Search results for: carbon encapsulated iron
3563 Kinetics, Equilibrium and Thermodynamics of the Adsorption of Triphenyltin onto NanoSiO₂/Fly Ash/Activated Carbon Composite
Authors: Olushola S. Ayanda, Olalekan S. Fatoki, Folahan A. Adekola, Bhekumusa J. Ximba, Cecilia O. Akintayo
Abstract:
In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of triphenyltin (TPT) from TPT-contaminated water onto nanoSiO2/fly ash/activated carbon composite was investigated in batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R) isotherm models. Pseudo first- and second-order, Elovich and fractional power models were applied to test the kinetic data and in order to understand the mechanism of adsorption, thermodynamic parameters such as ΔG°, ΔSo and ΔH° were also calculated. The results showed a very good compliance with pseudo second-order equation while the Freundlich and D-R models fit the experiment data. Approximately 99.999 % TPT was removed from the initial concentration of 100 mg/L TPT at 80oC, contact time of 60 min, pH 8 and a stirring speed of 200 rpm. Thus, nanoSiO2/fly ash/activated carbon composite could be used as effective adsorbent for the removal of TPT from contaminated water and wastewater.Keywords: isotherm, kinetics, nanoSiO₂/fly ash/activated carbon composite, tributyltin
Procedia PDF Downloads 2953562 High Speed Motion Tracking with Magnetometer in Nonuniform Magnetic Field
Authors: Jeronimo Cox, Tomonari Furukawa
Abstract:
Magnetometers have become more popular in inertial measurement units (IMU) for their ability to correct estimations using the earth's magnetic field. Accelerometer and gyroscope-based packages fail with dead-reckoning errors accumulated over time. Localization in robotic applications with magnetometer-inclusive IMUs has become popular as a way to track the odometry of slower-speed robots. With high-speed motions, the accumulated error increases over smaller periods of time, making them difficult to track with IMU. Tracking a high-speed motion is especially difficult with limited observability. Visual obstruction of motion leaves motion-tracking cameras unusable. When motions are too dynamic for estimation techniques reliant on the observability of the gravity vector, the use of magnetometers is further justified. As available magnetometer calibration methods are limited with the assumption that background magnetic fields are uniform, estimation in nonuniform magnetic fields is problematic. Hard iron distortion is a distortion of the magnetic field by other objects that produce magnetic fields. This kind of distortion is often observed as the offset from the origin of the center of data points when a magnetometer is rotated. The magnitude of hard iron distortion is dependent on proximity to distortion sources. Soft iron distortion is more related to the scaling of the axes of magnetometer sensors. Hard iron distortion is more of a contributor to the error of attitude estimation with magnetometers. Indoor environments or spaces inside ferrite-based structures, such as building reinforcements or a vehicle, often cause distortions with proximity. As positions correlate to areas of distortion, methods of magnetometer localization include the production of spatial mapping of magnetic field and collection of distortion signatures to better aid location tracking. The goal of this paper is to compare magnetometer methods that don't need pre-productions of magnetic field maps. Mapping the magnetic field in some spaces can be costly and inefficient. Dynamic measurement fusion is used to track the motion of a multi-link system with us. Conventional calibration by data collection of rotation at a static point, real-time estimation of calibration parameters each time step, and using two magnetometers for determining local hard iron distortion are compared to confirm the robustness and accuracy of each technique. With opposite-facing magnetometers, hard iron distortion can be accounted for regardless of position, Rather than assuming that hard iron distortion is constant regardless of positional change. The motion measured is a repeatable planar motion of a two-link system connected by revolute joints. The links are translated on a moving base to impulse rotation of the links. Equipping the joints with absolute encoders and recording the motion with cameras to enable ground truth comparison to each of the magnetometer methods. While the two-magnetometer method accounts for local hard iron distortion, the method fails where the magnetic field direction in space is inconsistent.Keywords: motion tracking, sensor fusion, magnetometer, state estimation
Procedia PDF Downloads 863561 A Review on Aviation Emissions and Their Role in Climate Change Scenarios
Authors: J. Niemisto, A. Nissinen, S. Soimakallio
Abstract:
Aviation causes carbon dioxide (CO2) emissions and other climate forcers which increase the contribution of aviation on climate change. Aviation industry and number of air travellers are constantly increasing. Aviation industry has an ambitious goal to strongly cut net CO2 emissions. Modern fleet, alternative jet fuels technologies and route optimisation are important technological tools in the emission reduction. Faster approaches are needed as well. Emission trade systems, voluntary carbon offset compensation schemes and taxation are already in operation. Global scenarios of aviation industry and its greenhouse gas emissions and other climate forcers are discussed in this review study based on literature and other published data. The focus is on the aviation in Nordic countries, but also European and global situation are considered. Different emission reduction technologies and compensation modes are examined. In addition, the role of aviation in a single passenger’s (a Finnish consumer) annual carbon footprint is analysed and a comparison of available emission calculators and carbon offset systems is performed. Long-haul fights have a significant role in a single consumer´s and company´s carbon footprint, but remarkable change in global emission level would need a huge change in attitudes towards flying.Keywords: aviation, climate change, emissions, environment
Procedia PDF Downloads 2123560 A Study on the Non-Destructive Test Characterization of Carbon Fiber Reinforced Plastics Using Thermo-Graphic Camera
Authors: Hee Jae Shin, In Pyo Cha, Min Sang Lee, Hyun Kyung Yoon, Tae Ho Kim, Yoon Sun Lee, Lee Ku Kwac, Hong Gun Kim
Abstract:
Non-destructive testing and evaluation techniques for assessing the integrity of composite structures are essential to both reduce manufacturing costs and out of service time of transport means due to maintenance. In this study, Analyze into non-destructive test characterization of carbon fiber reinforced plastics(CFRP) internal and external defects using thermo-graphic camera and transient thermography method. non-destructive testing were characterized by defect size(∅8,∅10,∅12,∅14) and depth(1.2mm,2.4mm).Keywords: Non-Destructive Test (NDT), thermal characteristic, thermographic camera, Carbon Fiber Reinforced Plastics(CFRP).
Procedia PDF Downloads 5363559 Carbon Footprint and Exergy Destruction Footprint in White Wine Production Line
Authors: Mahmut Genc, Seda Genc
Abstract:
Wine is the most popular alcoholic drink in the World with 274.4 million of hectoliter annual production in the year of 2015. The wine industry is very important for some regions as well as creating significant value in their economies. This industry is very sensitive to the global warming since viticulture highly depends on climate and geographical region. Sustainability concept is a crucial issue for the wine industry and sustainability performances of wine production processes should be determined. Although wine production industry is an energy intensive sector as a whole, the most energy intensive products are widely used both in the viti and vinicultural process. In this study, gate-to-gate LCA approach in energy resource utilization and global warming potential impacts for white wine production line were attempted and carbon footprint and exergy destruction footprint were calculated, accordingly. As a result, carbon footprint and exergy destruction footprint values were calculated to be 1.75 kg CO2eq and 365.3kW, respectively.Keywords: carbon footprint, exergy analysis, exergy destruction footprint, white wine
Procedia PDF Downloads 2723558 Investigation on the Capacitive Deionization of Functionalized Carbon Nanotubes (F-CNTs) and Silver-Decorated F-CNTs for Water Softening
Authors: Khrizelle Angelique Sablan, Rizalinda De Leon, Jaeyoung Lee, Joey Ocon
Abstract:
The impending water shortage drives us to find alternative sources of water. One of the possible solutions is desalination of seawater. There are numerous processes by which it can be done and one if which is capacitive deionization. Capacitive deionization is a relatively new technique for water desalination. It utilizes the electric double layer for ion adsorption. Carbon-based materials are commonly used as electrodes for capacitive deionization. In this study, carbon nanotubes (CNTs) were treated in a mixture of nitric and sulfuric acid. The silver addition was also facilitated to incorporate antimicrobial action. The acid-treated carbon nanotubes (f-CNTs) and silver-decorated f-CNTs (Ag@f-CNTs) were used as electrode materials for seawater deionization and compared with CNT and acid-treated CNT. The synthesized materials were characterized using TEM, EDS, XRD, XPS and BET. The electrochemical performance was evaluated using cyclic voltammetry, and the deionization performance was tested on a single cell with water containing 64mg/L NaCl. The results showed that the synthesized Ag@f-CNT-10 H could have better performance than CNT and a-CNT with a maximum ion removal efficiency of 50.22% and a corresponding adsorption capacity of 3.21 mg/g. It also showed antimicrobial activity against E. coli. However, the said material lacks stability as the efficiency decreases with repeated usage of the electrode.Keywords: capacitive deionization, carbon nanotubes, desalination, acid functionalization, silver
Procedia PDF Downloads 2313557 Stabilization of Soil Organic Carbon within Silt+Clay Fraction in Shrub-Encroached Rangeland Shallow Soil at the University of Limpopo Syferkuil Experimental Farm
Authors: Millicent N. Khumalo, Phesheya E. Dlamini
Abstract:
Shrub-encroachment leads to a gain or loss of soil organic carbon (SOC) in previously open rangelands. The stabilization mechanisms controlling the storage of soil organic carbon (SOC) within aggregates of shrub-encroached grassland soils are poorly understood, especially in shallow plinthic soils. In this study, physical fractionation of surface soils (0- 10 cm) collected from open and shrub-encroached grasslands was conducted to determine the distribution of SOC within macro-and- microaggregates. Soil aggregates were classified into four fractions by a wet-sieving procedure, namely >2000 (large macro-aggregates), 212-2000 (small macro-aggregates), 50-212 (microaggregates) and < 50µm (silt+clay). In both shrub-encroached and open grassland soils, SOC was greater in the silt+clay fraction. In this fraction, SOC was on average 133% greater in shrub-encroached compared to open grassland. The greater SOC within the silt+clay fraction is due to the greater surface area and thus more exchange sites for carbon absorption. This implies that the SOC physically protected within the silt+clay is stored long-term.Keywords: aggregate fractions, shrub-encroachment, soil organic carbon, stabilization
Procedia PDF Downloads 1383556 Carbon@NiCoFeS Nanoparticles for Photocatalytic Degradation of Organic Pollutants via Peroxymonosulfate Activation
Authors: Raqiqa Tur Rasool, Ghulam Abbas Ashraf
Abstract:
This study presents the synthesis and application of Carbon@NiCoFeS nanoparticles as a photocatalyst for the degradation of organic pollutants through peroxymonosulfate (PMS) activation. The Carbon@NiCoFeS nanoparticles, synthesized via a hydrothermal method, exhibit a highly crystalline and uniformly distributed nanostructure, as confirmed by XRD, SEM, TEM, and FTIR analyses. The photocatalytic performance was tested using ibuprofen (IBU) as a model pollutant under visible light, demonstrating remarkable efficiency across various conditions, including different concentrations of photocatalyst and PMS and a range of pH values. The enhanced activity is attributed to the synergistic effects of Ni, Co, and Fe, promoting effective electron-hole separation and reactive radical generation, primarily SO4•− and •OH. Quenching experiments highlighted sulfate radicals' predominant role in the degradation process. The Carbon@NiCoFeS photocatalyst also showed excellent reusability and stability over multiple cycles, and its versatility in degrading various organic pollutants underscores its potential for practical wastewater treatment applications. This research offers significant insights into multi-metal sulfide photocatalyst design, showcasing Carbon@NiCoFeS nanoparticles' promising role in environmental remediation via efficient PMS activation.Keywords: NiCoFeS nanoparticles, photocatalytic degradation, peroxymonosulfate activation, organic pollutant removal, wastewater treatment
Procedia PDF Downloads 483555 Removal of Tartrazine Dye Form Aqueous Solutions by Adsorption on the Surface of Polyaniline/Iron Oxide Composite
Authors: Salem Ali Jebreil
Abstract:
In this work, a polyaniline/Iron oxide (PANI/Fe2O3) composite was chemically prepared by oxidative polymerization of aniline in acid medium, in presence of ammonium persulphate as an oxidant and amount of Fe2O3. The composite was characterized by a scanning electron microscopy (SEM). The prepared composite has been used as adsorbent to remove Tartrazine dye form aqueous solutions. The effects of initial dye concentration and temperature on the adsorption capacity of PANI/Fe2O3 for Tartrazine dye have been studied in this paper. The Langmuir and Freundlich adsorption models have been used for the mathematical description of adsorption equilibrium data. The best fit is obtained using the Freundlich isotherm with an R2 value of 0.998. The change of Gibbs energy, enthalpy, and entropy of adsorption has been also evaluated for the adsorption of Tartrazine onto PANI/ Fe2O3. It has been proved according the results that the adsorption process is endothermic in nature.Keywords: adsorption, composite, dye, polyaniline, tartrazine
Procedia PDF Downloads 2883554 Effect of Carbon Nanotube Reinforcement in Polymer Composite Plates under Static Loading
Authors: S. Madhu, V. V. Subba Rao
Abstract:
In the implementation of carbon nanotube reinforced polymer matrix composites in structural applications, deflection and stress analysis are important considerations. In the present study, a multi scale analysis of deflection and stress analysis of carbon nanotube (CNT) reinforced polymer composite plates is presented. A micromechanics model based on the Mori-Tanaka method is developed by introducing straight CNTs aligned in one direction. The effect of volume fraction and diameter of CNTs on plate deflection and the stresses are investigated using Classical Laminate Plate Theory (CLPT). The study is primarily conducted with the intention of observing the suitability of CNT reinforced polymer composite plates under static loading for structural applications.Keywords: carbon nanotube, micromechanics, composite plate, multi-scale analysis, classical laminate plate theory
Procedia PDF Downloads 3743553 Analysis of CO₂ Capture Products from Carbon Capture and Utilization Plant
Authors: Bongjae Lee, Beom Goo Hwang, Hye Mi Park
Abstract:
CO₂ capture products manufactured through Carbon Capture and Utilization (CCU) Plant that collect CO₂ directly from power plants require accurate measurements of the amount of CO₂ captured. For this purpose, two tests were carried out on the weight loss test. And one was analyzed using a carbon dioxide quantification device. First, the ignition loss analysis was performed by measuring the weight of the sample at 550°C after the first conversation and then confirming the loss when ignited at 950°C. Second, in the thermogravimetric analysis, the sample was divided into two sections of 40 to 500°C and 500 to 800°C to confirm the reduction. The results of thermal weight loss analysis and thermogravimetric analysis were confirmed to be almost similar. However, the temperature of the ignition loss analysis method was 950°C, which was 150°C higher than that of the thermogravimetric method at a temperature of 800°C, so that the difference in the amount of weight loss was 3 to 4% higher by the heat loss analysis method. In addition, the tendency that the CO₂ content increases as the reaction time become longer is similarly confirmed. Third, the results of the wet titration method through the carbon dioxide quantification device were found to be significantly lower than the weight loss method. Therefore, based on the results obtained through the above three analysis methods, we will establish a method to analyze the accurate amount of CO₂. Acknowledgements: This work was supported by the Korea Institute of Energy Technology Evaluation and planning (No. 20152010201850).Keywords: carbon capture and utilization, CCU, CO2, CO2 capture products, analysis method
Procedia PDF Downloads 2183552 Achieving 13th Sustainable Development Goal: Urbanization and ICT Empowerment in Pursuit of Carbon Neutrality - Beyond Linear Thinking
Authors: Salim Khan
Abstract:
The attainment of the carbon neutrality objective and Sustainable Development Goal 13 (SDG-13) target, which pertains to climate actions, received widespread attention in developing and emerging nations. Given the increasing pace of urbanization, technological advancements, and rapid growth, it is imperative to examine the linear and nonlinear effects of urbanization and economic growth and the linear impact of information and communication technology (ICT) on carbon emissions (CO2e). This study employs the Dynamic System GMM (DSGMM) and Panel Quantile Regression (PQR) methodologies to investigate the causal relationship between urbanization, ICT, economic growth, and their interplay on CO2e in 39 BRI countries from 2001 to 2020. The study's findings indicate that the impact of urbanization on CO2e exhibits linear and nonlinear patterns. The specific nonlinear impact of urbanization leads to a decrease in CO2e, hence facilitating the achievement of carbon neutrality and contributing to SDG-13. The study highlights the importance of ICT in achieving SDG-13 by reducing CO2e, emphasizing the need for informatization. Simultaneously, the findings support the Environmental Kuznets Curve (EKC) hypothesis and support the pollution haven theory. Finally, based on empirical findings, significant policy implications are suggested for achieving SGD 13 and carbon neutrality.Keywords: urbanization, ICT, CO2 emission, EKC, pollution haven, BRI
Procedia PDF Downloads 263551 Kinetics of Growth Rate of Microalga: The Effect of Carbon Dioxide Concentration
Authors: Retno Ambarwati Sigit Lestari
Abstract:
Microalga is one of the organisms that can be considered ideal and potential for raw material of bioenergy production, because the content of lipids in microalga is relatively high. Microalga is an aquatic organism that produces complex organic compounds from inorganic molecules using carbon dioxide as a carbon source, and sunlight for energy supply. Microalga-CO₂ fixation has potential advantages over other carbon captures and storage approaches, such as wide distribution, high photosynthetic rate, good environmental adaptability, and ease of operation. The rates of growth and CO₂ capture of microalga are influenced by CO₂ concentration and light intensity. This study quantitatively investigates the effects of CO₂ concentration on the rates of growth and CO₂ capture of a type of microalga, cultivated in bioreactors. The works include laboratory experiments as well as mathematical modelling. The mathematical models were solved numerically and the accuracy of the model was tested by the experimental data. It turned out that the mathematical model proposed can well quantitatively describe the growth and CO₂ capture of microalga, in which the effects of CO₂ concentration can be observed.Keywords: Microalga, CO2 concentration, photobioreactor, mathematical model
Procedia PDF Downloads 1263550 Photocatalytic Conversion of Water/Methanol Mixture into Hydrogen Using Cerium/Iron Oxides Based Structures
Authors: Wael A. Aboutaleb, Ahmed M. A. El Naggar, Heba M. Gobara
Abstract:
This research work reports the photocatalytic production of hydrogen from water-methanol mixture using three different 15% ceria/iron oxide catalysts. The catalysts were prepared by physical mixing, precipitation, and ultrasonication methods and labeled as catalysts A-C. The structural and texture properties of the obtained catalysts were confirmed by X-ray diffraction (XRD), BET-surface area analysis and transmission electron microscopy (TEM). The photocatalytic activity of the three catalysts towards hydrogen generation was then tested. Promising hydrogen productivity was obtained by the three catalysts however different gases compositions were obtained by each type of catalyst. Specifically, catalyst A had produced hydrogen mixed with CO₂ while the composite structure (catalyst B) had generated only pure H₂. In the case of catalyst C, syngas made of H₂ and CO was revealed, as a novel product, for the first time, in such process.Keywords: hydrogen production, water splitting, photocatalysts, clean energy
Procedia PDF Downloads 2423549 Effect of Ramp Rate on the Preparation of Activated Carbon from Saudi Date Tree Fronds (Agro Waste) by Physical Activation Method
Authors: Muhammad Shoaib, Hassan M Al-Swaidan
Abstract:
Saudi Arabia is the major date producer in the world. In order to maximize the production from date tree, pruning of the date trees is required annually. Large amount of this agriculture waste material (palm tree fronds) is available in Saudi Arabia and considered as an ideal source as a precursor for production of activated carbon (AC). The single step procedure for the preparation of micro porous activated carbon (AC) from Saudi date tree fronds using mixture of gases (N2 and CO2) is carried out at carbonization/activation temperature at 850°C and at different ramp rates of 10, 20 and 30 degree per minute. Alloy 330 horizontal reactor is used for tube furnace. Flow rate of nitrogen and carbon dioxide gases are kept at 150 ml/min and 50 ml/min respectively during the preparation. Characterization results reveal that the BET surface area, pore volume, and average pore diameter of the resulting activated carbon generally decreases with the increase in ramp rate. The activated carbon prepared at a ramp rate of 10 degrees/minute attains larger surface area and can offer higher potential to produce activated carbon of greater adsorption capacity from agriculture wastes such as date fronds. The BET surface areas of the activated carbons prepared at a ramp rate of 10, 20 and 30 degree/minute after 30 minutes activation time are 1094, 1020 and 515 m2/g, respectively. Scanning electron microscopy (SEM) for surface morphology, and FTIR for functional groups was carried out that also verified the same trend. Moreover, by increasing the ramp rate from 10 and 20 degrees/min the yield remains same, i.e. 18%, whereas at a ramp rate of 30 degrees/min the yield increases from 18 to 20%. Thus, it is feasible to produce high-quality micro porous activated carbon from date frond agro waste using N2 carbonization followed by physical activation with CO2 and N2 mixture. This micro porous activated carbon can be used as adsorbent of heavy metals from wastewater, NOx SOx emission adsorption from ambient air and electricity generation plants, purification of gases, sewage treatment and many other applications.Keywords: activated carbon, date tree fronds, agricultural waste, applied chemistry
Procedia PDF Downloads 2803548 Multi-Environment Quantitative Trait Loci Mapping for Grain Iron and Zinc Content Using Bi-Parental Recombinant Inbred Lines in Pearl Millet
Authors: Tripti Singhal, C. Tara Satyavathi, S. P. Singh, Aruna Kumar, Mukesh Sankar S., C. Bhardwaj, Mallik M., Jayant Bhat, N. Anuradha, Nirupma Singh
Abstract:
Pearl millet is a climate-resilient nutritious crop. We report iron and zinc content QTLs from 3 divergent locations. The content of grain Fe in the RILs ranged between 36 and 114 mg/kg, and that of Zn from 20 to 106 mg/kg across the three years at over 3 locations (Delhi, Dharwad, and Jodhpur). We used SSRs to generate a linkage map using 210 F₆ RIL derived from the (PPMI 683 × PPMI 627) cross. The linkage map of 151 loci was 3403.6 cM in length. QTL analysis revealed a total of 22 QTLs for both traits at all locations. Inside QTLs, candidate genes were identified using bioinformatics approaches.Keywords: yield, pearl millet, QTL mapping, multi-environment, RILs
Procedia PDF Downloads 1413547 Soil Carbon Stock in Sub-Optimal Land for the Development of Cymbopogon Nardus L. At Simawang Village, West Sumatera, Indonesia
Authors: Juniarti, Yusniwati, Anwar. A, Armansyah, Febriamansyah, R.
Abstract:
Simawang area is one of the critical areas (sub-optimal) that experienced drought from climate changes. Potential dry land belonging to sub-optimal in Simawang, West Sumatera, Indonesia not been fully utilized for agricultural cultivation. Simawang village, West Sumatera, Indonesia is formerly known as the rice barn, due to the climate change area is experiencing a drought, so the rice fields that were once productive now a grazing paddock because of lack of water. This study aims to calculate the soil carbon stock in Simawang village, West Sumatera Indonesia. The study was conducted in Simawang village, Tanah Datar regency, West Sumatera from October 2014 until December 2017. The study was conducted on sub-optimal land to be planted with Cymbopogon nardus L. (Sereh wangi in Indonesian language). Composite soil sampling conducted at a depth of 0-20 cm, 20 – 40 cm. Based on the depth of soil carbon stocks gained higher ground 6473 t ha-1 at a depth of 0-20 cm at a depth of 20-40 cm. Efforts to increase soil carbon is expected to be cultivated through Cymbopogon nardus L. planting has been done.Keywords: climate changes, sereh wangi (Cymbopogon nardus L.), soil carbon stock, sub optimal land
Procedia PDF Downloads 4623546 Carbon Nitride Growth on ZnO Architectures for Enhanced Photoelectrochemical Water Splitting Application
Authors: Špela Hajduk, Sean P. Berglund, Matejka Podlogar, Goran Dražić, Fatwa F. Abdi, Zorica C. Orel, Menny Shalom
Abstract:
Graphitic carbon nitride materials (g-CN) have emerged as an attractive photocatalyst and electrocatalyst for photo and electrochemical water splitting reaction, due to their environmental benignity nature and suitable band gap. Many approaches were introduced to enhance the photoactivity and electronic properties of g-CN and resulted in significant changes in the electronic and catalytic properties. Here we demonstrate the synthesis of thin and homogenous g-CN layer on highly ordered ZnO nanowire (NW) substrate by growing a seeding layer of small supramolecular assemblies on the nanowires. The new synthetic approach leads to the formation of thin g-CN layer (~3 nm) without blocking all structure. Two different deposition methods of carbon nitride were investigated and will be presented. The amount of loaded carbon nitride significantly influences the PEC activity of hybrid material and all the ZnO/g-CNx electrodes show great improvement in photoactivity. The chemical structure, morphology and optical properties of the deposited g-CN were fully characterized by various techniques as X-ray powder spectroscopy (XRD), scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), high-resolution scanning microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS).Keywords: carbon nitride, photoanode, solar water splitting, zinc oxide
Procedia PDF Downloads 1963545 Recycling of Sintered Neodymium-Iron-Boron (NdFeB) Magnet Waste via Oxidative Roasting and Selective Leaching
Authors: Woranittha Kritsarikan
Abstract:
Neodymium-iron-boron (NdFeB) magnets classified as high-power magnets are widely used in various applications such as electrical and medical devices and account for 13.5 % of the permanent magnet’s market. Since its typical composition of 29 - 32 % Nd, 64.2 – 68.5 % Fe and 1 – 1.2 % B contains a significant amount of rare earth metals and will be subjected to shortages in the future. Domestic NdFeB magnet waste recycling should therefore be developed in order to reduce social, environmental impacts toward the circular economy. Most research works focus on recycling the magnet wastes, both from the manufacturing process and end of life. Each type of wastes has different characteristics and compositions. As a result, these directly affect recycling efficiency as well as the types and purity of the recyclable products. This research, therefore, focused on the recycling of manufacturing NdFeB magnet waste obtained from the sintering stage of magnet production and the waste contained 23.6% Nd, 60.3% Fe and 0.261% B in order to recover high purity neodymium oxide (Nd₂O₃) using hybrid metallurgical process via oxidative roasting and selective leaching techniques. The sintered NdFeB waste was first ground to under 70 mesh prior to oxidative roasting at 550 - 800 ᵒC to enable selective leaching of neodymium in the subsequent leaching step using H₂SO₄ at 2.5 M over 24 hours. The leachate was then subjected to drying and roasting at 700 – 800 ᵒC prior to precipitation by oxalic acid and calcination to obtain neodymium oxide as the recycling product. According to XRD analyses, it was found that increasing oxidative roasting temperature led to the increasing amount of hematite (Fe₂O₃) as the main composition with a smaller amount of magnetite (Fe3O4) found. Peaks of neodymium oxide (Nd₂O₃) were also observed in a lesser amount. Furthermore, neodymium iron oxide (NdFeO₃) was present and its XRD peaks were pronounced at higher oxidative roasting temperature. When proceeded to acid leaching and drying, iron sulfate and neodymium sulfate were mainly obtained. After the roasting step prior to water leaching, iron sulfate was converted to form hematite as the main compound, while neodymium sulfate remained in the ingredient. However, a small amount of magnetite was still detected by XRD. The higher roasting temperature at 800 ᵒC resulted in a greater Fe2O3 to Nd2(SO4)3 ratio, indicating a more effective roasting temperature. Iron oxides were subsequently water leached and filtered out while the solution contained mainly neodymium sulfate. Therefore, low oxidative roasting temperature not exceeding 600 ᵒC followed by acid leaching and roasting at 800 ᵒC gave the optimum condition for further steps of precipitation and calcination to finally achieve neodymium oxide.Keywords: NdFeB magnet waste, oxidative roasting, recycling, selective leaching
Procedia PDF Downloads 1783544 Study of the Microstructure and Mechanical Properties of Locally Developed Carbon Fibers-Silica Sand Nanoparticles Aluminium Based Hybrid Composites
Authors: Tahir Ahmad, M. Kamran, R. Ahmad, M. T. Z. Butt
Abstract:
Hybrid aluminum metal matrix composites with 1, 2, 3 and 4 wt. % of silica sand nanoparticles and electro-less nickel coated carbon fibers were successfully developed using sand casting technique. Epoxy coating of carbon fibers was removed and phosphorous-nickel coating was successfully applied via electro-less route. The developed hybrid composites were characterized using micro hardness tester, tensile testing, and optical microscopy. The gradual increase of reinforcing phases yielded improved mechanical properties such as hardness and tensile strength. The increase in hardness was attributed to the presence of silica sand nanoparticles whereas electro-less nickel coated carbon fibers enhanced the tensile properties of developed hybrid composites. The microstructure of the developed hybrid composites revealed the homogeneous distribution of both carbon fibers and silica sand nanoparticles in aluminum based hybrid composites. The formation of dendrite microstructure is the main cause of improving mechanical properties.Keywords: aluminum based hybrid composites, mechanical properties, microstructure, microstructure and mechanical properties relationship
Procedia PDF Downloads 4123543 Functionalization of Carboxylated Single-Walled Carbon Nanotubes with 2-En 4-Hydroxy Cyclo 1-Octanon and Toxicity Investigation
Authors: D. ChobfroushKhoei, S. K. Heidari , Sh. Dariadel
Abstract:
Carbon nanotubes were used in medical sciences especially in drug delivery system and cancer therapy. In this study, we functionalized carboxylated single-wall carbon nanotubes (SWNT-COOH) with 2-en 4-hydroxy cyclo 1-octanon. Synthesized sample was characterized by FT-IR, Raman spectroscopy, SEM, TGA and cellular investigations. The results showed well formation of SWNT-Ester. Cell viability assay results and microscopic observations demonstrated that cancerous cells were killed in the sample. The synthesized sample can be used as a toxic material for cancer therapy.Keywords: MWNT-COOH, functionalization, phenylisocyanate, phenylisothiocyanate, 1, 4-phenylendiamine, toxicity investigation
Procedia PDF Downloads 4533542 Computational Material Modeling for Mechanical Properties Prediction of Nanoscale Carbon Based Cementitious Materials
Authors: Maryam Kiani, Abdul Basit Kiani
Abstract:
At larger scales, the performance of cementitious materials is impacted by processes occurring at the nanometer scale. These materials boast intricate hierarchical structures with random features that span from the nanometer to millimeter scale. It is fascinating to observe how the nanoscale processes influence the overall behavior and characteristics of these materials. By delving into and manipulating these processes, scientists and engineers can unlock the potential to create more durable and sustainable infrastructure and construction materials. It's like unraveling a hidden tapestry of secrets that hold the key to building stronger and more resilient structures. The present work employs simulations as the computational modeling methodology to predict mechanical properties for carbon/silica based cementitious materials at the molecular/nano scale level. Studies focused on understanding the effect of higher mechanical properties of cementitious materials with carbon silica nanoparticles via Material Studio materials modeling.Keywords: nanomaterials, SiO₂, carbon black, mechanical properties
Procedia PDF Downloads 1423541 High-Pressure CO₂ Adsorption Capacity of Selected Unusual Porous Materials and Rocks
Authors: Daniela Rimnacova, Maryna Vorokhta, Martina Svabova
Abstract:
CO₂ adsorption capacity of several materials - waste (power fly ash, slag, carbonized sewage sludge), rocks (Czech Silurian shale, black coal), and carbon (synthesized carbon, activated carbon as a reference material) - were measured on dry samples using a unique hand-made manometric sorption apparatus at a temperature of 45 °C and pressures of up to 7 MPa. The main aim was finding utilization of the waste materials and rocks for removal of the air or water pollutants caused by anthropogenic activities, as well as for the carbon dioxide storage. The equilibrium amount of the adsorbate depends on temperature, gas saturation pressure, porosity, surface area and volume of pores, and last but not least, on the composition of the adsorbents. Given experimental conditions can simulate in-situ situations in the rock bed and can be achieved just by a high-pressure apparatus. The CO₂ excess adsorption capacities ranged from 0.018 mmol/g (ash) to 13.55 mmol/g (synthesized carbon). The synthetized carbon had the highest adsorption capacity among all studied materials as well as the highest price. This material is usually used for the adsorption of specific pollutants. The excess adsorption capacity of activated carbon was 9.19 mmol/g. It is used for water and air cleaning. Ash can be used for chemisorption onto ash particle surfaces or capture of special pollutants. Shale is a potential material for enhanced gas recovery or CO₂ sequestration in-situ. Slag is a potential material for capture of gases with a possibility of the underground gas storage after the adsorption process. The carbonized sewage sludge is quite a good adsorbent for the removal and capture of pollutants, as well as shales or black coal which show an interesting relationship between the price and adsorption capacity.Keywords: adsorption, CO₂, high pressure, porous materials
Procedia PDF Downloads 1623540 Ionic Liquids as Corrosion Inhibitors in CO2 Capture Systems
Abstract:
We present the viability of using thermally stable, practically non-volatile ionic liquids as corrosion inhibitors in aqueous monoethanolamine system. Carbon steel 1020, which widely used as construction material in CO2 capture plants, has been taken as a test material. Corrosion inhibition capacities of typical room-temperature ionic liquids constituting imidazolium cation in concentration range ≤ 3% by weight in CO2 capture applications were investigated. Electrochemical corrosion experiments using the potentiodynamic polarization technique for measuring corrosion current were carried out. The results show that ionic liquids possess ability to suppressing severe operational problems of corrosion in typical CO2 capture plants.Keywords: carbon dioxide, carbon steel, monoethanolamine, corrosion rate, ionic liquids, tafel fit
Procedia PDF Downloads 3253539 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management
Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag
Abstract:
In Jordan having deficit atmospheric precipitation, an increase in water demand during summer months . Jordan can be regarded with a relatively high potential for waste water recycling and reuse. The main purpose of this paper was to investigate the removal of Total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill waste water (OMW) by the electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes the optimum working pH was found to be in range 6. The efficiency of the electrocoagulation process allowed removal of TSS and COD about 82.5% and 47.5% respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. These results showed that the optimum TSS and COD removal was obtained at the optimum experimental parameters such as current density, pH, and reaction time.Keywords: olive mill wastewater, electrode, electrocoagulation (EC), TSS, COD
Procedia PDF Downloads 3943538 Raman Line Mapping on Melt Spun Polycarbonate/MWNT Fiber-Based Nanocomposites
Authors: Poonam Yadav, Dong Bok Lee
Abstract:
Raman spectroscopy was used for characterization of multi-wall carbon nanotube (MWNT) and Polycarbonate/multi-wall carbon nanotube (PC/MWNT) based fibers with 0.55% and 0.75% of MWNT (PC/MWNT55 and PC/MWNT75). PC/MWNT55 and PC/MWNT75 fibers was prepared by melt spinning device using nanocomposites made by two different route, viz., solvent casting and melt extrusion. Fibers prepared from melt extruded nanocomposites showed smooth and uniform morphology as compared to solvent casting based nanocomposites. The Raman mapping confirmed that the melt extruded based nanocomposites had better dispersion of MWNT in Polycarbonate (PC) than solvent casting carbon nanotube.Keywords: dispersion, melt extrusion, multi-wall carbon nanotube, mapping
Procedia PDF Downloads 3483537 Soil Carbon Stock in Sub-Optimal Land due to Climate Change on Development Cymbopogon nardus L. at Simawang Village, West Sumatera, Indonesia
Authors: Juniarti Yuni
Abstract:
Simawang area is one of the critical areas (sub-optimal) that experienced drought from climate changes. Potential dry land belonging to sub-optimal in Simawang, West Sumatera, Indonesia not been fully utilized for agricultural cultivation. Simawang village, West Sumatera, Indonesia is formerly known as the rice barn, due to the climate change area is experiencing a drought, so the rice fields that were once productive now a grazing paddock because of lack of water. This study aims to calculate the soil carbon stock in Simawang village, West Sumatera Indonesia. The study was conducted in Simawang village, Tanah Datar regency, West Sumatera from October 2014 until December 2017. The study was conducted on sub-optimal land to be planted with Cymbopogon nardus L. (Sereh wangi in Indonesian language). Composite soil sampling conducted at a depth of 0-20 cm, 20–40 cm. Based on the depth of soil carbon stocks gained higher ground 6473 T/Ha at a depth of 0-20 cm at a depth of 20-40 cm. Efforts to increase soil carbon is expected to be cultivated through Cymbopogon nardus L. planting has been done.Keywords: climate changes, sereh wangi (Cymbopogon nardus L.), soil carbon stock, sub optimal land
Procedia PDF Downloads 3003536 On Strengthening Program of Sixty Years Old Dome Using Carbon Fiber
Authors: Humayun R. H. Kabir
Abstract:
A reinforced concrete dome-built 60 years ago- of circular shape of diameter of 30 m was in distressed conditions due to adverse weathering effects, such as high temperature, wind, and poor maintenance. It was decided to restore the dome to its full strength for future use. A full material strength and durability check including petrography test were conducted. It was observed that the concrete strength was in acceptable range, while bars were corroded more than 40% to their original configurations. Widespread cracks were almost in every meter square. A strengthening program with filling the cracks by injection method, and carbon fiber layup and wrap was considered. Ultra Sound Pulse Velocity (UPV) test was conducted to observe crack depth. Ground Penetration Radar (GPR) test was conducted to observe internal bar conditions and internal cracks. Finally, a load test was conducted to certify the carbon fiber effectiveness, injection method procedure and overall behavior of dome.Keywords: dome, strengthening program, carbon fiber, load test
Procedia PDF Downloads 2583535 The Effect of Carbon Nanofibers on the Electrical Resistance of Cementitious Composites
Authors: Reza Pourjafar, Morteza Sohrabi-Gilani, Mostafa Jamshidi Avanaki, Malek Mohammad Ranjbar
Abstract:
Cementitious composites like concrete, are the most widely used materials in civil infrastructures. Numerous investigations on fiber’s effect on the properties of cement-based composites have been conducted in the last few decades. The use of fibers such as carbon nanofibers (CNFs) and carbon nanotubes (CNTs) in these materials is an ongoing field and needs further researches and studies. Excellent mechanical, thermal, and electrical properties of carbon nanotubes and nanofibers have motivated the development of advanced nanocomposites with outstanding and multifunctional properties. In this study, the electrical resistance of CNF reinforced cement mortar was examined. Three different dosages of CNF were used, and the resistances were compared to plain cement mortar. One of the biggest challenges in this study is dispersing CNF particles in the mortar mixture. Therefore, polycarboxylate superplasticizer and ultrasonication of the mixture have been selected for the purpose of dispersing CNFs in the cement matrix. The obtained results indicated that the electrical resistance of the CNF reinforced mortar samples decreases with increasing CNF content, which would be the first step towards examining strain and damage monitoring ability of cementitious composites containing CNF for structural health monitoring purposes.Keywords: carbon nanofiber, cement and concrete, CNF reinforced mortar, smart mater, strain monitoring, structural health monitoring
Procedia PDF Downloads 1473534 Microstructure and Properties of Cu-Bearing Hypereutectic High Chromium Cast Iron
Authors: Liqiang Gong, Hanguang Fu
Abstract:
In order to further improve the wear resistance of Hypereutectic High Chromium Cast iron (HHCCI), the effects of different Cu contents on the microstructure and properties of HHCCI were systematically studied. It was found that with the increase of Cu content, the carbide size was refined, and the increase of Cu content led to the increase of austenite and the decrease of hardness in as-cast HHCCI. After heat treatment at 1050 °C, the hardness of HHCCI increased significantly compared with as-cast. And with the increase of Cu content, the hardness of HHCCI increased first and then decreased, and the hardness was the highest when 0.5 wt.% Cu was added. The increase of copper content promotes the precipitation of secondary carbides and makes the interface between α-Fe and M23C6-type secondary carbides a semi-coherent boundary. With the increase of Cu content, the wear loss of HHCCI decreased after heat treatment at 1050 °C, and the wear resistance improved. When the Cu content increased to 1.0 wt.%, the wear resistance of HHCCI was the best, which was 2.6 times that of copper-free HHCCI. The continued increase of copper content has no obvious effect on the wear resistance of HHCCI. In addition, a small amount of Cu tends to adsorb on the (0001) preferential growth surface of M₇C₃-type carbides, thereby refining the carbides. From the First-principles calculations, the solid solution strengthening effect of Cu on the matrix and the adsorption and refinement of carbides were revealed, and the influence mechanism on the wear resistance of HHCCI was characterized.Keywords: hypereutectic high chromium cast iron, cu alloying, carbides, wear resistance, first-principles calculations
Procedia PDF Downloads 66