Search results for: hydroxyapatite powder
1001 Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications
Authors: Sara Mercedes Barroso Pinzón, Antonio Javier Sanchéz Herencia, Begoña Ferrari, Álvaro Jesús Castro
Abstract:
The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated.Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials
Procedia PDF Downloads 511000 Experimental Study of Iron Metal Powder Compacting by Controlled Impact
Authors: Todor N. Penchev, Dimitar N. Karastoianov, Stanislav D. Gyoshev
Abstract:
For compacting of iron powder are used hydraulic presses and high velocity hammers. In this paper are presented initial research on application of an innovative powder compacting method, which uses a hammer working with controlled impact. The results show that by this method achieves the reduction of rebounds and improve efficiency of impact, compared with a high-speed compacting. Depending on the power of the engine (industrial rocket engine), this effect may be amplified to such an extent as to obtain a impact without rebound (sticking impact) and in long-time action of the impact force.Keywords: powder metallurgy, impact, iron powder compacting, rocket engine
Procedia PDF Downloads 522999 Powder Flow with Normalized Powder Particles Size Distribution and Temperature Analyses in Laser Melting Deposition: Analytical Modelling and Experimental Validation
Authors: Muhammad Arif Mahmood, Andrei C. Popescu, Mihai Oane, Diana Chioibascu, Carmen Ristoscu, Ion N. Mihailescu
Abstract:
Powder flow and temperature distributions are recognized as influencing factors during laser melting deposition (LMD) process, that not only affect the consolidation rate but also characteristics of the deposited layers. Herewith, two simplified analytical models will be presented to simulate the powder flow with the inclusion of powder particles size distribution in Gaussian form, under three powder jet nozzles, and temperature analyses during LMD process. The output of the 1st model will serve as the input in the 2nd model. The models will be validated with experimental data, i.e., weight measurement method for powder particles distribution and infrared imaging for temperature analyses. This study will increase the cost-efficiency of the LMD process by adjustment of the operating parameters for reaching optimal powder debit and energy. This research has received funds under the Marie Sklodowska-Curie grant agreement No. 764935, from the European Union’s Horizon 2020 research and innovation program.Keywords: laser additive manufacturing, powder particles size distribution in Gaussian form, powder stream distribution, temperature analyses
Procedia PDF Downloads 136998 XRD and Image Analysis of Low Carbon Type Recycled Cement Using Waste Cementitious Powder
Authors: Hyeonuk Shin, Hun Song, Yongsik Chu, Jongkyu Lee, Dongcheon Park
Abstract:
Although much current research has been devoted to reusing concrete in the form of recycled aggregate, insufficient attention has been given to researching the utilization of waste concrete powder, which constitutes 20 % or more of waste concrete and therefore the majority of waste cementitious powder is currently being discarded or buried in landfills. This study consists of foundational research for the purpose of reusing waste cementitious powder in the form of recycled cement that can answer the need for low carbon green growth. Progressing beyond the conventional practice of using the waste cementitious powder as inert filler material, this study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste cementitious powder, by presenting a pre-treatment method for the material and an optimal method of proportioning the mix of materials to develop a low carbon type of recycled cement.Keywords: Low carbon type cement, Waste cementitious powder, Waste recycling
Procedia PDF Downloads 465997 Development and Characterization of Hydroxyapatite Based Nanocomposites for Local Drug Delivery to Periodontal Pockets
Authors: Indu Lata Kanwar, Preeti K. Suresh
Abstract:
The aim of this study is to fabricate hydroxyapatite based nanocomposites for local drug delivery in periodontal pockets. Hydroxyapatite is chemically similar to the mineral component of bones and hard tissues in mammals. Synthetic biocompatibility and bioactivity with human teeth and bone, making it very attractive for biomedical applications. Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometres (nm), or structures having nanoscale repeat distances between the different phases that make up the material. Nanostructured calcium phosphate materials play an important role in the formation of hard tissues in nature. It is reported that calcium phosphates materials in nano-size can mimic the dimensions of constituent components of calcified tissues. Nano-sized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. The specific biological properties of the nanocomposites, as well as their interaction with cells, include the use of bioactive molecules. The approach of periodontal tissue engineering is considered promising to restore bone defect through the use of engineered materials with the aim that they will prohibit the invasion of fibrous connective tissue and help repair the function during bone regeneration.Keywords: bioactive, hydroxyapatite, nanocomposities, periondontal
Procedia PDF Downloads 325996 Production and Characterization of Silver Doped Hydroxyapatite Thin Films for Biomedical Applications
Authors: C. L Popa, C.S. Ciobanu, S. L. Iconaru, P. Chapon, A. Costescu, P. Le Coustumer, D. Predoi
Abstract:
In this paper, the preparation and characterization of silver doped hydroxyapatite thin films and their antimicrobial activity characterized is reported. The resultant Ag: HAp films coated on commercially pure Si disks substrates were systematically characterized by Scanning Electron Microscopy (SEM) coupled with X-ray Energy Dispersive Spectroscopy detector (X-EDS), Glow Discharge Optical Emission Spectroscopy (GDOES) and Fourier Transform Infrared spectroscopy (FT-IR). GDOES measurements show that a substantial Ag content has been deposited in the films. The X-EDS and GDOES spectra revealed the presence of a material composed mainly of phosphate, calcium, oxygen, hydrogen and silver. The antimicrobial efficiency of Ag:HAp thin films against Escherichia coli and Staphylococcus aureus bacteria was demonstrated. Ag:HAp thin films could lead to a decrease of infections especially in the case of bone and dental implants by surface modification of implantable medical devices.Keywords: silver, hydroxyapatite, thin films, GDOES, SEM, FTIR, antimicrobial effect
Procedia PDF Downloads 426995 Starch Incorporated Hydroxyapatite/Chitin Nanocomposite as a Novel Bone Construct
Authors: Reshma Jolly, Mohammad Shakir, Mohammad Shoeb Khan, Noor E. Iram
Abstract:
A nanocomposite system integrating hydroxyapatite, chitin and starch (n-HA/CT/ST) has been synthesized via co-precipitation approach at room temperature, addressing the issues of biocompatibility, mechanical strength and cytotoxicity required for Bone tissue engineering. The interactions, crystallite size and surface morphology against n-HA/CT (nano-hydroxyapatite/chitin) nanocomposite have been obtained by correlating and comparing the results of FTIR, SEM, TEM and XRD. The comparative study of the bioactivity of n-HA/CT and n-HA/CT/ST nanocomposites revealed that the incorporation of starch as templating agent improved these properties in n-HA/CT/ST nanocomposite. The rise in thermal stability in n-HA/CT/ST nanocomposite as compared to n-HA/CT has been observed by comparing the TGA results. The comparison of SEM images of both the scaffolds indicated that the addition of ST influenced the surface morphology of n-HA/CT scaffold which appeared to be rougher and porous. The MTT assay on murine fibroblast L929 cells and in-vitro bioactivity of n-HA/CT/ST matrix referred superior non-toxic property of n-HA/CT/ST nanocomposite and higher possibility of osteo-integration in-vivo, respectively.Keywords: bioactive, chitin, hyroxyapatite, nanocomposite
Procedia PDF Downloads 493994 Friction Coefficient of Epiphen Epoxy System Filled with Powder Resulting from the Grinding of Pine Needles
Authors: I. Graur, V. Bria, C. Muntenita
Abstract:
Recent ecological interests have resulted in scientific concerns regarding natural-organic powder composites. Because natural-organic powders are cheap and biodegradable, green composites represent a substantial contribution in polymer science area. The aim of this study is to point out the effect of natural-organic powder resulting from the grinding of pine needles used as a modifying agent for Epiphen epoxy resin and is focused on friction coefficient behavior. A pin-on-disc setup is used for friction coefficient experiments. Epiphen epoxy resin was used with the different ratio of organic powder from the grinding of pine needles. Because of the challenges of natural organic powder, more and more companies are looking at organic composite materials.Keywords: epoxy, friction coefficient, organic powder, pine needles
Procedia PDF Downloads 177993 Manufacturing Process of S-Glass Fiber Reinforced PEKK Prepregs
Authors: Nassier A. Nassir, Robert Birch, Zhongwei Guan
Abstract:
The aim of this study is to investigate the fundamental science/technology related to novel S-glass fiber reinforced polyether- ketone-ketone (GF/PEKK) composites and to gain insight into bonding strength and failure mechanisms. Different manufacturing techniques to make this high-temperature pre-impregnated composite (prepreg) were conducted i.e. mechanical deposition, electrostatic powder deposition, and dry powder prepregging techniques. Generally, the results of this investigation showed that it was difficult to control the distribution of the resin powder evenly on the both sides of the fibers within a specific percentage. Most successful approach was by using a dry powder prepregging where the fibers were coated evenly with an adhesive that served as a temporary binder to hold the resin powder in place onto the glass fiber fabric.Keywords: sry powder technique, PEKK, S-glass, thermoplastic prepreg
Procedia PDF Downloads 204992 Drilling Quantification and Bioactivity of Machinable Hydroxyapatite : Yttrium phosphate Bioceramic Composite
Authors: Rupita Ghosh, Ritwik Sarkar, Sumit K. Pal, Soumitra Paul
Abstract:
The use of Hydroxyapatite bioceramics as restorative implants is widely known. These materials can be manufactured by pressing and sintering route to a particular shape. However machining processes are still a basic requirement to give a near net shape to those implants for ensuring dimensional and geometrical accuracy. In this context, optimising the machining parameters is an important factor to understand the machinability of the materials and to reduce the production cost. In the present study a method has been optimized to produce true particulate drilled composite of Hydroxyapatite Yttrium Phosphate. The phosphates are used in varying ratio for a comparative study on the effect of flexural strength, hardness, machining (drilling) parameters and bioactivity.. The maximum flexural strength and hardness of the composite that could be attained are 46.07 MPa and 1.02 GPa respectively. Drilling is done with a conventional radial drilling machine aided with dynamometer with high speed steel (HSS) and solid carbide (SC) drills. The effect of variation in drilling parameters (cutting speed and feed), cutting tool, batch composition on torque, thrust force and tool wear are studied. It is observed that the thrust force and torque varies greatly with the increase in the speed, feed and yttrium phosphate content in the composite. Significant differences in the thrust and torque are noticed due to the change of the drills as well. Bioactivity study is done in simulated body fluid (SBF) upto 28 days. The growth of the bone like apatite has become denser with the increase in the number of days for all the composition of the composites and it is comparable to that of the pure hydroxyapatite.Keywords: Bioactivity, Drilling, Hydroxyapatite, Yttrium Phosphate
Procedia PDF Downloads 301991 Production of Banana Milk Powder Using Spray and Freeze Dryer
Authors: Siti Noor Suzila Maqsood-Ul-Haque, Ummi Kalthum Ibrahim, Norekanadirah Abdul Rahman
Abstract:
Banana are rich in vitamins, potassium and carbohydrate.The objective for this research work is to produce banana milk powder that can help children that suffers from constipation. Two types of the most common dryers used for this purpose are the spray and freeze dryer. The effects of the type of dryers, pump feed speed in the spray dryer and the ratio proportion of the banana milk powder were investigated in the study. The result indicate that increasing proportion ratio of the banana milk powder produce lower yield of the powder.From the result it is also concluded that speed 2 is more suitable in the production of the banana milk powder since the value of the moisture content is lower.Keywords: freeze dryer, spray dryer, moisture content, dissolution, banana, milk
Procedia PDF Downloads 495990 Effects of the Usage of Marble Powder as Partial Replacement of Cement on the Durability of High Performance Concrete
Authors: Talah Aissa
Abstract:
This paper reports an experimental study of the influence of marble powder used as a partial substitute for Portland cement (PC) on the mechanical properties and durability of high-performance concretes. The analysis of the experimental results on concrete at 15% content of marble powder with a fineness modulus of 11500 cm2/g, in a chloride environment, showed that it contributes positively to the perfection of its mechanical characteristics, its durability with respect to migration of chloride ions and oxygen permeability. On the basis of the experiments performed, it can be concluded that the marble powder is suitable for formulation of high performance concretes (HPC) and their properties are significantly better compared to the reference concrete (RC).Keywords: marble powder, durability, concrete, cement
Procedia PDF Downloads 290989 Thermal Method Production of the Hydroxyapatite from Bone By-Products from Meat Industry
Authors: Agnieszka Sobczak-Kupiec, Dagmara Malina, Klaudia Pluta, Wioletta Florkiewicz, Bozena Tyliszczak
Abstract:
Introduction: Request for compound of phosphorus grows continuously, thus, it is searched for alternative sources of this element. One of these sources could be by-products from meat industry which contain prominent quantity of phosphorus compounds. Hydroxyapatite, which is natural component of animal and human bones, is leading material applied in bone surgery and also in stomatology. This is material, which is biocompatible, bioactive and osteoinductive. Methodology: Hydroxyapatite preparation: As a raw material was applied deproteinized and defatted bone pulp called bone sludge, which was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Hydroxyapatite was received in calcining process in chamber kiln with electric heating in air atmosphere in two stages. In the first stage, material was calcining in temperature 600°C within 3 hours. In the next stage unified material was calcining in three different temperatures (750°C, 850°C and 950°C) keeping material in maximum temperature within 3.0 hours. Bone sludge: Bone sludge was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Pork bones coming from the partition of meat were used as a raw material for the production of the protein hydrolysate. After disintegration, a mixture of bone pulp and water with a small amount of lactic acid was boiled at temperature 130-135°C and under pressure4 bar. After 3-3.5 hours boiled-out bones were separated on a sieve, and the solution of protein-fat hydrolysate got into a decanter, where bone sludge was separated from it. Results of the study: The phase composition was analyzed by roentgenographic method. Hydroxyapatite was the only crystalline phase observed in all the calcining products. XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Conclusion: The researches were shown that phosphorus content is around 12%, whereas, calcium content amounts to 28% on average. The conducted researches on bone-waste calcining at the temperatures of 750-950°C confirmed that thermal utilization of deproteinized bone-waste was possible. X-ray investigations were confirmed that hydroxyapatite is the main component of calcining products, and also XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Contents of calcium and phosphorus were distinctly increased with calcining temperature, whereas contents of phosphorus soluble in acids were decreased. It could be connected with higher crystallization degree of material received in higher temperatures and its stable structure. Acknowledgements: “The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER//037/481/L-5/13/NCBR/2014) for providing financial support to this project”.Keywords: bone by-products, bone sludge, calcination, hydroxyapatite
Procedia PDF Downloads 287988 Improving Physicochemical Properties of Milk Powder and Lactose-Free Milk Powder with the Prebiotic Carrier
Authors: Chanunya Fahwan, Supat Chaiyakul
Abstract:
A lactose-free diet is imperative for those with lactose intolerance and experiencing milk intolerance. This entails eliminating milk-based products, which may result in dietary and nutritional challenges and the main problems of Lactose hydrolyzed milk powder during production were the adhesion in the drying chamber and low-yield and low-quality powder. The use of lactose-free milk to produce lactose-free milk powder was studied here. Development of two milk powder formulas from cow's milk and lactose-free cow's milk by using a substitute for maltodextrin, Polydextrose (PDX), Resistant Starch (RS), Cellobiose (CB), and Resistant Maltodextrin (RMD) to improve quality and reduce the glycemic index from maltodextrin, which are carriers that were used in industry at three experimental levels 10%, 15% and 20% the properties of milk powder were studied such as color, moisture content, percentage yield (%yield) and solubility index. The experiment revealed that prebiotic carriers could replace maltodextrin and improve quality, such as solubility and percentage yield, and enriched nutrients, such as dietary fiber. CB, RMD, and PDX are three possible carriers, which are applied to both regular cow's milk formula and lactose-free cow milk.Keywords: lactose-free milk powder, prebiotic carrier, co-particle, glycemic index
Procedia PDF Downloads 83987 Feasibility of Ground Alkali-Active Sandstone Powder for Use in Concrete as Mineral Admixture
Authors: Xia Chen, Hua-Quan Yang, Shi-Hua Zhou
Abstract:
Alkali-active sandstone aggregate was ground by vertical and ball mill into particles with residue over 45 μm less than 12%, and investigations have been launched on particles distribution and characterization of ground sandstone powder, fluidity, heat of hydration, strength as well as hydration products morphology of pastes with incorporation of ground sandstone powder. Results indicated that ground alkali-active sandstone powder with residue over 45 μm less than 8% was easily obtainable, and specific surface area was more sensitive to characterize its fineness with extension of grinding length. Incorporation of sandstone powder resulted in higher water demand and lower strength, advanced hydration of C3A and C2S within 3days and refined pore structure. Based on its manufacturing, characteristics and influence on properties of pastes, it was concluded that sandstone powder was a good selection for use in concrete as mineral admixture.Keywords: concrete, mineral admixture, hydration, structure
Procedia PDF Downloads 327986 Preparation and in vitro Characterisation of Chitosan/Hydroxyapatite Injectable Microspheres as Hard Tissue Substitution
Authors: H. Maachou, A. Chagnes, G. Cote
Abstract:
The present work reports the properties of chitosan/hydroxyapatite (Cs/HA: 100/00, 70/30 and 30/70) composite microspheres obtained by emulsification processing route. The morphology of chitosane microspheres was observed by a scanning electron microscope (SEM) which shows an aggregate of spherical microspheres with a particle size, determined by optical microscope, ranged from 4 to 10 µm. Thereafter, a biomimetic approach was used to study the in vitro biomineralization of these composites. It concerns the composites immersion in simulated body fluid (SBF) for different times. The deposited calcium phosphate was studied using X-ray diffraction analysis (XRD), FTIR spectroscopy and ICP analysis of phosphorus. In fact, the mineral formed on Cs/HA microspheres was a mixture of carbonated HA and β-TCP as showed by FTIR peaks at 1419,5 and 871,8 cm-1 and XRD peak at 29,5°. This formation was induced by the presence of HA in chitosan microspheres. These results are confirmed by SEM micrographs which chow the Ca-P crystals growth in form of cauliflowers. So, these materials are of great interest for bone regeneration applications due to their ability to nucleate calcium phosphates in presence of simulated body fluid (SBF).Keywords: hydroxyapatite, chitosan, microsphere, composite, bone regeneration
Procedia PDF Downloads 330985 Bacterial Cellulose/Silver-Doped Hydroxyapatite Composites for Tissue Engineering Application
Authors: Adrian Ionut Nicoara, Denisa Ionela Ene, Alina Maria Holban, Cristina Busuioc
Abstract:
At present, the development of materials with biomedical applications is a domain of interest that will produce a full series of benefits in engineering and medicine. In this sense, it is required to use a natural material, and this paper is focused on the development of a composite material based on bacterial cellulose – hydroxyapatite and silver nanoparticles with applications in hard tissue. Bacterial cellulose own features like biocompatibility, non-toxicity character and flexibility. Moreover, the bacterial cellulose can be conjugated with different forms of active silver to possess antimicrobial activity. Hydroxyapatite is well known that can mimic at a significant level the activity of the initial bone. The material was synthesized by using an ultrasound probe and finally characterized by several methods. Thereby, the morphological properties were analyzed by using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Because the synthesized material has medical application in restore the tissue and to fight against microbial invasion, the samples were tested from the biological point of view by evaluating the biodegradability in phosphate-buffered saline (PBS) and simulated body fluid (SBF) and moreover the antimicrobial effect was performed on Gram-positive bacterium Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and fungi Candida albicans. The results reveal that the obtained material has specific characteristics for bone regeneration.Keywords: bacterial cellulose, biomaterials, hydroxyapatite, scaffolds materials
Procedia PDF Downloads 133984 Obtaining Nutritive Powder from Peel of Mangifera Indica L. (Mango) as a Food Additive
Authors: Chajira Garrote, Laura Arango, Lourdes Merino
Abstract:
This research explains how to obtain nutritious powder from a variety of ripe mango peels Hilacha (Mangifera indica L.) to use it as a food additive. Also, this study intends to use efficiently the by-products resulting from the operations of mango pulp manufacturing process by processing companies with the aim of giving them an added value. The physical and chemical characteristics of the mango peels and the benefits that may help humans, were studied. Unit operations are explained for the processing of mango peels and the production of nutritive powder as a food additive. Emphasis is placed on the preliminary operations applied to the raw material and on the drying method, which is very important in this project to obtain the suitable characteristics of the nutritive powder. Once the powder was obtained, it was subjected to laboratory tests to determine its functional properties: water retention capacity (WRC) and oil retention capacity (ORC), also a sensory analysis for the powder was performed to determine the product profile. The nutritive powder from the ripe mango peels reported excellent WRC and ORC values: 7.236 g of water / g B.S. and 1.796 g water / g B.S. respectively and the sensory analysis defined a complete profile of color, odor and texture of the nutritive powder, which is suitable to use it in the food industry.Keywords: mango, peel, powder, nutritive, functional properties, sensory analysis
Procedia PDF Downloads 358983 Physico-Chemical and Sensory Properties of Orange Marmalade Supplemented with Aloe vera Powder
Authors: Farhat Rashid
Abstract:
A study was conducted at the Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan, to evaluate the effect of different concentration of Aloe vera (Aloe barbadensis Mill.) powder on physicochemical and sensory properties of orange marmalade. All treatments (0, 2, 4 6, 8 and 10% Aloe vera powder) were analyzed for titratable acidity, TSS, pH, moisture, fat, fiber and protein contents. The data indicated gradual increase in titratable acidity (0.08 to 0.18%), moisture (0.23 to 0.48%), protein (0.09 to 0.40%) and fiber (0.12 to 1.03%) among all treatments with increasing concentration of Aloe vera powder. However, a decreasing trend in pH (3.81 to 2.74), TSS (68 to 56 °Brix) and fat content (1.1 to 0.08%) was noticed with gradual increase in concentration of Aloe vera powder in orange marmalade. Sensory attributes like color, taste, texture, flavor and overall acceptability were found acceptable among all treatments but T1 (2% Aloe vera powder) was liked most and T5 (10% Aloe vera powder) was least appealing to the judges. It is concluded from present study that the addition of different concentrations of Aloe vera powder in orange marmalade significantly affected the physicochemical and sensory properties of marmalade.Keywords: orange marmalade, Aloe vera, Aloe barbadensis mill, physicochemical, characteristics, organoleptic properties, Pakistan, treatments, significance
Procedia PDF Downloads 359982 Durability Study of Binary Blended High Performance Concrete
Authors: Vatsal Patel, Niraj Shah
Abstract:
This paper presents the results of a laboratory study on the properties of binary blended High Performance cementitious systems containing blends of ordinary Portland cement (OPC), Porcelain Powder or Marble Powder blend proportions of 100:00, 95:05, 90:10, 85:15, 80:20 for OPC: Porcelain Powder/Marble Powder. Studies on the Engineering Properties of the cementitious concrete, namely compressive strength, flexural strength, sorptivity, rapid chloride penetration test and accelerated corrosion test have been performed and those of OPC concrete. The results show that the inclusion of Porcelain powder or Marble Powder as binary blended cement alters to a great degree the properties of the binder as well as the resulting concrete. In addition, the results show that the Porcelain powder with 85:15 proportions and Marble powder with 90:10 proportions as binary systems to produce high-performance concrete could potentially be used in the concrete construction industry particular in lowering down the volume of OPC used and lowering emission of CO2 produces during manufacturing of cement.Keywords: accelerated corrosion, binary blended cementitious system, rapid chloride penetration, sorptivity
Procedia PDF Downloads 387981 Production of Premium Quality Cinnamon Bark Powder Using Cryogenic Grinding
Authors: Monika R. Bhoi, R. F. Sutar, Bhaumik B. Patel
Abstract:
The objective of this research paper is to obtain the premium quality of cinnamon bark powder through cryogenic grinding technology. The effect of grinding temperature (0, -20, -40, -60, -80 and -100˚C), feed rate (8, 9 and 10 kg/h), and sieve size (0.8, 1.0 and 1.5 mm) were evaluated with respect to grinding time, volatile oil content, particle size, energy consumption, and liquid nitrogen consumption. Cryogenic grinding process parameters were optimized to obtain premium quality cinnamon bark powder was carried out using three factorial completely randomized design. The optimization revealed that grinding of cinnamon bark at -80⁰C temperature using 0.8 mm sieve size and 10 kg/h feed rate resulted in premium quality cinnamon bark powder containing volatile oil 3.01%. In addition, volatile oil retention in cryogenically ground powder was 88.23%, whereas control (ambient grinding) had 33.11%. Storage study of premium quality cryogenically ground powder was carried out under accelerated storage conditions (38˚C & 90% R.H). Accelerated storage of cryoground powder was found to be advantageous over the conventional ground for extended storage of the ground cinnamon powder with retention of its nutritional quality. Hence, grinding of spices at optimally low cryogenic temperature is a promising technology for the production of its premium quality powder economically.Keywords: cinnamon bark, cryogenic grinding, feed rate, volatile oil
Procedia PDF Downloads 169980 Clinicoradiographic Evaluation of Polymer of Injectable Platelet-Rich Fibrin (i-PRF) and Hydroxyapatite as Bone Graft Substitute in Maxillomandibular Bony Defects: A Double-Blinded Randomized Control Trial
Authors: Naqoosh Haidry
Abstract:
Objective & Goal: Enucleation of the maxillomandibular cysts will lead to the creation of post-surgical bone defects which may take more than a year for complete bone healing. The use of bone grafts is common to aid bone regeneration in large defects. The study aimed to evaluate the healing and bone formation capabilities of polymer of injectable platelet fibrin (i-PRF) and hydroxyapatite (HA) as bone graft substitute in maxilla-mandibular postsurgical defects compared to hydroxyapatite alone. The primary objective was to find out the clinical and radiological assessment of healing postoperatively and compare the outcome of both groups. Material and Methods: After surgical enucleation of 19 maxillomandibular cysts/tumors, either HA or HA+ i-PRF graft was adapted to the defect. Clinical outcome variables such as pain (VAS score), edema, and mucosal color were evaluated on postoperative days 01, 03, and 07 while radiological outcome variables such as volume of defect (cc), density of new bone (HU) on computed tomography were evaluated at 2nd and 4th month. The results obtained were tabulated and compared with the inferential analysis. Results: Clinical parameters seem to be better in the HA + i-PRF group, but the result was non-significant. Radiologically, the mean healing ratios were significantly greater in the HA + i-PRF group (63.5 ± 2.34 at 2nd month, 90.3 ± 7.32 at 4th month) compared to the HA group (57.2 ± 5.21at 2nd month, 80.8 ± 5.33 at 4th month). When comparing the mean density of new bone, there was a statistically significant difference with a mean difference of 95.2 HU more in the HA + i-PRF (623 HU ± 42.9) compared to the HA group (528 HU ± 96.5) in 2nd month. Conclusion: The polymer of i-PRF and HA prepared as the sticky bone yields faster and better bone healing in post-enucleation maxillomandibular bony defects as compared to hydroxyapatite alone based on radiological findings till four months.Keywords: bone defect, density of new bone, hydroxyapatite, injectable platelet rich fibrin, maxillomandibular cysts, surgical defect
Procedia PDF Downloads 49979 Effects of Spray Dryer Atomizer Speed on Casein Micelle Size in Whole Fat Milk Powder and Physicochemical Properties of White Cheese
Authors: Mohammad Goli, Akram Sharifi, Mohammad Yousefi Jozdani, Seyed Ali Mortazavi
Abstract:
An industrial spray dryer was used, and the effects of atomizer speed on the physicochemical properties of milk powder, the textural and sensory characteristics of white cheese made from this milk powder, were evaluated. For this purpose, whole milk was converted into powder by using three different speeds (10,000, 11,000, and 12,000 rpm). Results showed that with increasing atomizer speed in the spray dryer, the average size of casein micelle is significantly decreased (p < 0.05), whereas no significant effect is observed on the chemical properties of milk powder. White cheese characteristics indicated that with increasing atomizer speed, texture parameters, such as hardness, mastication, and gumminess, were significantly reduced (p < 0.05). Sensory evaluation also revealed that cheese samples prepared with dried milk produced at 12,000 rpm were highly accepted by panelists. Overall, the findings suggested that 12,000 rpm is the optimal atomizer speed for milk powder production.Keywords: spray drying, powder technology, atomizer speed, particle size, white cheese physical properties
Procedia PDF Downloads 469978 The Effect of Surface Modified Nano-Hydroxyapatite Incorporation into Polymethylmethacrylate Cement on Biocompatibility and Mechanical Properties
Authors: Yu-Shan Wu, Po-Liang Lai, I-Ming Chu
Abstract:
Poly(methylmethacrylate)(PMMA) is the most frequently used bone void filler for vertebral augmentation in osteoporotic fracture. PMMA bone cement not only exhibits strong mechanical properties but also can fabricate according to the shape of bone defect. However, the adhesion between the PMMA-based cement and the adjacent bone is usually weak and as PMMA bone cement is inherently bioinert. The combination of bioceramics and polymers as composites may increase cell adhesion and improve biocompatibility. The nano-hydroxyapatite(HAP) not only plays a significant role in maintaining the properties of the natural bone but also offers a favorable environment for osteoconduction, protein adhesion, and osteoblast proliferation. However, defects and cracks can form at the polymer/ceramics interface, resulting in uneven distribution of stress and subsequent inferior mechanical strength. Surface-modified HAP nano-crystals were prepared by chemically grafting poly(ε-caprolactone)(PCL) on surface-modified nano-HAP surface to increase the affinity of polymer/ceramic phases .Thus, incorporation of surface-modified nano-hydroxyapatite (EC-HAP) may not only improve the interfacial adhesion between cement and bone and between nanoparticles and cement, but also increase biocompatibility. In this research, PMMA mixing with 0, 5, 10, 15, 20, 25 and 30 wt% EC-HAP were examined. MC3T3-E1 cells were used for the biological evaluation of the response to the cements in vitro. Morphology was observed using scanning electron microscopy (SEM). Mechanical properties of HAP/PMMA and EC-HAP/PMMA cement were investigated by compression test. Surface wettability of the cements was measured by contact angles.Keywords: bone cement, biocompatibility, nano-hydroxyapatite, polycaprolactone, PMMA, surface grafting
Procedia PDF Downloads 396977 Electrospun Fibre Networks Loaded with Hydroxyapatite and Barium Titanate as Smart Scaffolds for Tissue Regeneration
Authors: C. Busuioc, I. Stancu, A. Nicoara, A. Zamfirescu, A. Evanghelidis
Abstract:
The field of tissue engineering has expanded its potential due to the use of composite biomaterials belonging to increasingly complex systems, leading to bone substitutes with properties that are continuously improving to meet the patient's specific needs. Furthermore, the development of biomaterials based on ceramic and polymeric phases is an unlimited resource for future scientific research, with the final aim of restoring the original tissue functionality. Thus, in the first stage, composite scaffolds based on polycaprolactone (PCL) or polylactic acid (PLA) and inorganic powders were prepared by employing the electrospinning technique. The targeted powders were: commercial and laboratory synthesized hydroxyapatite (HAp), as well as barium titanate (BT). By controlling the concentration of the powder within the precursor solution, together with the processing parameters, different types of three-dimensional architectures were achieved. In the second stage, both the mineral powders and hybrid composites were investigated in terms of composition, crystalline structure, and microstructure so that to demonstrate their suitability for tissue engineering applications. Regarding the scaffolds, these were proven to be homogeneous on large areas and loaded with mineral particles in different proportions. The biological assays demonstrated that the addition of inorganic powders leads to modified responses in the presence of simulated body fluid (SBF) or cell cultures. Through SBF immersion, the biodegradability coupled with bioactivity were highlighted, with fiber fragmentation and surface degradation, as well as apatite layer formation within the testing period. Moreover, the final composites represent supports accepted by the cells, favoring implant integration. Concluding, the purposed fibrous materials based on bioresorbable polymers and mineral powders, produced by the electrospinning technique, represent candidates with considerable potential in the field of tissue engineering. Future improvements can be attained by optimizing the synthesis process or by simultaneous incorporation of multiple inorganic phases with well-defined biological action in order to fabricate multifunctional composites.Keywords: barium titanate, electrospinning, fibre networks, hydroxyapatite, smart scaffolds
Procedia PDF Downloads 112976 Efficacy of Combined CHAp and Lanthanum Carbonate in Therapy for Hyperphosphatemia
Authors: Andreea Cârâc, Elena Morosan, Ana Corina Ionita, Rica Bosencu, Geta Carac
Abstract:
Lanthanum carbonate exhibits a considerable ability to bind phosphate and the substitution of Ca2+ ions by divalent or trivalent lanthanide metal ions attracted attention during the past few years. Although Lanthanum carbonate has not been approved by the FDA for treatment of hyperphosphatemia, we prospectively evaluated the efficacy of the combination of Calcium hydroxyapatite and Lanthanum carbonate for the treatment of hyperphosphatemia on mice. Calcium hydroxyapatite commonly referred as CHAp is a bioceramic material and is one of the most important implantable materials due to its biocompatibility and osteoconductivity. We prepared calcium hydroxyapatite and lanthanum carbonate. CHAp was prepared by co-precipitation method using Ca(OH)2, H3PO4, NH4OH with calcination at 1200ºC. Lanthanum carbonate was prepared by chemical method using NaHCO3 and LaCl3 at low pH environment , ph below 4.0 The confirmation of both substances structures was made using XRD characterization, FTIR spectra and SEM /EDX analysis. The study group included 20 subjects-mice divided into four groups according to the administered substance: lanthanum carbonate (group A), lanthanum carbonate + CHAp (group B), CHAp (group C) and salt water (group D). The results indicate a phosphate decrease when subjects (mice) were treated with CHAp and lanthanum carbonate (0.5 % CMC), in a single dose of 1500 mg/kg. Serum phosphate concentration decreased [from 4.5 ± 0.8 mg/dL) to 4.05 ± 0.2 mg/dL), P < 0.01] in group A and to 3.6 ± 0.2 mg/dL] only after the 24 hours of combination therapy. The combination of CHAp and lanthanum carbonate is a suitable regimen for hyperphosphatemia treatment subjects because it avoids both the hypercalcemia of CaCO3 and the adverse effects of CHAp. The ability of CHAp to decrease the serum phosphate concentration is 1/3 that of lanthanum carbonate.Keywords: calcium hydroxyapatite, hyperphosphatemia, lanthanum carbonate, phosphate, structures
Procedia PDF Downloads 379975 A 3D Bioprinting System for Engineering Cell-Embedded Hydrogels by Digital Light Processing
Authors: Jimmy Jiun-Ming Su, Yuan-Min Lin
Abstract:
Bioprinting has been applied to produce 3D cellular constructs for tissue engineering. Microextrusion printing is the most common used method. However, printing low viscosity bioink is a challenge for this method. Herein, we developed a new 3D printing system to fabricate cell-laden hydrogels via a DLP-based projector. The bioprinter is assembled from affordable equipment including a stepper motor, screw, LED-based DLP projector, open source computer hardware and software. The system can use low viscosity and photo-polymerized bioink to fabricate 3D tissue mimics in a layer-by-layer manner. In this study, we used gelatin methylacrylate (GelMA) as bioink for stem cell encapsulation. In order to reinforce the printed construct, surface modified hydroxyapatite has been added in the bioink. We demonstrated the silanization of hydroxyapatite could improve the crosslinking between the interface of hydroxyapatite and GelMA. The results showed that the incorporation of silanized hydroxyapatite into the bioink had an enhancing effect on the mechanical properties of printed hydrogel, in addition, the hydrogel had low cytotoxicity and promoted the differentiation of embedded human bone marrow stem cells (hBMSCs) and retinal pigment epithelium (RPE) cells. Moreover, this bioprinting system has the ability to generate microchannels inside the engineered tissues to facilitate diffusion of nutrients. We believe this 3D bioprinting system has potential to fabricate various tissues for clinical applications and regenerative medicine in the future.Keywords: bioprinting, cell encapsulation, digital light processing, GelMA hydrogel
Procedia PDF Downloads 182974 Hafnium and Samarium Hydroxyapatite Composites and Their Characterization
Authors: Meltem Nur Erdöl, Feyzanur Bayrak, Elif Emanetçi, Faik Nüzhet Oktar, Cevriye Kalkandelen, Oğuzhan Gündüz
Abstract:
Nowadays, the bioceramic graft applications are very important due to the fact that especially European population is getting much older. Consequently, healing approaches for some health problems become more important in the near future. For instance, osteoporosis is one of the reasons for serious hip fractures. Beside these, the traffic accidents playing role increasing of various hip fractures and other bone fractures. Naturally all these are leading the importance developing new bioceramic graft materials. Hydroxyapatite (HA) is one of the leading bioceramics on the market. Beside the high biocompatibility HA bioceramics unfortunately are weak materials for loaded areas. For improvement mechanical properties of HA material, some oxides and metallic powders can be added. In this study, some rare earth oxides like hafnium (IV) oxide (HfO₂) and samarium (III) oxide (Sm₂O₃) are added to HA for improvement of their material characteristics. Thus, compression, microhardness and theoretical density tests are performed. X-ray diffraction patterns are also investigated corresponding x-ray diffraction equipment. At the end, studies of scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX) are completed. All values were compared with past BHA and various composites.Keywords: biocomposite, hafnium oxide, hydroxyapatite, nanotechnology, samarium oxide
Procedia PDF Downloads 176973 Plasma Spray Deposition of Bio-Active Coating on Titanium Alloy (Ti-6Al-4V) Substrate
Authors: Renu Kumari, Jyotsna Dutta Majumdar
Abstract:
In the present study, composite coating consisting of hydroxyapatite (HA) + 50 wt% TiO2 has been developed on Ti-6Al-4V substrate by plasma spray deposition technique. Followed by plasma spray deposition, detailed surface roughness and microstructural characterization were carried out by using optical profilometer and scanning electron microscopy (SEM), respectively. The composition and phase analysis were carried out by energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction (XRD) technique, respectively. The bio-activity behavior of the uncoated and coated samples was also compared by dipping test in Hank’s solution. The average surface roughness of the coating was 10 µm (as compared to 0.5 µm of as-received Ti-6Al-4V substrate) with the presence of porosities. The microstructure of the coating was found to be continuous with the presence of solidified splats. A detailed XRD analysis shows phase transformation of TiO2 from anatase to rutile, decomposition of hydroxyapatite, and formation of CaTiO3 phase. Standard dipping test confirmed a faster kinetics of deposition of calcium phosphate in the coated HA+50% wt.% TiO2 surface as compared to the as-received substrate.Keywords: titanium, plasma spraying, microstructure, bio-activity, TiO2, hydroxyapatite
Procedia PDF Downloads 322972 Contrast-to-Noise Ratio Comparison of Different Calcification Types in Dual Energy Breast Imaging
Authors: Vaia N. Koukou, Niki D. Martini, George P. Fountos, Christos M. Michail, Athanasios Bakas, Ioannis S. Kandarakis, George C. Nikiforidis
Abstract:
Various substitute materials of calcifications are used in phantom measurements and simulation studies in mammography. These include calcium carbonate, calcium oxalate, hydroxyapatite and aluminum. The aim of this study is to compare the contrast-to-noise ratio (CNR) values of the different calcification types using the dual energy method. The constructed calcification phantom consisted of three different calcification types and thicknesses: hydroxyapatite, calcite and calcium oxalate of 100, 200, 300 thicknesses. The breast tissue equivalent materials were polyethylene and polymethyl methacrylate slabs simulating adipose tissue and glandular tissue, respectively. The total thickness was 4.2 cm with 50% fixed glandularity. The low- (LE) and high-energy (HE) images were obtained from a tungsten anode using 40 kV filtered with 0.1 mm cadmium and 70 kV filtered with 1 mm copper, respectively. A high resolution complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector was used. The total mean glandular dose (MGD) and entrance surface dose (ESD) from the LE and HE images were constrained to typical levels (MGD=1.62 mGy and ESD=1.92 mGy). On average, the CNR of hydroxyapatite calcifications was 1.4 times that of calcite calcifications and 2.5 times that of calcium oxalate calcifications. The higher CNR values of hydroxyapatite are attributed to its attenuation properties compared to the other calcification materials, leading to higher contrast in the dual energy image. This work was supported by Grant Ε.040 from the Research Committee of the University of Patras (Programme K. Karatheodori).Keywords: calcification materials, CNR, dual energy, X-rays
Procedia PDF Downloads 357