion Track Discrimination

Authors: Tegan H. Emerson, Colin C. Olson, George Stantchev, Jason A. Edelberg, Michael Wilson

Abstract:

Detecting small targets at range is difficult because there is not enough spatial information present in an image sub-region containing the target to use correlation-based methods to differentiate it from dynamic confusers present in the scene. Moreover, this lack of spatial information also disqualifies the use of most state-of-the-art deep learning image-based classifiers. Here, we use characteristics of target tracks extracted from video sequences as data from which to derive distinguishing topological features that help robustly differentiate targets of interest from confusers. In particular, we calculate persistent homology from time-delayed embeddings of dynamic statistics calculated from motion tracks extracted from a wide field-of-view video stream. In short, we use topological methods to extract features related to target motion dynamics that are useful for classification and disambiguation and show that small targets can be detected at range with high probability.

Keywords: motion tracks, persistence images, time-delay embedding, topological data analysis

Procedia PDF Downloads 112
10359 Addressing Differentiation Using Mobile-Assisted Language Learning

Authors: Ajda Osifo, Fatma Elshafie

Abstract:

Mobile-assisted language learning favors social-constructivist and connectivist theories to learning and adaptive approaches to teaching. It offers many opportunities to differentiated instruction in meaningful ways as it enables learners to become more collaborative, engaged and independent through additional dimensions such as web-based media, virtual learning environments, online publishing to an imagined audience and digitally mediated communication. MALL applications can be a tool for the teacher to personalize and adjust instruction according to the learners’ needs and give continuous feedback to improve learning and performance in the process, which support differentiated instruction practices. This paper explores the utilization of Mobile Assisted Language Learning applications as a supporting tool for effective differentiation in the language classroom. It reports overall experience in terms of implementing MALL to shape and apply differentiated instruction and expand learning options. This session is structured in three main parts: first, a review of literature and effective practice of academically responsive instruction will be discussed. Second, samples of differentiated tasks, activities, projects and learner work will be demonstrated with relevant learning outcomes and learners’ survey results. Finally, project findings and conclusions will be given.

Keywords: academically responsive instruction, differentiation, mobile learning, mobile-assisted language learning

Procedia PDF Downloads 415
10358 Computational Model of Human Cardiopulmonary System

Authors: Julian Thrash, Douglas Folk, Michael Ciracy, Audrey C. Tseng, Kristen M. Stromsodt, Amber Younggren, Christopher Maciolek

Abstract:

The cardiopulmonary system is comprised of the heart, lungs, and many dynamic feedback mechanisms that control its function based on a multitude of variables. The next generation of cardiopulmonary medical devices will involve adaptive control and smart pacing techniques. However, testing these smart devices on living systems may be unethical and exceedingly expensive. As a solution, a comprehensive computational model of the cardiopulmonary system was implemented in Simulink. The model contains over 240 state variables and over 100 equations previously described in a series of published articles. Simulink was chosen because of its ease of introducing machine learning elements. Initial results indicate that physiologically correct waveforms of pressures and volumes were obtained in the simulation. With the development of a comprehensive computational model, we hope to pioneer the future of predictive medicine by applying our research towards the initial stages of smart devices. After validation, we will introduce and train reinforcement learning agents using the cardiopulmonary model to assist in adaptive control system design. With our cardiopulmonary model, we will accelerate the design and testing of smart and adaptive medical devices to better serve those with cardiovascular disease.

Keywords: adaptive control, cardiopulmonary, computational model, machine learning, predictive medicine

Procedia PDF Downloads 178
10357 Experiential Learning: A Case Study for Teaching Operating System Using C and Unix

Authors: Shamshuddin K., Nagaraj Vannal, Diwakar Kulkarni, Raghavendra Nakod

Abstract:

In most of the universities and colleges Operating System (OS) course is treated as theoretical and usually taught in a classroom using conventional teaching methods. In this paper we are presenting a new approach of teaching OS through experiential learning, the course is designed to suit the requirement of undergraduate engineering program of Instrumentation Technology. This new approach has benefited us to improve our student’s programming skills, presentation skills and understanding of the operating system concepts.

Keywords: pedagogy, interactive learning, experiential learning, OS, C, UNIX

Procedia PDF Downloads 604
10356 The Impact of E-Learning on the Performance of History Learners in Eswatini General Certificate of Secondary Education

Authors: Joseph Osodo, Motsa Thobekani Phila

Abstract:

The study investigated the impact of e-learning on the performance of history learners in Eswatini general certificate of secondary education in the Manzini region of Eswatini. The study was guided by the theory of connectivism. The study had three objectives which were to find out the significance of e-learning during the COVID-19 era in learning History subject; challenges faced by history teachers’ and learners’ in e-learning; and how the challenges were mitigated. The study used a qualitative research approach and descriptive research design. Purposive sampling was used to select eight History teachers and eight History learners from four secondary schools in the Manzini region. Data were collected using face to face interviews. The collected data were analyzed and presented in thematically. The findings showed that history teachers had good knowledge on what e-learning was, while students had little understanding of e-learning. Some of the forms of e-learning that were used during the pandemic in teaching history in secondary schools included TV, radio, computer, projectors, and social media especially WhatsApp. E-learning enabled the continuity of teaching and learning of history subject. The use of e-learning through the social media was more convenient to the teacher and the learners. It was concluded that in some secondary school in the Manzini region, history teacher and learners encountered challenges such as lack of finances to purchase e-learning gadgets and data bundles, lack of skills as well as access to the Internet. It was recommended that History teachers should create more time to offer additional learning support to students whose performance was affected by the COVID-19 pandemic effects.

Keywords: e-learning, performance, COVID-19, history, connectivism

Procedia PDF Downloads 75
10355 Using Facebook as an Alternative Learning Tools in Malaysian Higher Learning Institutions: A Structural Equation Modelling Approach

Authors: Ahasanul Haque, Abdullah Sarwar, Khaliq Ahmed

Abstract:

Networking is important among students to achieve better understanding. Social networking plays an important role in the education. Realizing its huge potential, various organizations, including institutions of higher learning have moved to the area of social networks to interact with their students especially through Facebook. Therefore, measuring the effectiveness of Facebook as a learning tool has become an area of interest to academicians and researchers. Therefore, this study tried to integrate and propose new theoretical and empirical evidences by linking the western idea of adopting Facebook as an alternative learning platform from a Malaysian perspective. This study, thus, aimed to fill a gap by being among the pioneering research that tries to study the effectiveness of adopting Facebook as a learning platform across other cultural settings, namely Malaysia. Structural equation modelling was employed for data analysis and hypothesis testing. This study findings have provided some insights that would likely affect students’ awareness towards using Facebook as an alternative learning platform in the Malaysian higher learning institutions. At the end, future direction is proposed.

Keywords: Learning Management Tool, social networking, education, Malaysia

Procedia PDF Downloads 423
10354 A Less Complexity Deep Learning Method for Drones Detection

Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar

Abstract:

Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.

Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet

Procedia PDF Downloads 178
10353 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable

Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack

Abstract:

In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.

Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32

Procedia PDF Downloads 125
10352 Introducing Transcending Pedagogies

Authors: Wajeehah Aayeshah, Joy Higgs

Abstract:

The term “transcending pedagogies” has been created to refer to teaching and learning strategies that transcend the mode of student enrolment, the needs of different students, and different learning spaces. The value of such pedagogies in the current arena when learning spaces, technologies and preferences are more volatile than ever before, is a key focus of this paper. The paper will examine current and emerging pedagogies that transcend the learning spaces and enrollment modes of on campus, distance, virtual and workplace learning contexts. A further point of interest is how academics in professional and higher education settings interpret and implement pedagogies in the current global conversation space and re-creation of higher education. This study questioned how the notion and practice of transcending pedagogies enables us to re-imagine and reshape university curricula. It explored the nature of teaching and learning spaces and those professional and higher education (current and emerging) pedagogies that can be implemented across these spaces. We set out to identify how transcending pedagogies can assist students in learning to deal with complexity, uncertainty and change in the practice worlds and better appeal to students who are making decisions on where to enrol. The data for this study was collected through in-depth interviews and focus groups with academics and policy makers within academia.

Keywords: Transcending Pedagogies, teaching and learning strategies, learning spaces, pedagogies

Procedia PDF Downloads 537
10351 A Sliding Model Control for a Hybrid Hyperbolic Dynamic System

Authors: Xuezhang Hou

Abstract:

In the present paper, a hybrid hyperbolic dynamic system formulated by partial differential equations with initial and boundary conditions is considered. First, the system is transformed to an abstract evolution system in an appropriate Hilbert space, and spectral analysis and semigroup generation of the system operator is discussed. Subsequently, a sliding model control problem is proposed and investigated, and an equivalent control method is introduced and applied to the system. Finally, a significant result that the state of the system can be approximated by an ideal sliding mode under control in any accuracy is derived and examined.

Keywords: hyperbolic dynamic system, sliding model control, semigroup of linear operators, partial differential equations

Procedia PDF Downloads 134
10350 Investigating The Use Of Socially Assistive Robots To Support Learner Engagement For Students With Learning Disabilities In One-to-one Instructional Settings

Authors: Jennifer Fane, Mike Gray, Melissa Sager

Abstract:

Children with diagnosed or suspected learning disabilities frequently experience significant skill gaps in foundational learning areas such as reading, writing, and math. Remedial one-to-one instruction is a highly effective means of supporting children with learning differences in building these foundational skills and closing the learning gap between them and their same-age peers. However, due to the learning challenges children with learning disabilities face, and ensuing challenges with self-confidence, many children with learning differences struggle with motivation and self-regulation within remedial one-to-one learning environments - despite the benefits of these sessions. Socially Assistive Robots (SARs) are an innovative educational technology tool that has been trialled in a range of educational settings to support diverse learning needs. Yet, little is known about the impact of SARs on the learning of children with learning differences in a one-to-one remedial instructional setting. This study sought to explore the impact of SARs on the engagement of children (n=9) with learning differences attending one-to-one remedial instruction sessions at a non-profit remedial education provider. The study used a mixed-methods design to explore learner engagement during learning tasks both with and without the use of a SAR to investigate how the use of SARs impacts student learning. The study took place over five weeks, with each session within the study followed the same procedure with the SAR acting as a teaching assistant when in use. Data from the study included analysis of time-sample video segments of the instructional sessions, instructor recorded information about the student’s progress towards their session learning goal and student self-reported mood and energy levels before and after the session. Analysis of the findings indicates that the use of SARs resulted in fewer instances of off-task behaviour and less need for instructor re-direction during learning tasks, allowing students to work in more sustained ways towards their learning goals. This initial research indicates that the use of SARs does have a material and measurable impact on learner engagement for children with learning differences and that further exploration of the impact of SARs during one-to-one remedial instruction is warranted.

Keywords: engagement, learning differences, learning disabilities, instruction, social robotics.

Procedia PDF Downloads 212
10349 An Approximation Technique to Automate Tron

Authors: P. Jayashree, S. Rajkumar

Abstract:

With the trend of virtual and augmented reality environments booming to provide a life like experience, gaming is a major tool in supporting such learning environments. In this work, a variant of Voronoi heuristics, employing supervised learning for the TRON game is proposed. The paper discusses the features that would be really useful when a machine learning bot is to be used as an opponent against a human player. Various game scenarios, nature of the bot and the experimental results are provided for the proposed variant to prove that the approach is better than those that are currently followed.

Keywords: artificial Intelligence, automation, machine learning, TRON game, Voronoi heuristics

Procedia PDF Downloads 466
10348 Online Estimation of Clutch Drag Torque in Wet Dual Clutch Transmission Based on Recursive Least Squares

Authors: Hongkui Li, Tongli Lu , Jianwu Zhang

Abstract:

This paper focuses on developing an estimation method of clutch drag torque in wet DCT. The modelling of clutch drag torque is investigated. As the main factor affecting the clutch drag torque, dynamic viscosity of oil is discussed. The paper proposes an estimation method of clutch drag torque based on recursive least squares by utilizing the dynamic equations of gear shifting synchronization process. The results demonstrate that the estimation method has good accuracy and efficiency.

Keywords: clutch drag torque, wet DCT, dynamic viscosity, recursive least squares

Procedia PDF Downloads 317
10347 The Impact of Content Familiarity of Receptive Skills on Language Learning

Authors: Sara Fallahi

Abstract:

This paper reviews the importance of content familiarity of receptive skills and offers solutions to the issue of content unfamiliarity in language learning materials. Presently, language learning materials are mainly comprised of global issues and target language speakers’ culture(s) in receptive skills. This might leadlearners to focus on content rather than the language. As a solution, materials on receptive skills can be developed with a focus on learners’culture and social concerns, especially in the beginner levels of learning. Language learners often learn their target language through the receptive skills of listening and reading before language production ensues through speaking and writing. Students’ journey from receptive skills to productive skills is mainly concentrated on by teachers. There are barriers to language learning, such as time and energy, that can hinder learners’ understanding and ability to build the required background knowledge of the content. This is generated due to learners’ unfamiliarity with the skill’s content. Therefore, materials that improve content familiarity will help learners improve their language comprehension, learning, and usage. This presentation will conclude with practical solutions to help teachers and learners more authentically integrate language and culture to elevate language learning.

Keywords: language learning, listening content, reading content, content familiarity, ESL books, language learning books, cultural familiarity

Procedia PDF Downloads 117