Search results for: Gauss point numerical integration
10093 An Experiment of Three-Dimensional Point Clouds Using GoPro
Authors: Jong-Hwa Kim, Mu-Wook Pyeon, Yang-dam Eo, Ill-Woong Jang
Abstract:
Construction of geo-spatial information recently tends to develop as multi-dimensional geo-spatial information. People constructing spatial information is also expanding its area to the general public from some experts. As well as, studies are in progress using a variety of devices, with the aim of near real-time update. In this paper, getting the stereo images using GoPro device used widely also to the general public as well as experts. And correcting the distortion of the images, then by using SIFT, DLT, is acquired the point clouds. It presented a possibility that on the basis of this experiment, using a video device that is readily available in real life, to create a real-time digital map.Keywords: GoPro, SIFT, DLT, point clouds
Procedia PDF Downloads 47010092 Numerical Investigation of Hygrothermal Behavior on Porous Building Materials
Authors: Faiza Mnasri, Kamilia Abahri, Mohammed El Ganaoui, Slimane Gabsi
Abstract:
Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried.Keywords: building materials, heat transfer, moisture diffusion, numerical solution
Procedia PDF Downloads 29210091 Size Effects on Structural Performance of Concrete Gravity Dams
Authors: Mehmet Akköse
Abstract:
Concern about seismic safety of concrete dams have been growing around the world, partly because the population at risk in locations downstream of major dams continues to expand and also because it is increasingly evident that the seismic design concepts in use at the time most existing dams were built were inadequate. Most of the investigations in the past have been conducted on large dams, typically above 100m high. A large number of concrete dams in our country and in other parts of the world are less than 50m high. Most of these dams were usually designed using pseudo-static methods, ignoring the dynamic characteristics of the structure as well as the characteristics of the ground motion. Therefore, it is important to carry out investigations on seismic behavior this category of dam in order to assess and evaluate the safety of existing dams and improve the knowledge for different high dams to be constructed in the future. In this study, size effects on structural performance of concrete gravity dams subjected to near and far-fault ground motions are investigated including dam-water-foundation interaction. For this purpose, a benchmark problem proposed by ICOLD (International Committee on Large Dams) is chosen as a numerical application. Structural performance of the dam having five different heights is evaluated according to damage criterions in USACE (U.S. Army Corps of Engineers). It is decided according to their structural performance if non-linear analysis of the dams requires or not. The linear elastic dynamic analyses of the dams to near and far-fault ground motions are performed using the step-by-step integration technique. The integration time step is 0.0025 sec. The Rayleigh damping constants are calculated assuming 5% damping ratio. The program NONSAP modified for fluid-structure systems with the Lagrangian fluid finite element is employed in the response calculations.Keywords: concrete gravity dams, Lagrangian approach, near and far-fault ground motion, USACE damage criterions
Procedia PDF Downloads 26710090 Fiber Orientation Measurements in Reinforced Thermoplastics
Authors: Ihsane Modhaffar
Abstract:
Fiber orientation is essential for the physical properties of composite materials. The theoretical parameters of a given reinforcement are usually known and widely used to predict the behavior of the material. In this work, we propose an image processing approach to estimate true principal directions and fiber orientation during injection molding processes of short fiber reinforced thermoplastics. Generally, a group of fibers are described in terms of probability distribution function or orientation tensor. Numerical techniques for the prediction of fiber orientation are also considered for concentrated situations. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The governing equations, of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation
Procedia PDF Downloads 53310089 Ranking of Provinces in Iran for Capital Formation in Spatial Planning with Numerical Taxonomy Technique (An Improvement) Case Study: Agriculture Sector
Authors: Farhad Nouparast
Abstract:
For more production we need more capital formation. Capital formation in each country should be based on comparative advantages in different economic sectors due to the different production possibility curves. In regional planning, recognizing the relative advantages and consequently investing in more production requires identifying areas with the necessary capabilities and location of each region compared to other regions. In this article, ranking of Iran's provinces is done according to the specific and given variables as the best investment position in agricultural activity. So we can provide the necessary background for investment analysis in different regions of the country to formulate national and regional planning and execute investment projects. It is used factor analysis technique and numerical taxonomy analysis to do this in thisarticle. At first, the provinces are homogenized and graded according to the variables using cross-sectional data obtained from the agricultural census and population and housing census of Iran as data matrix. The results show that which provinces have the most potential for capital formation in agronomy sub-sector. Taxonomy classifies organisms based on similar genetic traits in biology and botany. Numerical taxonomy using quantitative methods controls large amounts of information and get the number of samples and categories and take them based on inherent characteristics and differences indirectly accommodates. Numerical taxonomy is related to multivariate statistics.Keywords: Capital Formation, Factor Analysis, Multivariate statistics, Numerical Taxonomy Analysis, Production, Ranking, Spatial Planning
Procedia PDF Downloads 14110088 Study on 3D FE Analysis on Normal and Osteoporosis Mouse Models Based on 3-Point Bending Tests
Authors: Tae-min Byun, Chang-soo Chon, Dong-hyun Seo, Han-sung Kim, Bum-mo Ahn, Hui-suk Yun, Cheolwoong Ko
Abstract:
In this study, a 3-point bending computational analysis of normal and osteoporosis mouse models was performed based on the Micro-CT image information of the femurs. The finite element analysis (FEA) found 1.68 N (normal group) and 1.39 N (osteoporosis group) in the average maximum force, and 4.32 N/mm (normal group) and 3.56 N/mm (osteoporosis group) in the average stiffness. In the comparison of the 3-point bending test results, the maximum force and the stiffness were different about 9.4 times in the normal group and about 11.2 times in the osteoporosis group. The difference between the analysis and the test was greatly significant and this result demonstrated improvement points of the material properties applied to the computational analysis of this study. For the next study, the material properties of the mouse femur will be supplemented through additional computational analysis and test.Keywords: 3-point bending test, mouse, osteoporosis, FEA
Procedia PDF Downloads 35210087 The Effect of Microgrid on Power System Oscillatory Stability
Authors: Burak Yildirim, Muhsin Tunay Gencoglu
Abstract:
This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability
Procedia PDF Downloads 29310086 Efficient High Fidelity Signal Reconstruction Based on Level Crossing Sampling
Authors: Negar Riazifar, Nigel G. Stocks
Abstract:
This paper proposes strategies in level crossing (LC) sampling and reconstruction that provide high fidelity signal reconstruction for speech signals; these strategies circumvent the problem of exponentially increasing number of samples as the bit-depth is increased and hence are highly efficient. Specifically, the results indicate that the distribution of the intervals between samples is one of the key factors in the quality of signal reconstruction; including samples with short intervals do not improve the accuracy of the signal reconstruction, whilst samples with large intervals lead to numerical instability. The proposed sampling method, termed reduced conventional level crossing (RCLC) sampling, exploits redundancy between samples to improve the efficiency of the sampling without compromising performance. A reconstruction technique is also proposed that enhances the numerical stability through linear interpolation of samples separated by large intervals. Interpolation is demonstrated to improve the accuracy of the signal reconstruction in addition to the numerical stability. We further demonstrate that the RCLC and interpolation methods can give useful levels of signal recovery even if the average sampling rate is less than the Nyquist rate.Keywords: level crossing sampling, numerical stability, speech processing, trigonometric polynomial
Procedia PDF Downloads 14610085 On the Solution of Fractional-Order Dynamical Systems Endowed with Block Hybrid Methods
Authors: Kizito Ugochukwu Nwajeri
Abstract:
This paper presents a distinct approach to solving fractional dynamical systems using hybrid block methods (HBMs). Fractional calculus extends the concept of derivatives and integrals to non-integer orders and finds increasing application in fields such as physics, engineering, and finance. However, traditional numerical techniques often struggle to accurately capture the complex behaviors exhibited by these systems. To address this challenge, we develop HBMs that integrate single-step and multi-step methods, enabling the simultaneous computation of multiple solution points while maintaining high accuracy. Our approach employs polynomial interpolation and collocation techniques to derive a system of equations that effectively models the dynamics of fractional systems. We also directly incorporate boundary and initial conditions into the formulation, enhancing the stability and convergence properties of the numerical solution. An adaptive step-size mechanism is introduced to optimize performance based on the local behavior of the solution. Extensive numerical simulations are conducted to evaluate the proposed methods, demonstrating significant improvements in accuracy and efficiency compared to traditional numerical approaches. The results indicate that our hybrid block methods are robust and versatile, making them suitable for a wide range of applications involving fractional dynamical systems. This work contributes to the existing literature by providing an effective numerical framework for analyzing complex behaviors in fractional systems, thereby opening new avenues for research and practical implementation across various disciplines.Keywords: fractional calculus, numerical simulation, stability and convergence, Adaptive step-size mechanism, collocation methods
Procedia PDF Downloads 4810084 Geometrical Fluid Model for Blood Rheology and Pulsatile Flow in Stenosed Arteries
Authors: Karan Kamboj, Vikramjeet Singh, Vinod Kumar
Abstract:
Considering blood to be a non-Newtonian Carreau liquid, this indirect numerical model investigates the pulsatile blood flow in a constricted restricted conduit that has numerous gentle stenosis inside the view of an increasing body speed. Asymptotic answers are obtained for the flow rate, pressure inclination, speed profile, sheer divider pressure, and longitudinal impedance to stream after the use of the twofold irritation approach to the problem of the succeeding non-straight limit esteem. It has been observed that the speed of the blood increases when there is an increase in the point of tightening of the conduit, the body speed increase, and the power regulation file. However, this rheological manner of behaving changes to one of longitudinal impedance to stream and divider sheer pressure when each of the previously mentioned boundaries increases. It has also been seen that the sheer divider pressure in the bloodstream greatly increases when there is an increase in the maximum depth of the stenosis but that it significantly decreases when there is an increase in the pulsatile Reynolds number. This is an interesting phenomenon. The assessments of the amount of growth in the longitudinal resistance to flow increase overall with the increment of the maximum depth of the stenosis and the Weissenberg number. Additionally, it is noted that the average speed of blood increases noticeably with the growth of the point of tightening of the corridor, and body speed increases border. This is something that can be observed.Keywords: geometry of artery, pulsatile blood flow, numerous stenosis
Procedia PDF Downloads 9910083 Common Fixed Point Results and Stability of a Modified Jungck Iterative Scheme
Authors: Hudson Akewe
Abstract:
In this study, we introduce a modified Jungck (Dual Jungck) iterative scheme and use the scheme to approximate the unique common fixed point of a pair of generalized contractive-like operators in a Banach space. The iterative scheme is also shown to be stable with respect to the maps (S,T). An example is taken to justify the convergence of the scheme. Our result is a generalization and improvement of several results in the literature on single map T.Keywords: generalized contractive-like operators, modified Jungck iterative scheme, stability results, weakly compatible maps, unique common fixed point
Procedia PDF Downloads 34910082 A Comparison of Single Point Incremental Forming Formability between Carbon Steel and Stainless Steel
Authors: Kittiphat Rattanachan
Abstract:
The sheet metal forming process, the raw material mechanical properties are important parameters. This paper is to compare the wall’s incline angle or formability of SS 400 steel and SUS 304 stainless steel in single point incremental forming. The two materials are ferrous base alloy, which have the different cell unit, mechanical property and chemical composition. They were forming into cone shape specimens 100 mm diameter with different wall’s incline angle: 90o, 75o, and 60o. The investigation, the specimens were forming until the surface fracture was occurred. The experimental result showed that both materials with the smaller wall’s incline angle, the higher formability. The formability limited of the ferrous base alloy was approx. 60o wall’s incline angle. By nature, SS 400 was higher formability than SUS 304. This result could be used as the initial utilized data in designing the single point incremental forming parts.Keywords: NC incremental forming, single point incremental forming, wall incline angle, formability
Procedia PDF Downloads 34410081 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems
Authors: Malinwo Estone Ayikpa
Abstract:
With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.Keywords: Photovoltaic system, Primal-dual interior point method, Three-phase optimal power flow, Voltage unbalance
Procedia PDF Downloads 33310080 Perception of Nursing Care of Patients in a University Hospital
Authors: Merve Aydin, Mağfiret Kara Kaşikçi
Abstract:
Aim: To determine the perceptions of inpatients about care at Farabi Hospital in KTU. Material and Method: This research was conducted by using the universe known examples of formulas and probability selected by sampling method with 277 chosen patients in the hospital at least 14 days in other internal and surgical clinics except for pediatric, psychiatry, and intensive care unit services between January-March 2014 in KTU Farabi Hospital. The data was collected through the forms of nursing care perception scale of patients and defining characteristics of patients. In the evaluation of data, percentage, mean, Mann Whitney U, Student t and Kurskall Wallis tests were applied. Results: The average point the patients got in nursing care perception scale is 62.64±10.08’dir. 48.7 % of patients regard nursing care well and 36.8 % of them regard it very well. 19 % of the patients regard nursing care badly. When the age, sex, occupation, marital status, educational background, residential place, income level, hospitalization period, hospitalization clinic and having a hospital attendant were compared with nursing care perception average point, the difference among point averages was not found meaningful statistically (p > 0.05). The average point of nursing care perception was found greater in those having chronic disease (p < 0.05). Conclusion: The perception point of patients about nursing care is above the average according to the average of the lowest and highest points. The great majority of patients regard nursing care well or very well.Keywords: hospital, patient, perception of nursing care, nursing care
Procedia PDF Downloads 39610079 Multivariate Simulations of the Process of Forming the Automotive Connector Forging from ZK60 Alloy
Authors: Anna Dziubinska
Abstract:
The article presents the results of numerical simulations of the new forging process of the automotive connector forging from cast preform. The high-strength ZK60 alloy (belonging to the Mg-Zn-Zr group of Mg alloys) was selected for numerical tests. Currently, this part of the industry is produced by multi-stage forging consisting of operations: bending, preforming, and finishing. The use of the cast preform would enable forging this component in one operation. However, obtaining specific mechanical properties requires inducing a certain level of strain within the forged part. Therefore, the design of the preform, its shape, and volume are of paramount importance. In work presented in this article, preforms of different shapes were designed and assessed using Finite Element (FE) analysis. The research was funded by the Polish National Agency for Academic Exchange within the framework of the Bekker programme.Keywords: automotive connector, forging, magnesium alloy, numerical simulation, preform, ZK60
Procedia PDF Downloads 13310078 Numerical Investigation of Entropy Signatures in Fluid Turbulence: Poisson Equation for Pressure Transformation from Navier-Stokes Equation
Authors: Samuel Ahamefula Mba
Abstract:
Fluid turbulence is a complex and nonlinear phenomenon that occurs in various natural and industrial processes. Understanding turbulence remains a challenging task due to its intricate nature. One approach to gain insights into turbulence is through the study of entropy, which quantifies the disorder or randomness of a system. This research presents a numerical investigation of entropy signatures in fluid turbulence. The work is to develop a numerical framework to describe and analyse fluid turbulence in terms of entropy. This decomposes the turbulent flow field into different scales, ranging from large energy-containing eddies to small dissipative structures, thus establishing a correlation between entropy and other turbulence statistics. This entropy-based framework provides a powerful tool for understanding the underlying mechanisms driving turbulence and its impact on various phenomena. This work necessitates the derivation of the Poisson equation for pressure transformation of Navier-Stokes equation and using Chebyshev-Finite Difference techniques to effectively resolve it. To carry out the mathematical analysis, consider bounded domains with smooth solutions and non-periodic boundary conditions. To address this, a hybrid computational approach combining direct numerical simulation (DNS) and Large Eddy Simulation with Wall Models (LES-WM) is utilized to perform extensive simulations of turbulent flows. The potential impact ranges from industrial process optimization and improved prediction of weather patterns.Keywords: turbulence, Navier-Stokes equation, Poisson pressure equation, numerical investigation, Chebyshev-finite difference, hybrid computational approach, large Eddy simulation with wall models, direct numerical simulation
Procedia PDF Downloads 9410077 Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics
Authors: Yao Jie, Yeo Khoon Seng
Abstract:
In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical study with rigid wing assumption currently. The numerical model integrates the computational fluid dynamics of the flow and active control of wing kinematics to achieve stable flight. The computation grid is a hybrid consisting of background Cartesian nodes and clouds of mesh-free grids around immersed boundaries. The generalized finite difference method is used in conjunction with single value decomposition (SVD-GFD) in computational fluid dynamics solver to study the dynamics of a free hovering hummingbird hawkmoth. The longitudinal dynamics of the hovering flight is governed by three control parameters, i.e., wing plane angle, mean positional angle and wing beating frequency. In present work, a PID controller works out the appropriate control parameters with the insect motion as input. The controller is adjusted to acquire desired maneuvering of the insect flight. The numerical scheme in present study is proven to be accurate and stable to simulate the flight of the hummingbird hawkmoth, which has relatively high Reynolds number. The PID controller is responsive to provide feedback to the wing kinematics during the hovering flight. The simulated hovering flight agrees well with the real insect flight. The present numerical study offers a promising route to investigate the free flight aerodynamics of insects, which could overcome some of the limitations of experiments.Keywords: aerodynamics, flight control, computational fluid dynamics (CFD), flapping-wing flight
Procedia PDF Downloads 34810076 Studies on Pre-ignition Chamber Dynamics of Solid Rockets with Different Port Geometries
Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar
Abstract:
In this paper numerical studies have been carried out to examine the starting transient flow features of high-performance solid propellant rocket motors with different port geometries but with same propellant loading density. Numerical computations have been carried out using a 3D SST k-ω turbulence model. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second order implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations are employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create pre-ignition thrust oscillations due to flow unsteadiness and recirculation. Under these conditions the convective flux to the surface of the propellant will be enhanced, which will create reattachment point far downstream of the transition region and it will create a situation for secondary ignition and formation of multiple-flame fronts. As a result the effective time required for the complete burning surface area to be ignited comes down drastically giving rise to a high pressurization rate (dp/dt) in the second phase of starting transient. This in effect could lead to starting thrust oscillations and eventually a hard start of the solid rocket motor. We have also observed that the igniter temperature fluctuations will be diminished rapidly and will reach the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the thrust oscillations and unexpected thrust spike often observed in solid rockets with non-uniform ports are presumably contributed due to the joint effects of the geometry dependent driving forces, transient burning and the chamber gas dynamics forces. We also concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or pressure/thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.Keywords: ignition transient, solid rockets, starting transient, thrust transient
Procedia PDF Downloads 45110075 Artificial Intelligence in the Design of a Retaining Structure
Authors: Kelvin Lo
Abstract:
Nowadays, numerical modelling in geotechnical engineering is very common but sophisticated. Many advanced input settings and considerable computational efforts are required to optimize the design to reduce the construction cost. To optimize a design, it usually requires huge numerical models. If the optimization is conducted manually, there is a potentially dangerous consequence from human errors, and the time spent on the input and data extraction from output is significant. This paper presents an automation process introduced to numerical modelling (Plaxis 2D) of a trench excavation supported by a secant-pile retaining structure for a top-down tunnel project. Python code is adopted to control the process, and numerical modelling is conducted automatically in every 20m chainage along the 200m tunnel, with maximum retained height occurring in the middle chainage. Python code continuously changes the geological stratum and excavation depth under groundwater flow conditions in each 20m section. It automatically conducts trial and error to determine the required pile length and the use of props to achieve the required factor of safety and target displacement. Once the bending moment of the pile exceeds its capacity, it will increase in size. When the pile embedment reaches the default maximum length, it will turn on the prop system. Results showed that it saves time, increases efficiency, lowers design costs, and replaces human labor to minimize error.Keywords: automation, numerical modelling, Python, retaining structures
Procedia PDF Downloads 5310074 Numerical Analysis of the Coanda Effect on the Classical Interior Ejectors
Authors: Alexandru Dumitrache, Florin Frunzulica, Octavian Preotu
Abstract:
The flow mitigation detachment problem near solid surfaces, resulting in improved globally aerodynamic performance by exploiting the Coanda effect on surfaces, has been addressed extensively in the literature, since 1940. The research is carried on and further developed, using modern means of calculation and new experimental methods. In this paper, it is shown interest in the detailed behavior of a classical interior ejector assisted by the Coanda effect, used in propulsion systems. For numerical investigations, an implicit formulation of RANS equations for axisymmetric flow with a shear stress transport k- ω (SST model) turbulence model is used. The obtained numerical results emphasize the efficiency of the ejector, depending on the physical parameters of the flow and the geometric configuration. Furthermore, numerical investigations are carried out regarding the evolution of the Reynolds number when the jet is attached to the wall, considering three geometric configurations: sudden expansion, open cavity and sudden expansion with divergent at the inlet. Therefore, further insight into complexities involving issues such as the variety of flow structure and the related bifurcation and flow instabilities are provided. Thus, the conditions and the limits within which one can benefit from the advantages of Coanda-type flows are determined.Keywords: Coanda effect, Coanda ejector, CFD, stationary bifurcation, sudden expansion
Procedia PDF Downloads 21510073 Cover Spalling in Reinforced Concrete Columns
Authors: Bambang Piscesa, Mario M. Attard, Dwi Presetya, Ali K. Samani
Abstract:
A numerical strategy formulated using a plasticity approach is presented to model spalling of the concrete cover in reinforced concrete columns. The stage at which the concrete cover within reinforced concrete column spalls has a direct bearing on the load capacity. The concrete cover can prematurely spall before the full cross-section can be utilized if the concrete is very brittle under compression such as for very high strength concretes. If the confinement to the core is high enough, the column can achieve a higher peak load by utilizing the core. A numerical strategy is presented to model spalling of the concrete cover. Various numerical strategies are employed to model the behavior of reinforced concrete columns which include: (1) adjusting the material properties to incorporate restrained shrinkage; (2) modifying the plastic dilation rate in the presence of the tensile pressure; (3) adding a tension cut-off failure surface and (4) giving the concrete cover region and the column core different material properties. Numerical comparisons against experimental results are carried out that shown excellent agreement with the experimental results and justify the use of the proposed strategies to predict the axial load capacity of reinforce concrete columns.Keywords: spalling, concrete, plastic dilation, reinforced concrete columns
Procedia PDF Downloads 16010072 Transformation Strategies of the Nigerian Textile and Clothing Industries: The Integration of China Clothing Sector Model
Authors: Adetoun Adedotun Amubode
Abstract:
Nigeria's Textile Industry was the second largest in Africa after Egypt, with above 250 vibrant factories and over 50 percent capacity utilization contributing to foreign exchange earnings and employment generation. Currently, multifaceted challenges such as epileptic power supply, inconsistent government policies, growing digitalization, smuggling of foreign textiles, insecurity and the inability of the local industries to compete with foreign products, especially Chinese textile, has created a hostile environment for the sector. This led to the closure of most of the textile industries. China's textile industry has experienced institutional change and industrial restructuring, having 30% of the world's market share. This paper examined the strategies adopted by China in transforming her textile and clothing industries and designed a model for the integration of these strategies to improve the competitive strength and growth of the Nigerian textile and clothing industries in a dynamic and changing market. The paper concludes that institutional support, regional production, export-oriented policy, value-added and branding cultivation, technological upgrading and enterprise resource planning be integrated into the Nigerian clothing and textile industries.Keywords: clothing, industry, integration, Nigerian, textile, transformation.
Procedia PDF Downloads 16210071 Numerical Investigation the Effect of Adjustable Guide Vane for Improving the Airflow Rate in Axial Fans
Authors: Behzad Shahizare, N. Nik-Ghazali, Kannan M. Munisamy, Seyedsaeed Tabatabaeikia
Abstract:
The main objective of this study is to clarify the effect of the adjustable outlet guide vane (OGV) on the axial fan. Three-dimensional Numerical study was performed to analyze the effect of adjustable guide vane for improving the airflow rate in axial fans. Grid independence test was done between five different meshes in order to choose the reliable mesh. In flow analyses, Reynolds averaged Navier-Stokes (RANS) equations was solved using three types of turbulence models named k-ɛ, k-ω and k-ω SST. The aerodynamic performances of the fan and guide vane were evaluated. Numerical method was validated by comparing with experimental test according to AMECA 210 standard. Results showed that, by using the adjustable guide vane the airflow rate is increased around 3% to 6 %. The maximum enhancement of the airflow rate was achieved when pressure was 374pa.Keywords: axial fan, adjustable guide vane, CFD, turbo machinery
Procedia PDF Downloads 33810070 Numerical Prediction of Entropy Generation in Heat Exchangers
Authors: Nadia Allouache
Abstract:
The concept of second law is assumed to be important to optimize the energy losses in heat exchangers. The present study is devoted to the numerical prediction of entropy generation due to heat transfer and friction in a double tube heat exchanger partly or fully filled with a porous medium. The goal of this work is to find the optimal conditions that allow minimizing entropy generation. For this purpose, numerical modeling based on the control volume method is used to describe the flow and heat transfer phenomena in the fluid and the porous medium. Effects of the porous layer thickness, its permeability, and the effective thermal conductivity have been investigated. Unexpectedly, the fully porous heat exchanger yields a lower entropy generation than the partly porous case or the fluid case even if the friction increases the entropy generation.Keywords: heat exchangers, porous medium, second law approach, turbulent flow
Procedia PDF Downloads 30010069 Numerical Modeling of Determination of in situ Rock Mass Deformation Modulus Using the Plate Load Test
Authors: A. Khodabakhshi, A. Mortazavi
Abstract:
Accurate determination of rock mass deformation modulus, as an important design parameter, is one of the most controversial issues in most engineering projects. A 3D numerical model of standard plate load test (PLT) using the FLAC3D code was carried to investigate the mechanism governing the test process. Five objectives were the focus of this study. The first goal was to employ 3D modeling in the interpretation of PLT conducted at the Bazoft dam site, Iran. The second objective was to investigate the effect of displacements measuring depth from the loading plates on the calculated moduli. The magnitude of rock mass deformation modulus calculated from PLT depends on anchor depth, and in practice, this may be a cause of error in the selection of realistic deformation modulus for the rock mass. The third goal of the study was to investigate the effect of testing plate diameter on the calculated modulus. Moreover, a comparison of the calculated modulus from ISRM formula, numerical modeling and calculated modulus from the actual PLT carried out at right abutment of the Bazoft dam site was another objective of the study. Finally, the effect of plastic strains on the calculated moduli in each of the loading-unloading cycles for three loading plates was investigated. The geometry, material properties, and boundary conditions on the constructed 3D model were selected based on the in-situ conditions of PLT at Bazoft dam site. A good agreement was achieved between numerical model results and the field tests results.Keywords: deformation modulus, numerical model, plate loading test, rock mass
Procedia PDF Downloads 17110068 Surface Roughness Prediction Using Numerical Scheme and Adaptive Control
Authors: Michael K.O. Ayomoh, Khaled A. Abou-El-Hossein., Sameh F.M. Ghobashy
Abstract:
This paper proposes a numerical modelling scheme for surface roughness prediction. The approach is premised on the use of 3D difference analysis method enhanced with the use of feedback control loop where a set of adaptive weights are generated. The surface roughness values utilized in this paper were adapted from [1]. Their experiments were carried out using S55C high carbon steel. A comparison was further carried out between the proposed technique and those utilized in [1]. The experimental design has three cutting parameters namely: depth of cut, feed rate and cutting speed with twenty-seven experimental sample-space. The simulation trials conducted using Matlab software is of two sub-classes namely: prediction of the surface roughness readings for the non-boundary cutting combinations (NBCC) with the aid of the known surface roughness readings of the boundary cutting combinations (BCC). The following simulation involved the use of the predicted outputs from the NBCC to recover the surface roughness readings for the boundary cutting combinations (BCC). The simulation trial for the NBCC attained a state of total stability in the 7th iteration i.e. a point where the actual and desired roughness readings are equal such that error is minimized to zero by using a set of dynamic weights generated in every following simulation trial. A comparative study among the three methods showed that the proposed difference analysis technique with adaptive weight from feedback control, produced a much accurate output as against the abductive and regression analysis techniques presented in this.Keywords: Difference Analysis, Surface Roughness; Mesh- Analysis, Feedback control, Adaptive weight, Boundary Element
Procedia PDF Downloads 62210067 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module
Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati
Abstract:
The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.Keywords: incremental conductance algorithm, perturb and observe algorithm, photovoltaic system, simulation results
Procedia PDF Downloads 55710066 Study of the Persian Gulf’s and Oman Sea’s Numerical Tidal Currents
Authors: Fatemeh Sadat Sharifi
Abstract:
In this research, a barotropic model was employed to consider the tidal studies in the Persian Gulf and Oman Sea, where the only sufficient force was the tidal force. To do that, a finite-difference, free-surface model called Regional Ocean Modeling System (ROMS), was employed on the data over the Persian Gulf and Oman Sea. To analyze flow patterns of the region, the results of limited size model of The Finite Volume Community Ocean Model (FVCOM) were appropriated. The two points were determined since both are one of the most critical water body in case of the economy, biology, fishery, Shipping, navigation, and petroleum extraction. The OSU Tidal Prediction Software (OTPS) tide and observation data validated the modeled result. Next, tidal elevation and speed, and tidal analysis were interpreted. Preliminary results determine a significant accuracy in the tidal height compared with observation and OTPS data, declaring that tidal currents are highest in Hormuz Strait and the narrow and shallow region between Iranian coasts and Islands. Furthermore, tidal analysis clarifies that the M_2 component has the most significant value. Finally, the Persian Gulf tidal currents are divided into two branches: the first branch converts from south to Qatar and via United Arab Emirate rotates to Hormuz Strait. The secondary branch, in north and west, extends up to the highest point in the Persian Gulf and in the head of Gulf turns counterclockwise.Keywords: numerical model, barotropic tide, tidal currents, OSU tidal prediction software, OTPS
Procedia PDF Downloads 13310065 Numerical Simulation of Bio-Chemical Diffusion in Bone Scaffolds
Authors: Masoud Madadelahi, Amir Shamloo, Seyedeh Sara Salehi
Abstract:
Previously, some materials like solid metals and their alloys have been used as implants in human’s body. In order to amend fixation of these artificial hard human tissues, some porous structures have been introduced. In this way, tissues in vicinity of the porous structure can be attached more easily to the inserted implant. In particular, the porous bone scaffolds are useful since they can deliver important biomolecules like growth factors and proteins. This study focuses on the properties of the degradable porous hard tissues using a three-dimensional numerical Finite Element Method (FEM). The most important studied properties of these structures are diffusivity flux and concentration of different species like glucose, oxygen, and lactate. The process of cells migration into the scaffold is considered as a diffusion process, and related parameters are studied for different values of production/consumption rates.Keywords: bone scaffolds, diffusivity, numerical simulation, tissue engineering
Procedia PDF Downloads 38610064 The Effects of Integrating Knowledge Management and e-Learning: Productive Work and Learning Coverage
Authors: Ashraf Ibrahim Awad
Abstract:
It is important to formulate suitable learning environments ca-pable to be customized according to value perceptions of the university. In this paper, light is shed on the concepts of integration between knowledge management (KM), and e-learning (EL) in the higher education sector of the economy in Abu Dhabi Emirate, United Arab Emirates (UAE). A discussion on and how KM and EL can be integrated and leveraged for effective education and training is presented. The results are derived from the literature and interviews with 16 of the academics in eight universities in the Emirate. The conclusion is that KM and EL have much to offer each other, but this is not yet reflected at the implementation level, and their boundaries are not always clear. Interviews have shown that both concepts perceived to be closely related and, responsibilities for these initiatives are practiced by different departments or units.Keywords: knowledge management, e-learning, learning integration, universities, UAE
Procedia PDF Downloads 510