Search results for: tower footing impedance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 650

Search results for: tower footing impedance

620 Double Layer Security Model for Identification Friend or Foe

Authors: Buse T. Aydın, Enver Ozdemir

Abstract:

In this study, a double layer authentication scheme between the aircraft and the Air Traffic Control (ATC) tower is designed to prevent any unauthorized aircraft from introducing themselves as friends. The method is a combination of classical cryptographic methods and new generation physical layers. The first layer has employed the embedded key of the aircraft. The embedded key is assumed to installed during the construction of the utility. The other layer is a physical attribute (flight path, distance, etc.) between the aircraft and the ATC tower. We create a mathematical model so that two layers’ information is employed and an aircraft is authenticated as a friend or foe according to the accuracy of the results of the model. The results of the aircraft are compared with the results of the ATC tower and if the values found by the aircraft and ATC tower match within a certain error margin, we mark the aircraft as a friend. In this method, even if embedded key is captured by the enemy aircraft, without the information of the second layer, the enemy can easily be determined. Overall, in this work, we present a more reliable system by adding a physical layer in the authentication process.

Keywords: ADS-B, communication with physical layer security, cryptography, identification friend or foe

Procedia PDF Downloads 132
619 Study of the Transport of Multivalent Metal Cations Through Cation-Exchange Membranes by Electrochemical Impedance Spectroscopy

Authors: V. Pérez-Herranz, M. Pinel, E. M. Ortega, M. García-Gabaldón

Abstract:

In the present work, Electrochemical Impedance Spectrocopy (EIS) is applied to study the transport of different metal cations through a cation-exchange membrane. This technique enables the identification of the ionic-transport characteristics and to distinguish between different transport mechanisms occurring at different current density ranges. The impedance spectra are dependent on the applied dc current density, on the type of cation and on the concentration. When the applied dc current density increases, the diameter of the impedance spectra loops increases because all the components of membrane system resistance increase. The diameter of the impedance plots decreases in the order of Na(I), Ni(II) and Cr(III) due to the increased interactions between the negatively charged sulfonic groups of the membrane and the cations with greater charge. Nyquist plots are shifted towards lower values of the real impedance, and its diameter decreases with the increase of concentration due to the decrease of the solution resistance.

Keywords: ion-exchange membranes, Electrochemical Impedance Spectrocopy, multivalent metal cations, membrane system

Procedia PDF Downloads 497
618 Behaviour of Model Square Footing Resting on Three Dimensional Geogrid Reinforced Sand Bed

Authors: Femy M. Makkar, S. Chandrakaran, N. Sankar

Abstract:

The concept of reinforced earth has been used in the field of geotechnical engineering since 1960s, for many applications such as, construction of road and rail embankments, pavements, retaining walls, shallow foundations, soft ground improvement and so on. Conventionally, planar geosynthetic materials such as geotextiles and geogrids were used as the reinforcing elements. Recently, the use of three dimensional reinforcements becomes one of the emerging trends in this field. So, in the present investigation, three dimensional geogrid is proposed as a reinforcing material. Laboratory scaled plate load tests are conducted on a model square footing resting on 3D geogrid reinforced sand bed. The performance of 3D geogrids in triangular and square pattern was compared with conventional geogrids and the improvement in bearing capacity and reduction in settlement and heave are evaluated. When single layer of reinforcement was placed at an optimum depth of 0.25B from the bottom of the footing, the bearing capacity of conventional geogrid reinforced soil improved by 1.85 times compared to unreinforced soil, where as 3D geogrid reinforced soil with triangular pattern and square pattern shows 2.69 and 3.05 times improvement respectively compared to unreinforced soil. Also, 3D geogrids performs better than conventional geogrids in reducing the settlement and heave of sand bed around the model footing.

Keywords: 3D reinforcing elements, bearing capacity, heavy, settlement

Procedia PDF Downloads 270
617 The System for Root Canal Length Measurement Based on Multifrequency Impedance Method

Authors: Zheng Zhang, Xin Chen, Guoqing Ding

Abstract:

Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable.

Keywords: root canal length, apex locator, multifrequency impedance, sweep frequency

Procedia PDF Downloads 134
616 Impedance Based Biosensor for Agricultural Pathogen Detection

Authors: Rhea Patel, Madhuri Vinchurkar, Rajul Patkar, Gopal Pranjale, Maryam Shojaei Baghini

Abstract:

One of the major limitations on food resources worldwide is the deterioration of plant products due to pathogenic infections. Early screening of plants for pathogenic infections can serve as a boon in the Agricultural sector. The standard microbiology techniques has not kept pace with the rapid enumeration and automated methods for bacteria detection. Electrochemical Impedance Spectroscopy (EIS) serves as a label free bio sensing technique to monitor pathogens in real time. The changes in the electrical impedance of a growing bacterial culture can be monitored to detect activity of microorganisms. In this study, we demonstrate development of a gold interdigitated electrode (gold IDE) based impedance biosensor to detect bacterial cells in real on-field crop samples. To calibrate our impedance measurement system, nutrient broth suspended Escherichia coli cells were used. We extended this calibrated protocol to identify the agricultural pathogens in real potato tuber samples. Distinct difference was seen in the impedance recorded for the healthy and infected potato samples. Our results support the potential application of this Impedance based biosensor in Agricultural pathogen detection.

Keywords: agriculture, biosensor, electrochemical impedance spectroscopy, microelectrode, pathogen detection

Procedia PDF Downloads 122
615 Investigation of Existing Guidelines for Four-Legged Angular Telecommunication Tower

Authors: Sankara Ganesh Dhoopam, Phaneendra Aduri

Abstract:

Lattice towers are light weight structures which are primarily governed by the effects of wind loading. Ensuring a precise assessment of wind loads on the tower structure, antennas, and associated equipment is vital for the safety and efficiency of tower design. Earlier, the Indian standards are not available for design of telecom towers. Instead, the industry conventionally relied on the general building wind loading standard for calculating loads on tower components and the transmission line tower design standard for designing the angular members of the towers. Subsequently, the Bureau of Indian Standards (BIS) revised these standards and angular member design standard. While the transmission line towers are designed using the above standard, a full-scale model test will be done to prove the design. Telecom angular towers are also designed using the same with overload factor/factor of safety without full scale tower model testing. General construction in steel design code is available with limit state design approach and is applicable to the design of general structures involving angles and tubes but not used for angle member design of towers. Recently, in response to the evolving industry needs, the Bureau of Indian Standards (BIS) introduced a new standard titled “Isolated Towers, Masts, and Poles using structural steel -Code of practice” for the design of telecom towers. This study focuses on a 40m four legged angular tower to compare loading calculations and member designs between old and new standards. Additionally, a comparative analysis aligning with the new code provisions with international loading and design standards with a specific focus on American standards has been carried out. This paper elaborates code-based provisions used for load and member design calculations, including the influence of "ka" area averaging factor introduced in new wind load case.

Keywords: telecom, angular tower, PLS tower, GSM antenna, microwave antenna, IS 875(Part-3):2015, IS 802(Part-1/sec-2):2016, IS 800:2007, IS 17740:2022, ANSI/TIA-222G, ANSI/TIA-222H.

Procedia PDF Downloads 51
614 Numerical Analysis of Shallow Footing Rested on Geogrid Reinforced Sandy Soil

Authors: Seyed Abolhasan Naeini, Javad Shamsi Soosahab

Abstract:

The use of geosynthetic reinforcement within the footing soils is a very effective and useful method to avoid the construction of costly deep foundations. This study investigated the use of geosynthetics for soil improvement based on numerical modeling using FELA software. Pressure settlement behavior and bearing capacity ratio of foundation on geogrid reinforced sand is investigated and the effect of different parameters like as number of geogrid layers and vertical distance between elements in three different relative density soil is studied. The effects of geometrical parameters of reinforcement layers were studied for determining the optimal values to reach to maximum bearing capacity. The results indicated that the optimum range of the distance ratio between the reinforcement layers was achieved at 0.5 to 0.6 and after number of geogrid layers of 4, no significant effect on increasing the bearing capacity of footing on reinforced sandy with geogrid

Keywords: geogrid, reinforced sand, FELA software, distance ratio, number of geogrid layers

Procedia PDF Downloads 124
613 Influence Zone of Strip Footing on Untreated and Cement Treated Sand Mat Underlain by Soft Clay (2nd reviewed)

Authors: Sharifullah Ahmed

Abstract:

Shallow foundation on soft soils without ground improvement can represent a high level of settlement. In such a case, an alternative to pile foundations may be shallow strip footings placed on a soil system in which the upper layer is untreated or cement-treated compacted sand to limit the settlement within a permissible level. This research work deals with a rigid plane-strain strip footing of 2.5m width placed on a soil consisting of untreated or cement treated sand layer underlain by homogeneous soft clay. Both the thin and thick compared the footing width was considered. The soft inorganic cohesive NC clay layer is considered undrained for plastic loading stages and drained in consolidation stages, and the sand layer is drained in all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0 with a model consisting of clay deposits of 15m thickness and 18m width. The soft clay layer was modeled using the Hardening Soil Model, Soft Soil Model, Soft Soil Creep model, and the upper improvement layer was modeled using only the Hardening Soil Model. The system is considered fully saturated. The value of natural void ratio 1.2 is used. Total displacement fields of strip footing and subsoil layers in the case of Untreated and Cement treated Sand as Upper layer are presented. For Hi/B =0.6 or above, the distribution of major deformation within an upper layer and the influence zone of footing is limited in an upper layer which indicates the complete effectiveness of the upper layer in bearing the foundation effectively in case of the untreated upper layer. For Hi/B =0.3 or above, the distribution of major deformation occurred within an upper layer, and the function of footing is limited in the upper layer. This indicates the complete effectiveness of the cement-treated upper layer. Brittle behavior of cemented sand and fracture or cracks is not considered in this analysis.

Keywords: displacement, ground improvement, influence depth, PLAXIS 2D, primary and secondary settlement, sand mat, soft clay

Procedia PDF Downloads 71
612 Seismic Inversion to Improve the Reservoir Characterization: Case Study in Central Blue Nile Basin, Sudan

Authors: Safwat E. Musa, Nuha E. Mohamed, Nuha A. Bagi

Abstract:

In this study, several crossplots of the P-impedance with the lithology logs (gamma ray, neutron porosity, deep resistivity, water saturation and Vp/Vs curves) were made in three available wells, which were drilled in central part of the Blue Nile basin in depths varies from 1460 m to 1600 m. These crossplots were successful to discriminate between sand and shale when using P-Impedance values, and between the wet sand and the pay sand when using both P-impedance and Vp/Vs together. Also, some impedance sections were converted to porosity sections using linear formula to characterize the reservoir in terms of porosity. The used crossplots were created on log resolution, while the seismic resolution can identify only the reservoir, unless a 3D seismic angle stacks were available; then it would be easier to identify the pay sand with great confidence; through high resolution seismic inversion and geostatistical approach when using P-impedance and Vp/Vs volumes.

Keywords: basin, Blue Nile, inversion, seismic

Procedia PDF Downloads 409
611 Effect of Footing Shape on Bearing Capacity and Settlement of Closely Spaced Footings on Sandy Soil

Authors: A. Shafaghat, H. Khabbaz, S. Moravej, Ah. Shafaghat

Abstract:

The bearing capacity of closely spaced shallow footings alters with their spacing and the shape of footing. In this study, the bearing capacity and settlement of two adjacent footings constructed on a sand layer are investigated. The effect of different footing shapes including square, circular, ring and strip on sandy soil is captured in the calculations. The investigations are carried out numerically using PLAXIS-3D software and analytically employing conventional settlement equations. For this purpose, foundations are modelled in the program with practical dimensions and various spacing ratios ranging from 1 to 5. The spacing ratio is defined as the centre-to-centre distance to the width of foundations (S/B). Overall, 24 models are analyzed; and the results are compared and discussed in detail. It can be concluded that the presence of adjacent foundation leads to the reduction in bearing capacity for round shape footings while it can increase the bearing capacity of rectangular footings in some specific distances.

Keywords: bearing capacity, finite element analysis, loose sand, settlement equations, shallow foundation

Procedia PDF Downloads 235
610 Impedance Matching of Axial Mode Helical Antennas

Authors: Hossein Mardani, Neil Buchanan, Robert Cahill, Vincent Fusco

Abstract:

In this paper, we study the input impedance characteristics of axial mode helical antennas to find an effective way for matching it to 50 Ω. The study is done on the important matching parameters such as like wire diameter and helix to the ground plane gap. It is intended that these parameters control the matching without detrimentally affecting the radiation pattern. Using transmission line theory, a simple broadband technique is proposed, which is applicable for perfect matching of antennas with similar design parameters. We provide design curves to help to choose the proper dimensions of the matching section based on the antenna’s unmatched input impedance. Finally, using the proposed technique, a 4-turn axial mode helix is designed at 2.5 GHz center frequency and the measurement results of the manufactured antenna will be included. This parametric study gives a good insight into the input impedance characteristics of axial mode helical antennas and the proposed impedance matching approach provides a simple, useful method for matching these types of antennas.

Keywords: antenna, helix, helical, axial mode, wireless power transfer, impedance matching

Procedia PDF Downloads 282
609 A Numerical Studies for Improving the Performance of Vertical Axis Wind Turbine by a Wind Power Tower

Authors: Soo-Yong Cho, Chong-Hyun Cho, Chae-Whan Rim, Sang-Kyu Choi, Jin-Gyun Kim, Ju-Seok Nam

Abstract:

Recently, vertical axis wind turbines (VAWT) have been widely used to produce electricity even in urban. They have several merits such as low sound noise, easy installation of the generator and simple structure without yaw-control mechanism and so on. However, their blades are operated under the influence of the trailing vortices generated by the preceding blades. This phenomenon deteriorates its output power and makes difficulty predicting correctly its performance. In order to improve the performance of VAWT, wind power towers can be applied. Usually, the wind power tower can be constructed as a multi-story building to increase the frontal area of the wind stream. Hence, multiple sets of the VAWT can be installed within the wind power tower, and they can be operated at high elevation. Many different types of wind power tower can be used in the field. In this study, a wind power tower with circular column shape was applied, and the VAWT was installed at the center of the wind power tower. Seven guide walls were used as a strut between the floors of the wind power tower. These guide walls were utilized not only to increase the wind velocity within the wind power tower but also to adjust the wind direction for making a better working condition on the VAWT. Hence, some important design variables, such as the distance between the wind turbine and the guide wall, the outer diameter of the wind power tower, the direction of the guide wall against the wind direction, should be considered to enhance the output power on the VAWT. A numerical analysis was conducted to find the optimum dimension on design variables by using the computational fluid dynamics (CFD) among many prediction methods. The CFD could be an accurate prediction method compared with the stream-tube methods. In order to obtain the accurate results in the CFD, it needs the transient analysis and the full three-dimensional (3-D) computation. However, this full 3-D CFD could be hard to be a practical tool because it requires huge computation time. Therefore, the reduced computational domain is applied as a practical method. In this study, the computations were conducted in the reduced computational domain and they were compared with the experimental results in the literature. It was examined the mechanism of the difference between the experimental results and the computational results. The computed results showed this computational method could be an effective method in the design methodology using the optimization algorithm. After validation of the numerical method, the CFD on the wind power tower was conducted with the important design variables affecting the performance of VAWT. The results showed that the output power of the VAWT obtained using the wind power tower was increased compared to them obtained without the wind power tower. In addition, they showed that the increased output power on the wind turbine depended greatly on the dimension of the guide wall.

Keywords: CFD, performance, VAWT, wind power tower

Procedia PDF Downloads 360
608 Characterization of Graphene Oxide Coated Gold Electrodes for Bioimpedance Measurements

Authors: Fatma Gülden Şi̇mşek, Osman Meli̇h Can, Mehmet Yumak, Bora Gari̇pcan, Yekta Ülgen

Abstract:

In this study, the impedance spectroscopy is used as a detection tool in order to characterize surface coating with graphene oxide. Gold electrodes are produced by standard lithography procedures and then coated with graphene oxide using self-assembly method. The impedance of redox solution through bare gold electrodes and graphene oxide coated gold electrodes is measured in the low and high frequency range. The graphene oxide coating reduces the impedance value of the gold electrode and this reduction is distinguishable in the low-frequency range.

Keywords: bioimpedance, electrode characterization, graphene oxide, gold electrodes, impedance spectroscopy

Procedia PDF Downloads 519
607 Establishing the Optimum Location of a Single Tower Crane Using a Smart Mathematical Model

Authors: Yasser Abo El-Magd, Wael Fawzy Mohamed

Abstract:

Due to the great development in construction and building field, there are many projects and huge works appeared which consume many construction materials. Accordingly, that causes difficulty in handling traditional transportation means (ordinary cranes) due to their limited capacity; there is an urgent need to use high capacity cranes such as tower cranes. However, with regard to their high expense, we have to take into consideration selecting what type of cranes to be utilized which has been discussed by many researchers. In this research, a proposed technique was created to select the suitable type of crane and the best place for crane erection, in addition to minimum radius for requested crane in order to minimize cost. To fulfill that target, a computer program is designed to numerate these problems, demonstrating an example explaining how to apply program and the result donated the best place.

Keywords: tower crane, jib length, operating time, location, feasible area

Procedia PDF Downloads 194
606 A Novel Solution to Restricted Earth Fault Low Impedance Relay Mal Operation

Authors: K. N. Dinesh Babu, R. Ramaprabha, V. Rajini, V. Nagarajan

Abstract:

In this paper, the various methods of providing restricted earth fault protection are discussed. The proper operation of high and low impedance restricted earth fault (REF) protection for various applications has been discussed. The mal operation of a relay due to improper placement of CTs has been identified and a simple/unique solution has been proposed in this work with a case study. Moreover, it is found that the proper placement of CT in high impedance method will provide the same result with reduced CT. This methododlocy has been successfully implemented in Al Takreer refinery for a 2000 KVA transformer. The outcome of the paper may be included in IEEEC37.91 standard to give the proper guidance for protection engineers to sort out the problems related to mal functioning of REF relays.

Keywords: relay mal operation, transformer, low impedance REF, MATLAB, 64R, IEEE C37.91

Procedia PDF Downloads 511
605 Symbolic Analysis of Power Spectrum of CMOS Cross Couple Oscillator

Authors: Kittipong Tripetch

Abstract:

This paper proposes for the first time symbolic formula of the power spectrum of cross couple oscillator and its modified circuit. Many principle existed to derived power spectrum in microwave textbook such as impedance, admittance parameters, ABCD, H parameters, etc. It can be compared by graph of power spectrum which methodology is the best from the point of view of practical measurement setup such as condition of impedance parameter which used superposition of current to derived (its current injection of the other port of the circuit is zero, which is impossible in reality). Four Graphs of impedance parameters of cross couple oscillator is proposed. After that four graphs of Scattering parameters of cross couple oscillator will be shown.

Keywords: optimization, power spectrum, impedance parameters, scattering parameter

Procedia PDF Downloads 436
604 Thermo-Economic Analysis of a Natural Draft Direct Cooling System for a Molten Salt Power Tower

Authors: Huiqiang Yang, Domingo Santana

Abstract:

Reducing parasitic power consumption of concentrating solar power plants is the main challenge to increase the overall efficiency, particularly for molten salt tower technology. One of the most effective approaches to reduce the parasitic power consumption is to implement a natural draft dry cooling system instead of the standard utilized mechanical draft dry cooling system. In this paper, a thermo-economic analysis of a natural draft direct cooling system was performed based on a 100MWe commercial scale molten salt power plant. In this configuration with a natural draft direct cooling system, the exhaust steam from steam turbine flows directly to the heat exchanger bundles inside the natural draft dry cooling tower, which eliminates the power consumption of circulation pumps or fans, although the cooling tower shadows a portion of the heliostat field. The simulation results also show that compared to a mechanical draft cooling system the annual solar field efficiency is decreased by about 0.2% due to the shadow, which is equal to a reduction of approximately 13% of the solar field area. As a contrast, reducing the solar field size by 13% in purpose in a molten salt power plant with a natural draft drying cooling system actually will lead to a reduction of levelized cost of electricity (LCOE) by about 4.06% without interfering the power generated.

Keywords: molten salt power tower, natural draft dry cooling, parasitic power consumption, commercial scale

Procedia PDF Downloads 141
603 Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field

Authors: Nastaran Moosavi, Mohammad Mokhtari

Abstract:

Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs.

Keywords: density, p-impedance, s-impedance, post-stack seismic inversion, pre-stack seismic inversion

Procedia PDF Downloads 297
602 Investigation of Design Process of an Impedance Matching in the Specific Frequency for Radio Frequency Application

Authors: H. Nabaei, M. Joghataie

Abstract:

In this article, we study the design methods of matched filter with commercial software including CST Studio and ADS in specific frequency: 900 MHz. At first, we select two amounts of impedance for studying matching of them. Then, using by matched filter utility tool in ADS software, we simulate and deviate the elements of matched filters. In the following, we implement matched filter in CST STUDIO software. The simulated results show the great conformity in this field. Also, we peruse scattering and Impedance parameters in the Derivative structure. Finally, the layout of matched filter is obtained by the schematic tool of CST STUDIO. In fact, here, we present the design process of matched filters in the specific frequency.

Keywords: impedance matching, lumped element, transmission line, maximum power transmission, 3D layout

Procedia PDF Downloads 474
601 Modeling of Wind Loads on Heliostats Installed in South Algeria of Various Pylon Height

Authors: Hakim Merarda, Mounir Aksas, Toufik Arrif, Abd Elfateh Belaid, Amor Gama, Reski Khelifi

Abstract:

Knowledge of wind loads is important to develop a heliostat with good performance. These loads can be calculated by mathematical equations based on several parameters: the density, wind velocity, the aspect ratio of the mirror (height/width) and the coefficient of the height of the tower. Measurement data of the wind velocity and the density of the air are used in a numerical simulation of wind profile that was performed on heliostats with different pylon heights, with 1m^2 mirror areas and with aspect ratio of mirror equal to 1. These measurement data are taken from the meteorological station installed in Ghardaia, Algeria. The main aim of this work is to find a mathematical correlation between the wind loads and the height of the tower.

Keywords: heliostat, solar tower power, wind loads simulation, South Algeria

Procedia PDF Downloads 530
600 Circular Raft Footings Strengthened by Stone Columns under Static Loads

Authors: R. Ziaie Moayed, B. Mohammadi-Haji

Abstract:

Stone columns have been widely employed to improve the load-settlement characteristics of soft soils. The results of two small scale displacement control loading tests on stone columns were used in order to validate numerical finite element simulations. Additionally, a series of numerical calculations of static loading have been performed on strengthened raft footing to investigate the effects of using stone columns on bearing capacity of footings. The bearing capacity of single and group of stone columns under static loading compares with unimproved ground.

Keywords: circular raft footing, numerical analysis, validation, vertically encased stone column

Procedia PDF Downloads 285
599 Experimental and Numerical Analysis of a Historical Bell Tower

Authors: Milorad Pavlovic, Sebastiano Trevisani, Antonella Cecchi

Abstract:

In this paper, a procedure for the evaluation of seismic behavior of slender masonry structures (towers, bell towers, chimneys, minarets, etc.) is presented. The presented procedure is based on a full three-dimensional modal analyses and frequency measurements. As well-known, masonry is a composite material formed by bricks, or stone blocks, and mortar arranged more or less regularly and adopted for many centuries as structural material. Dynamic actions may represent the major risk of collapse of brickworks, and despite the progress achieved so far in science and mechanics; the assessment of their seismic performance remains a challenging task. Then, reliable physical and numerical models are worthy of recommendation. In this paper, attention is paid to the historical bell tower of the Basilica of Santa Maria Gloriosa dei Frari - usually called Frari - one of the greatest churches in Venice, Italy.

Keywords: bell tower, FEM, masonry, modal analysis, non-destructive testing

Procedia PDF Downloads 330
598 Enhancing Tower Crane Safety: A UAV-based Intelligent Inspection Approach

Authors: Xin Jiao, Xin Zhang, Jian Fan, Zhenwei Cai, Yiming Xu

Abstract:

Tower cranes play a crucial role in the construction industry, facilitating the vertical and horizontal movement of materials and aiding in building construction, especially for high-rise structures. However, tower crane accidents can lead to severe consequences, highlighting the importance of effective safety management and inspection. This paper presents an innovative approach to tower crane inspection utilizing Unmanned Aerial Vehicles (UAVs) and an Intelligent Inspection APP System. The system leverages UAVs equipped with high-definition cameras to conduct efficient and comprehensive inspections, reducing manual labor, inspection time, and risk. By integrating advanced technologies such as Real-Time Kinematic (RTK) positioning and digital image processing, the system enables precise route planning and collection of safety hazards images. A case study conducted on a construction site demonstrates the practicality and effectiveness of the proposed method, showcasing its potential to enhance tower crane safety. On-site testing of UAV intelligent inspections reveals key findings: efficient tower crane hazard inspection within 30 minutes, with a full-identification capability coverage rates of 76.3%, 64.8%, and 76.2% for major, significant, and general hazards respectively and a preliminary-identification capability coverage rates of 18.5%, 27.2%, and 19%, respectively. Notably, UAVs effectively identify various tower crane hazards, except for those requiring auditory detection. The limitations of this study primarily involve two aspects: Firstly, during the initial inspection, manual drone piloting is required for marking tower crane points, followed by automated flight inspections and reuse based on the marked route. Secondly, images captured by the drone necessitate manual identification and review, which can be time-consuming for equipment management personnel, particularly when dealing with a large volume of images. Subsequent research efforts will focus on AI training and recognition of safety hazard images, as well as the automatic generation of inspection reports and corrective management based on recognition results. The ongoing development in this area is currently in progress, and outcomes will be released at an appropriate time.

Keywords: tower crane, inspection, unmanned aerial vehicle (UAV), intelligent inspection app system, safety management

Procedia PDF Downloads 20
597 Load Characteristics of Improved Howland Current Pump for Bio-Impedance Measurement

Authors: Zhao Weijie, Lin Xinjian, Liu Xiaojuan, Li Lihua

Abstract:

The Howland current pump is widely used in bio-impedance measurement. Much attention has been focused on the output impedance of the Howland circuit. Here we focus on the maximum load of the Howland source and discuss the relationship between the circuit parameters at maximum load. We conclude that the signal input terminal of the feedback resistor should be as large as possible, but that the current-limiting resistor should be smaller. The op-amp saturation voltage should also be high. The bandwidth of the circuit is proportional to the bandwidth of the op-amp. The Howland current pump was simulated using multisim12. When the AD8066AR was selected as the op-amp, the maximum load was 11.5 kΩ, and the Howland current pump had a stable output ipp to 2mAp up to 200 kHz. However, with an OPA847 op-amp and a load of 6.3 kΩ, the output current was also stable, and the frequency was as high as 3 MHz.

Keywords: bio-impedance, improved Howland current pump, load characteristics, bioengineering

Procedia PDF Downloads 493
596 A New Microstrip Diplexer Using Coupled Stepped Impedance Resonators

Authors: A. Chinig, J. Zbitou, A. Errkik, L. Elabdellaoui, A. Tajmouati, A. Tribak, M. Latrach

Abstract:

This paper presents a new structure of microstrip band pass filter (BPF) based on coupled stepped impedance resonators. Each filter consists of two coupled stepped impedance resonators connected to microstrip feed lines. The coupled junction is utilized to connect the two BPFs to the antenna. This two band pass filters are designed and simulated to operate for the digital communication system (DCS) and Industrial Scientific and Medical (ISM) bands at 1.8 GHz and 2.45 GHz respectively. The proposed circuit presents good performances with an insertion loss lower than 2.3 dB and isolation between the two channels greater than 21 dB. The prototype of the optimized diplexer have been investigated numerically by using ADS Agilent and verified with CST microwave software.

Keywords: band pass filter, coupled junction, coupled stepped impedance resonators, diplexer, insertion loss, isolation

Procedia PDF Downloads 413
595 Comparative Study of Impedance Parameters for 42CrMo4 Steel Nitrided and Exposed at Electrochemical Corrosion

Authors: M. H. Belahssen, S. Benramache

Abstract:

This paper presents corrosion behavior of alloy 42CrMo4 steel nitrided by plasma. Different samples nitrided were tested. The corrosion behavior was evaluated by electrochemical impedance spectroscopy and the tests were carried out in acid chloride solution 1M. The best corrosion protection was observed for nitrided samples. The aim of this work is to compare equivalents circuits corresponding to Nyquist curves simulated and experimental and select who gives best results of impedance parameters with lowest error.

Keywords: pasma nitriding, steel, alloy 42CrMo4, elecrochemistry, corrosion behavior

Procedia PDF Downloads 335
594 A Case Study on the Collapse Assessment of the Steel Moment-Frame Setback High-Rise Tower

Authors: Marzie Shahini, Rasoul Mirghaderi

Abstract:

This paper describes collapse assessments of a steel moment-frame high-rise tower with setback irregularity, designed per the 2010 ASCE7 code, under spectral-matched ground motion records. To estimate a safety margin against life-threatening collapse, an analytical model of the tower is subjected to a suite of ground motions with incremental intensities from maximum considered earthquake hazard level to the incipient collapse level. Capability of the structural system to collapse prevention is evaluated based on the similar methodology reported in FEMA P695. Structural performance parameters in terms of maximum/mean inter-story drift ratios, residual drift ratios, and maximum plastic hinge rotations are also compared to the acceptance criteria recommended by the TBI Guidelines. The results demonstrate that the structural system satisfactorily safeguards the building against collapse. Moreover, for this tower, the code-specified requirements in ASCE7-10 are reasonably adequate to satisfy seismic performance criteria developed in the TBI Guidelines for the maximum considered earthquake hazard level.

Keywords: high-rise buildings, set back, residual drift, seismic performance

Procedia PDF Downloads 239
593 Double Layer Security Authentication Model for Automatic Dependent Surveillance-Broadcast

Authors: Buse T. Aydin, Enver Ozdemir

Abstract:

An automatic dependent surveillance-broadcast (ADS-B) system has serious security problems. In this study, a double layer authentication scheme between the aircraft and ground station, aircraft to aircraft, ground station to ATC tower is designed to prevent any unauthorized aircrafts from introducing themselves as friends. This method can be used as a solution to the problem of authentication. The method is a combination of classical cryptographic methods and new generation physical layers. The first layer has employed the embedded key of the aircraft. The embedded key is assumed to installed during the construction of the utility. The other layer is a physical attribute (flight path, distance, etc.) between the aircraft and the ATC tower. We create a mathematical model so that two layers’ information is employed and an aircraft is authenticated as a friend or unknown according to the accuracy of the results of the model. The results of the aircraft are compared with the results of the ATC tower and if the values found by the aircraft and ATC tower match within a certain error margin, we mark the aircraft as friend. As a result, the ADS-B messages coming from this authenticated friendly aircraft will be processed. In this method, even if the embedded key is captured by the unknown aircraft, without the information of the second layer, the unknown aircraft can easily be determined. Overall, in this work, we present a reliable system by adding physical layer in the authentication process.

Keywords: ADS-B, authentication, communication with physical layer security, cryptography, identification friend or foe

Procedia PDF Downloads 151
592 Time-Domain Analysis Approaches of Soil-Structure Interaction: A Comparative Study

Authors: Abdelrahman Taha, Niloofar Malekghaini, Hamed Ebrahimian, Ramin Motamed

Abstract:

This paper compares the substructure and direct methods for soil-structure interaction (SSI) analysis in the time domain. In the substructure SSI method, the soil domain is replaced by a set of springs and dashpots, also referred to as the impedance function, derived through the study of the behavior of a massless rigid foundation. The impedance function is inherently frequency dependent, i.e., it varies as a function of the frequency content of the structural response. To use the frequency-dependent impedance function for time-domain SSI analysis, the impedance function is approximated at the fundamental frequency of the structure-soil system. To explore the potential limitations of the substructure modeling process, a two-dimensional reinforced concrete frame structure is modeled using substructure and direct methods in this study. The results show discrepancies between the simulated responses of the substructure and the direct approaches. To isolate the effects of higher modal responses, the same study is repeated using a harmonic input motion, in which a similar discrepancy is still observed between the substructure and direct approaches. It is concluded that the main source of discrepancy between the substructure and direct SSI approaches is likely attributed to the way the impedance functions are calculated, i.e., assuming a massless rigid foundation without considering the presence of the superstructure. Hence, a refined impedance function, considering the presence of the superstructure, shall be developed. This refined impedance function is expected to significantly improve the simulation accuracy of the substructure approach for structural systems whose behavior is dominated by the fundamental mode response.

Keywords: direct approach, impedance function, soil-structure interaction, substructure approach

Procedia PDF Downloads 93
591 Implicit Force Control of a Position Controlled Robot - A Comparison with Explicit Algorithms

Authors: Alexander Winkler, Jozef Suchý

Abstract:

This paper investigates simple implicit force control algorithms realizable with industrial robots. A lot of approaches already published are difficult to implement in commercial robot controllers, because the access to the robot joint torques is necessary or the complete dynamic model of the manipulator is used. In the past we already deal with explicit force control of a position controlled robot. Well known schemes of implicit force control are stiffness control, damping control and impedance control. Using such algorithms the contact force cannot be set directly. It is further the result of controller impedance, environment impedance and the commanded robot motion/position. The relationships of these properties are worked out in this paper in detail for the chosen implicit approaches. They have been adapted to be implementable on a position controlled robot. The behaviors of stiffness control and damping control are verified by practical experiments. For this purpose a suitable test bed was configured. Using the full mechanical impedance within the controller structure will not be practical in the case when the robot is in physical contact with the environment. This fact will be verified by simulation.

Keywords: robot force control, stiffness control, damping control, impedance control, stability

Procedia PDF Downloads 496