Search results for: harvesting energy
8679 Current Harvesting Methods for Jatropha curcas L.
Authors: Luigi Pari, Alessandro Suardi, Enrico Santangelo
Abstract:
In the last decade Jatropha curcas L. (an oleaginous crop native to Central America and part of South America) has raised particular interest owing to of its properties and uses. Its capsules may contain up to 40% in oil and can be used as feedstock for biodiesel production. The harvesting phase is made difficult by the physiological traits of the specie, because fruits are in bunches and do not ripen simultaneously. Three harvesting methodologies are currently diffused and differ for the level of mechanization applied: manual picking, semi-mechanical harvesting, and mechanical harvesting. The manual picking is the most common in the developing countries but it is also the most time consuming and inefficient. Mechanical harvesting carried out with modified grape harvesters has the higher productivity, but it is very costly as initial investment and requires appropriate schemes of cultivation. The semi-mechanical harvesting method is achieved with shaker tools employed to facilitate the fruit detachment. This system resulted much cheaper than the fully mechanized one and quite flexible for small and medium scale applications, but it still requires adjustments for improving the productive performance. CRA-ING, within the European project Jatromed (http://www.jatromed.aua.gr) has carried out preliminary studies on the applicability of such approach, adapting an olive shaker to harvest Jatropha fruits. The work is a survey of the harvesting methods currently available for Jatropha, show the pros and cons of each system, and highlighting the criteria to be considered for choosing one respect another. The harvesting of Jatropha curcas L. remains a big constrains for the spread of the species as energy crop. The approach pursued by CRA-ING can be considered a good compromise between the fully mechanized harvesters and the exclusive manual intervention. It is an attempt to promote a sustainable mechanization suited to the social context of developing countries by encouraging the concrete involvement of local populations.Keywords: jatropha curcas, energy crop, harvesting, central america, south america
Procedia PDF Downloads 3898678 Enhancement of Energy Harvesting-Enabled Decode and Forward Cooperative Cognitive Radio System
Authors: Ojo Samson Iyanda, Adeleke Oluseye A., Ojo Oluwaseun A.
Abstract:
Recent developments in the Wireless communication (WC) community has necessitated a paradigm shift in the effective usage of network resources to provide better Quality of Service (QoS) to wireless subscribers. However, the daily increase in the number of users accessing WC services makes frequency spectrum a valuable yet limited resource. Energy harvesting-enabled Decode and Forward Cooperative Cognitive Radio (DFCCR) used to solve this problem faced significant challenges in achieving efficient performance and signal insecurity due to channel fading and broadcast nature of the transmitted signal. Hence, this paper enhanced the performance of the existing DFCCR. PU signal is propagated from the source at different time slots using time diversity. The different versions of the transmitted signal are received at the SU’s transceiver. The received signal at the SU transceiver is decoded and SU superimposes its own information on the decoded signal using exclusive OR (XOR) rule. Jamming signal is created at the SU node and added to the SU transmitting signal. Outage Probability (OP) and Secrecy Capacity (SC) are derived to evaluate the performance of the proposed technique. The proposed energy harvesting-enabled DFCCR enhanced the performance of existing technique with 65% reduction in OP and 50% improvement in SC.Keywords: cognitive radio, RF energy harvesting, decode and forward, secrecy capacity
Procedia PDF Downloads 98677 Optimisation of Energy Harvesting for a Composite Aircraft Wing Structure Bonded with Discrete Macro Fibre Composite Sensors
Authors: Ali H. Daraji, Ye Jianqiao
Abstract:
The micro electrical devices of the wireless sensor network are continuously developed and become very small and compact with low electric power requirements using limited period life conventional batteries. The low power requirement for these devices, cost of conventional batteries and its replacement have encouraged researcher to find alternative power supply represented by energy harvesting system to provide an electric power supply with infinite period life. In the last few years, the investigation of energy harvesting for structure health monitoring has increased to powering wireless sensor network by converting waste mechanical vibration into electricity using piezoelectric sensors. Optimisation of energy harvesting is an important research topic to ensure a flowing of efficient electric power from structural vibration. The harvesting power is mainly based on the properties of piezoelectric material, dimensions of piezoelectric sensor, its position on a structure and value of an external electric load connected between sensor electrodes. Larger surface area of sensor is not granted larger power harvesting when the sensor area is covered positive and negative mechanical strain at the same time. Thus lead to reduction or cancellation of piezoelectric output power. Optimisation of energy harvesting is achieved by locating these sensors precisely and efficiently on the structure. Limited published work has investigated the energy harvesting for aircraft wing. However, most of the published studies have simplified the aircraft wing structure by a cantilever flat plate or beam. In these studies, the optimisation of energy harvesting was investigated by determination optimal value of an external electric load connected between sensor electrode terminals or by an external electric circuit or by randomly splitting piezoelectric sensor to two segments. However, the aircraft wing structures are complex than beam or flat plate and mostly constructed from flat and curved skins stiffened by stringers and ribs with more complex mechanical strain induced on the wing surfaces. This aircraft wing structure bonded with discrete macro fibre composite sensors was modelled using multiphysics finite element to optimise the energy harvesting by determination of the optimal number of sensors, location and the output resistance load. The optimal number and location of macro fibre sensors were determined based on the maximization of the open and close loop sensor output voltage using frequency response analysis. It was found different optimal distribution, locations and number of sensors bounded on the top and the bottom surfaces of the aircraft wing.Keywords: energy harvesting, optimisation, sensor, wing
Procedia PDF Downloads 3028676 Development and Characterization of Acoustic Energy Harvesters for Low Power Wireless Sensor Network
Authors: Waheed Gul, Muhammad Zeeshan, Ahmad Raza Khan, Muhammad Khurram
Abstract:
Wireless Sensor Nodes (WSNs) have developed significantly over the years and have significant potential in diverse applications in the fields of science and technology. The inadequate energy accompanying WSNs is a key constraint of WSN skills. To overcome this main restraint, the development and expansion of effective and reliable energy harvesting systems for WSN atmospheres are being discovered. In this research, low-power acoustic energy harvesters are designed and developed by applying different techniques of energy transduction from the sound available in the surroundings. Three acoustic energy harvesters were developed based on the piezoelectric phenomenon, electromagnetic transduction, and hybrid, respectively. The CAD modelling, lumped modelling and Finite Element Analysis of the harvesters were carried out. The voltages were obtained using FEA for each Acoustic Harvester. Characterization of all three harvesters was carried out and the power generated by the piezoelectric harvester, electromagnetic harvester and Hybrid Acoustic Energy harvester are 2.25x10-9W, 0.0533W and 0.0232W, respectively.Keywords: energy harvesting, WSNs, piezoelectric, electromagnetic, power
Procedia PDF Downloads 718675 Investigating the Energy Harvesting Potential of a Pitch-Plunge Airfoil Subjected to Fluctuating Wind
Authors: Magu Raam Prasaad R., Venkatramani Jagadish
Abstract:
Recent studies in the literature have shown that randomly fluctuating wind flows can give rise to a distinct regime of pre-flutter oscillations called intermittency. Intermittency is characterized by the presence of sporadic bursts of high amplitude oscillations interspersed amidst low-amplitude aperiodic fluctuations. The focus of this study is on investigating the energy harvesting potential of these intermittent oscillations. Available literature has by and large devoted its attention on extracting energy from flutter oscillations. The possibility of harvesting energy from pre-flutter regimes have remained largely unexplored. However, extracting energy from violent flutter oscillations can be severely detrimental to the structural integrity of airfoil structures. Consequently, investigating the relatively stable pre-flutter responses for energy extraction applications is of practical importance. The present study is devoted towards addressing these concerns. A pitch-plunge airfoil with cubic hardening nonlinearity in the plunge and pitch degree of freedom is considered. The input flow fluctuations are modelled using a sinusoidal term with randomly perturbed frequencies. An electromagnetic coupling is provided to the pitch-plunge equations, such that, energy from the wind induced vibrations of the structural response are extracted. With the mean flow speed as the bifurcation parameter, a fourth order Runge-Kutta based time marching algorithm is used to solve the governing aeroelastic equations with electro-magnetic coupling. The harnessed energy from the intermittency regime is presented and the results are discussed in comparison to that obtained from the flutter regime. The insights from this study could be useful in health monitoring of aeroelastic structures.Keywords: aeroelasticity, energy harvesting, intermittency, randomly fluctuating flows
Procedia PDF Downloads 1878674 Functionally Graded MEMS Piezoelectric Energy Harvester with Magnetic Tip Mass
Authors: M. Derayatifar, M. Packirisamy, R.B. Bhat
Abstract:
Role of piezoelectric energy harvesters has gained interest in supplying power for micro devices such as health monitoring sensors. In this study, in order to enhance the piezoelectric energy harvesting in capturing energy from broader range of excitation and to improve the mechanical and electrical responses, bimorph piezoelectric energy harvester beam with magnetic mass attached at the end is presented. In view of overcoming the brittleness of piezo-ceramics, functionally graded piezoelectric layers comprising of both piezo-ceramic and piezo-polymer is employed. The nonlinear equations of motions are derived using energy method and then solved analytically using perturbation scheme. The frequency responses of the forced vibration case are obtained for the near resonance case. The nonlinear dynamic responses of the MEMS scaled functionally graded piezoelectric energy harvester in this paper may be utilized in different design scenarios to increase the efficiency of the harvester.Keywords: energy harvesting, functionally graded piezoelectric material, magnetic force, MEMS (micro-electro-mechanical systems) piezoelectric, perturbation method
Procedia PDF Downloads 1898673 Enhancing Piezoelectric Properties of PVDF-HFP/PLA/PZT Nanocomposite for Energy Harvesting Application
Authors: Khadija Oumghar, Adil Eddiai, Omar Cherkaoui
Abstract:
Using flexible piezoelectric nanocomposite films in autonomous nano-systems, sensors, and portable electronics has garnered significant attention within the scientific community. This paper investigates the impact of Lead zirconate titanate (PZT) nanoparticles on the crystal structure of polyvinylidene fluoride hexafluoro propylene (PVDF-HFP)/polylactic acid (PLA), its distinctive crystallization behavior, mechanical properties, and the ensuing enhancement in piezoelectricity. In this study, PVDF-HFP/PLA/PZT nanocomposite films were fabricated utilizing the solvent casting technique, incorporating varying concentrations of PZT. Subsequent characterization of the films involved comprehensive analyses employing polarized optical microscopy (POM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). POM observations revealed a homogeneous dispersion of PZT nanofillers within the PVDF-HFP/PLA matrix. FTIR and XRD analyses confirmed the presence of the β-phase in the nanocomposites, signifying improvements in their piezoelectric properties. The substantial augmentation in piezoelectricity witnessed emphasizes the potential of electroactive nanocomposites for energy harvesting applications. This research contributes to advancing sustainable energy technologies by elucidating the efficacy of PZT-enhanced PVDFHFP-PLA nanocomposites as proficient materials for piezoelectric energy conversion.Keywords: piezoelectric films, energy harvesting, dielectric polymers, nanocomposite
Procedia PDF Downloads 28672 Internet of Things Edge Device Power Modelling and Optimization Simulator
Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh
Abstract:
Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting
Procedia PDF Downloads 1338671 Energy Harvesting and Storage System for Marine Applications
Authors: Sayem Zafar, Mahmood Rahi
Abstract:
Rigorous international maritime regulations are in place to limit boat and ship hydrocarbon emissions. The global sustainability goals are reducing the fuel consumption and minimizing the emissions from the ships and boats. These maritime sustainability goals have attracted a lot of research interest. Energy harvesting and storage system is designed in this study based on hybrid renewable and conventional energy systems. This energy harvesting and storage system is designed for marine applications, such as, boats and small ships. These systems can be utilized for mobile use or off-grid remote electrification. This study analyzed the use of micro power generation for boats and small ships. The energy harvesting and storage system has two distinct systems i.e. dockside shore-based system and on-board system. The shore-based system consists of a small wind turbine, photovoltaic (PV) panels, small gas turbine, hydrogen generator and high-pressure hydrogen storage tank. This dockside system is to provide easy access to the boats and small ships for supply of hydrogen. The on-board system consists of hydrogen storage tanks and fuel cells. The wind turbine and PV panels generate electricity to operate electrolyzer. A small gas turbine is used as a supplementary power system to contribute in case the hybrid renewable energy system does not provide the required energy. The electrolyzer performs the electrolysis on distilled water to produce hydrogen. The hydrogen is stored in high-pressure tanks. The hydrogen from the high-pressure tank is filled in the low-pressure tanks on-board seagoing vessels to operate the fuel cell. The boats and small ships use the hydrogen fuel cell to provide power to electric propulsion motors and for on-board auxiliary use. For shore-based system, a small wind turbine with the total length of 4.5 m and the disk diameter of 1.8 m is used. The small wind turbine dimensions make it big enough to be used to charge batteries yet small enough to be installed on the rooftops of dockside facility. The small dimensions also make the wind turbine easily transportable. In this paper, PV, sizing and solar flux are studied parametrically. System performance is evaluated under different operating and environmental conditions. The parametric study is conducted to evaluate the energy output and storage capacity of energy storage system. Results are generated for a wide range of conditions to analyze the usability of hybrid energy harvesting and storage system. This energy harvesting method significantly improves the usability and output of the renewable energy sources. It also shows that small hybrid energy systems have promising practical applications.Keywords: energy harvesting, fuel cell, hybrid energy system, hydrogen, wind turbine
Procedia PDF Downloads 1398670 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications
Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi
Abstract:
The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.Keywords: thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, energy harvesting, thermal harvesting
Procedia PDF Downloads 2648669 Batteryless DCM Boost Converter for Kinetic Energy Harvesting Applications
Authors: Andrés Gomez-Casseres, Rubén Contreras
Abstract:
In this paper, a bidirectional boost converter operated in Discontinuous Conduction Mode (DCM) is presented as a suitable power conditioning circuit for tuning of kinetic energy harvesters without the need of a battery. A nonlinear control scheme, composed by two linear controllers, is used to control the average value of the input current, enabling the synthesization of complex loads. The converter, along with the control system, is validated through SPICE simulations using the LTspice tool. The converter model and the controller transfer functions are derived. From the simulation results, it was found that the input current distortion increases with the introduced phase shift and that, such distortion, is almost entirely present at the zero-crossing point of the input voltage.Keywords: average current control, boost converter, electrical tuning, energy harvesting
Procedia PDF Downloads 7638668 Assessing Building Rooftop Potential for Solar Photovoltaic Energy and Rainwater Harvesting: A Sustainable Urban Plan for Atlantis, Western Cape
Authors: Adedayo Adeleke, Dineo Pule
Abstract:
The ongoing load-shedding in most parts of South Africa, combined with climate change causing severe drought conditions in Cape Town, has left electricity consumers seeking alternative sources of power and water. Solar energy, which is abundant in most parts of South Africa and is regarded as a clean and renewable source of energy, allows for the generation of electricity via solar photovoltaic systems. Rainwater harvesting is the collection and storage of rainwater from building rooftops, allowing people without access to water to collect it. The lack of dependable energy and water source must be addressed by shifting to solar energy via solar photovoltaic systems and rainwater harvesting. Before this can be done, the potential of building rooftops must be assessed to determine whether solar energy and rainwater harvesting will be able to meet or significantly contribute to Atlantis industrial areas' electricity and water demands. This research project presents methods and approaches for automatically extracting building rooftops in Atlantis industrial areas and evaluating their potential for solar photovoltaics and rainwater harvesting systems using Light Detection and Ranging (LiDAR) data and aerial imagery. The four objectives were to: (1) identify an optimal method of extracting building rooftops from aerial imagery and LiDAR data; (2) identify a suitable solar radiation model that can provide a global solar radiation estimate of the study area; (3) estimate solar photovoltaic potential overbuilding rooftop; and (4) estimate the amount of rainwater that can be harvested from the building rooftop in the study area. Mapflow, a plugin found in Quantum Geographic Information System(GIS) was used to automatically extract building rooftops using aerial imagery. The mean annual rainfall in Cape Town was obtained from a 29-year rainfall period (1991- 2020) and used to calculate the amount of rainwater that can be harvested from building rooftops. The potential for rainwater harvesting and solar photovoltaic systems was assessed, and it can be concluded that there is potential for these systems but only to supplement the existing resource supply and offer relief in times of drought and load-shedding.Keywords: roof potential, rainwater harvesting, urban plan, roof extraction
Procedia PDF Downloads 1168667 Modeling of the Energy Storage Device: LTC3588
Authors: Mojtaba Ghodsi, Morteza Mohammadzaheri, Payam Soltani
Abstract:
This study provides a detailed analysis of the LTC3588 as a low-power energy storage model, focusing on its internal circuitry and energy harvesting capabilities. The study highlights the relationship between the input and output capacitors and the behavior of the output voltage, particularly its rise time. It was found that increasing the input capacitance (Cᵢₙ) from 1 µF to 220 µF reduces oscillations in the output voltage (Vₒᵤₜ) and slows the rate of increase in the input voltage, demonstrating the impact of input capacitance on voltage dynamics. Furthermore, the study revealed that smaller output capacitors (Cₒᵤₜ) result in fewer voltage jumps required to reach the target output voltage of 3.2 V, suggesting that a smaller Cₒᵤₜ improves voltage regulation speed and stability. The study concludes that both input and output capacitors play a critical role in the LTC3588's performance. Optimizing these capacitors is crucial for efficient energy storage and harvesting in applications requiring minimal power consumption.Keywords: LTC3588, modeling, Zener diode, LED
Procedia PDF Downloads 118666 Development of All-in-One Solar Kit
Authors: Azhan Azhar, Mohammed Sakib, Zaurez Ahmad
Abstract:
The energy we receive from the sun is known as solar energy, and it is a reliable, long-lasting, eco-friendly and the most widely used energy source in the 21st century. It is. There are several techniques for harnessing solar energy, and we are all seeing large utility-scale projects to collect maximum amperes from the sun using current technologies. Solar PV is now on the rise as a means of harvesting energy from the sun. Moving a step further, our project is focused on designing an All-in-one portable Solar Energy based solution. We considered the minimum load conditions and evaluated the requirements of various devices utilized in this study to resolve the power requirements of small stores, hawkers, or travelers.Keywords: DOD-depth of discharge, pulse width modulation charge controller, renewable energy, solar PV- solar photovoltaic
Procedia PDF Downloads 3708665 Exploring the Potential of PVDF/CCB Composites Filaments as Potential Materials in Energy Harvesting Applications
Authors: Fawad Ali, Mohammad Albakri
Abstract:
The increasing demand for advanced multifunctional materials has led to significant research in polymer composites, particularly polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composites. This paper explores the development and application of PVDF/CCB conducting electrodes for energy harvesting applications. PVDF is renowned for its chemical resistance, thermal stability, and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications, and discusses challenges in optimizing these materials for industrial use and future development. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies. This paper explores the development and application of polyvinylidene fluoride (PVDF) and conducting carbon black (CCB) composite conducting electrodes for energy harvesting applications. PVDF is renowned for its piezoelectric and mechanical strength, making it an ideal matrix for composite materials in demanding environments. When combined with CCB, known for its excellent electrical conductivity, the resulting composite electrodes not only retain the advantageous properties of PVDF but also gain enhanced electrical conductivity. This synergy makes PVDF/CCB composites suitable for energy-harvesting devices that require both durability and electrical functionality. These electrodes can be used in sensors, actuators, and flexible electronics where efficient energy conversion is critical. The study provides a comprehensive overview of PVDF/CCB conducting electrodes, from synthesis and characterization to practical applications. This research aims to contribute to the understanding of conductive polymer composites and their potential in advancing sustainable energy technologies.Keywords: additive manufacturing, polyvinylidene fluoride (PVDF), conducting polymer composite, energy harvesting, materials characterization
Procedia PDF Downloads 218664 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency
Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet
Abstract:
This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.Keywords: energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm
Procedia PDF Downloads 4058663 Vibration Energy Harvesting from Aircraft Structure Using Piezoelectric Transduction
Authors: M. Saifudin Ahmed Atique, Santosh Paudyal, Caixia Yang
Abstract:
In an aircraft, a great portion of energy is wasted due to its inflight structural vibration. Structural components vibrate due to aeroelastic instabilities, gust perturbations and engine rotation at very high rpm. Energy losses due to mechanical vibration can be utilized by harvesting energy from aircraft structure as electrical energy. This harvested energy can be stored in battery panels built into aircraft fuselage and can be used to power inflight auxiliary accessories i.e., lighting and entertainment systems. Moreover, this power can be used for wireless Structural Health Monitoring System (SHM) for aircraft and as an excellent replacement of aircraft Ground Power Unit (GPU)/Auxiliary Power Unit (APU) during passenger onboard time to power aircraft cabin accessories to reduce aircraft ground operation cost significantly. In this paper, we propose the design of a noble aircraft wing in which Piezoelectric panels placed under the composite skin of aircraft wing will generate electrical charges from any inflight aerodynamics or mechanical vibration and store it into battery to power auxiliary inflight systems/accessories as per requirement. Experimental results show that a well-engineered piezoelectric energy harvester based aircraft wing can produce adequate energy to support in-flight lighting and auxiliary cabin accessories.Keywords: vibration energy, aircraft wing, piezoelectric material, inflight accessories
Procedia PDF Downloads 1598662 A Review on Investigating the Relations between Water Harvesting and Water Conflicts
Authors: B. Laurita
Abstract:
The importance of Water Harvesting (WH) as an effective mean to deal with water scarcity is universally recognized. The collection and storage of rainwater, floodwater or quick runoff and their conversion to productive uses can ensure water availability for domestic and agricultural use, enabling a lower exploitation of the aquifer, preventing erosion events and providing significant ecosystem services. At the same time, it has been proven that it can reduce the insurgence of water conflicts if supported by a cooperative process of planning and management. On the other hand, the construction of water harvesting structures changes the hydrological regime, affecting upstream-downstream dynamics and changing water allocation, often causing contentions. Furthermore, dynamics existing between water harvesting and water conflict are not properly investigated yet. Thus, objective of this study is to analyze the relations between water harvesting and the insurgence of water conflicts, providing a solid theoretical basis and foundations for future studies. Two search engines were selected in order to perform the study: Google Scholar and Scopus. Separate researches were conducted on the mutual influences between water conflicts and the four main water harvesting techniques: rooftop harvesting, surface harvesting, underground harvesting, runoff harvesting. Some of the aforementioned water harvesting techniques have been developed and implemented on scales ranging from the small, household-sided ones, to gargantuan dam systems. Instead of focusing on the collisions related to large-scale systems, this review is aimed to look for and collect examples of the effects that the implementation of small water harvesting systems has had on the access to the water resource and on water governance. The present research allowed to highlight that in the studies that have been conducted up to now, water harvesting, and in particular those structures that allow the collection and storage of water for domestic use, is usually recognized as a positive, palliative element during contentions. On the other hand, water harvesting can worsen and, in some cases, even generate conflicts for water management. This shows the necessity of studies that consider both benefits and negative influences of water harvesting, analyzing its role respectively as triggering or as mitigating factor of conflicting situations.Keywords: arid areas, governance, water conflicts, water harvesting
Procedia PDF Downloads 2038661 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances
Authors: Pakorn Uttayopas, Chawalit Kittichaikarn
Abstract:
This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.Keywords: downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel
Procedia PDF Downloads 2348660 Electromagnetic Energy Harvesting by Using a Rectenna with a Metamaterial Lens
Authors: Ursula D. C. Resende, Fabiano S. Bicalho, Sandro T. M. Gonçalves
Abstract:
The growing demand for cheap and clean energy sources have been motivated by the study and development of distinct technologies and devices able to provide different amounts of energy. In order to supply energy for small loads, the energy from the electromagnetic spectrum can be harvested. This possibility is particularly interesting because this kind of energy is constantly available in the environment and the number of radiofrequency sources is permanently increasing, due to advances in telecommunications services. A rectenna, which is a combination of an antenna and a rectifier circuit, is an equipment that can efficiently perform the electromagnetic energy harvesting. However, since the amount of electromagnetic energy available in the environment is very small, limited values of power can be harvested by the rectenna. Therefore, several technical strategies have been investigated in order to increase this amount of power. In this work, a metamaterial electromagnetic lens is used to improve the electromagnetic energy harvesting. The rectenna investigated was designed and optimized to charge a Li-Ion battery using the electromagnetic energy from an internet Wi-Fi commercial router model TL-WR841HP operating in 2.45 GHz with maximal output power equal to 18 dBm. The rectenna consists of a high directive antenna, a double voltage rectifier circuit and a metamaterial lens. The printed antenna, constituted of two rectangular radiator elements, was projected and optimized by using the Computer Simulation Software (CST) in order to obtain high directivities and values of S11 parameter below -10 dB in 2.45 GHz. The antenna was printed over a double-sided copper fiberglass substrate, FR4, with characterized relative electric permittivity εr = 4.3 and tangent of losses δ = 0.01. The rectifier circuit, which incorporates a circuit for impedance matching and uses the Schottky diode HSMS-2852, was projected and optimized by using Advanced Design Software (ADS) and built over the same FR4 substrate. The metamaterial cell is composed of two Square Split Ring Resonator (S-SRR) and a thin wire in order to operate with negative values of εr and relative magnetic permeability in 2.45 GHz. In order to evaluate the performance of the purposed rectenna two experimental charging tests were performed, one without and other with the metamaterial lens. The result obtained demonstrate that the electromagnetic lens was able to significantly increase the levels of electric current delivered to the battery, approximately 44%.Keywords: electromagnetic energy harvesting, electromagnetic lens, metamaterial, rectenna
Procedia PDF Downloads 1448659 Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System
Authors: Premkumar Vincent, Hyeok Kim, Jin-Hyuk Bae
Abstract:
Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination.Keywords: indoor solar cells, indoor light harvesting, organic solar cells, P3HT:ICBA, renewable energy
Procedia PDF Downloads 3108658 Flexible Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposites Filled with Ternary Nanofillers for Energy Harvesting
Authors: D. Ponnamma, E. Alper, P. Sharma, M. A. AlMaadeed
Abstract:
Integrating efficient energy harvesting materials into soft, flexible and eco-friendly substrates could yield significant breakthroughs in wearable and flexible electronics. Here we present a tri phasic filler combination of one-dimensional titanium dioxide nanotubes, two-dimensional reduced graphene oxide, and three-dimensional strontium titanate, introduced into a semi crystalline polymer, Poly(vinylidene fluoride-co-hexafluoropropylene). Simple mixing method is adopted for the composite fabrication after ensuring a high interaction among the various fillers. The films prepared were mainly tested for the piezoelectric responses and the mechanical stretchability. The results show that the piezoelectric constant has increased while changing the total filler concentration. We propose an integration of these materials in fabricating energy conversion devices useful in flexible and wearable electronics.Keywords: dielectric property, hydrothermal growth, piezoelectricity, polymer nanocomposites
Procedia PDF Downloads 2758657 Utilizing IoT for Waste Collection: A Review of Technologies for Eco-Friendly Waste Management
Authors: Fatemehsadat Mousaviabarbekouh
Abstract:
Population growth and changing consumption patterns have led to waste management becoming a significant global challenge. With projections indicating that nearly 67% of the Earth's population will live in megacities by 2050, there is a pressing need for smart solutions to address citizens' demands. Waste collection, facilitated by the Internet of Things (IoT), offers an efficient and cost-effective approach. This study aims to review the utilization of IoT for waste collection and explore technologies that promote eco-friendly waste management. The research focuses on information and communication technologies (ICTs), including spatial, identification, acquisition, and data communication technologies. Additionally, the study examines various energy harvesting technologies to further reduce costs. The findings indicate that the application of these technologies can lead to significant cost savings, energy efficiency, and ultimately reshape the future of waste management.Keywords: waste collection, IoT, smart cities, eco-friendly, information and communication technologies, energy harvesting
Procedia PDF Downloads 1148656 Enhanced Energy Powers via Composites of Piezoelectric CH₃NH₃PbI₃ and Flexoelectric Zn-Al:Layered Double Hydroxides (LDH) Nanosheets
Authors: Soon-Gil Yoon, Min-Ju Choi, Sung-Ho Shin, Junghyo Nah, Jin-Seok Choi, Hyun-A Song, Goeun Choi, Jin-Ho Choy
Abstract:
Layered double hydroxides (LDHs) with positively charged brucite-like layers and negatively charged interlayer anions are considered a critical nanoscale building block with potential for application in catalysts, biological sensors, and optical, electrical, and magnetic devices. LDHs also have a great potential as an energy conversion device, a key component in common modern electronics. Although LDHs are theoretically predicted to be centrosymmetric, we report here the first observations of the flexoelectric nature of LDHs and demonstrate their potential as an effective energy conversion material. We clearly show a linear energy conversion relationship between the output powers and curvature radius via bending with both the LDH nanosheets and thin films, revealing a direct evidence for flexoelectric effects. These findings potentially open up avenues to incorporate a flexoelectric coupling phenomenon into centrosymmetric materials such as LDHs and to harvest high-power energy using LDH nanosheets. In the present study, for enhancement of the output power, Zn-Al:LDH nanosheets were composited with piezoelectric CH3NH3PbI3 (MAPbI3) dye films and their enhanced energy harvesting was demonstrated in detail.Keywords: layered double hydroxides, flexoelectric, piezoelectric, energy harvesting
Procedia PDF Downloads 4938655 Sustainable Ionized Gas Thermoelectric Generator: Comparative Theoretical Evaluation and Efficiency Estimation
Authors: Mohammad Bqoor, Mohammad Hamdan, Isam Janajreh, Sufian Abedrabbo
Abstract:
This extensive theoretical study on a novel Ionized Gas Thermoelectric Generator (IG-TEG) system has shown the ability of continuous energy extracting from the thermal energy of ambient air around standard room temperature and even below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use the Seebeck effect, and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces an electrical current from the random Brownian Motion of charged particles that are driven by thermal energy. The key parameter of the system is particle transportation, and it was studied under the condition of flashing ratchet potentials utilizing several methods and examined experimentally, ensuring its functionality. In this study, a different approach is pursued to estimate particle transportation by evaluating the charged particle distribution and applying the other conditions of the SRP, and showing continued energy harvesting potency from the particles’ transportation. Ultimately, power levels of 10 Watt proved to be achievable from a 1 m long system tube of 10 cm radius.Keywords: thermoelectric generator, ratchet potential, Brownian ratchet, energy harvesting, sustainable energy, green technology
Procedia PDF Downloads 768654 Investigating Flutter Energy Harvesting through Piezoelectric Materials in Both Experimental and Theoretical Modes
Authors: Hassan Mohammad Karimi, Ali Salehzade Nobari, Hosein Shahverdi
Abstract:
With the advancement of technology and the decreasing weight of aerial structures, there is a growing demand for alternative energy sources. Structural vibrations can now be utilized to power low-power sensors for monitoring structural health and charging small batteries in drones. Research on extracting energy from flutter using piezoelectric has been extensive in recent years. This article specifically examines the use of a single-jointed beam with a free surface attached to its free end and a bimorph piezoelectric patch connected to the joint, providing two degrees of torsional and bending freedom. The study investigates the voltage harvested at various wind speeds and bending and twisting stiffness in a wind tunnel. The results indicate that as flutter speed increases, the output voltage also increases to some extent. However, at high wind speeds, the limited cycle created becomes unstable, negatively impacting the harvester's performance. These findings align with other research published in reputable scientific journals.Keywords: energy harvesting, piezoelectric, flutter, wind tunnel
Procedia PDF Downloads 658653 Techno-Economic Analysis Framework for Wave Energy Conversion Schemes under South African Conditions: Modeling and Simulations
Authors: Siyanda S. Biyela, Willie A. Cronje
Abstract:
This paper presents a desktop study of comparing two different wave energy to electricity technologies (WECs) using a techno-economic approach. This techno-economic approach forms basis of a framework for rapid comparison of current and future technologies. The approach also seeks to assist in investment and strategic decision making expediting future deployment of wave energy harvesting in South Africa.Keywords: cost of energy (COE) tool, sea state, wave energy converter (WEC), WEC-Sim
Procedia PDF Downloads 2898652 Flow-Induced Vibration Marine Current Energy Harvesting Using a Symmetrical Balanced Pair of Pivoted Cylinders
Authors: Brad Stappenbelt
Abstract:
The phenomenon of vortex-induced vibration (VIV) for elastically restrained cylindrical structures in cross-flows is relatively well investigated. The utility of this mechanism in harvesting energy from marine current and tidal flows is however arguably still in its infancy. With relatively few moving components, a flow-induced vibration-based energy conversion device augers low complexity compared to the commonly employed turbine design. Despite the interest in this concept, a practical device has yet to emerge. It is desirable for optimal system performance to design for a very low mass or mass moment of inertia ratio. The device operating range, in particular, is maximized below the vortex-induced vibration critical point where an infinite resonant response region is realized. An unfortunate consequence of this requirement is large buoyancy forces that need to be mitigated by gravity-based, suction-caisson or anchor mooring systems. The focus of this paper is the testing of a novel VIV marine current energy harvesting configuration that utilizes a symmetrical and balanced pair of horizontal pivoted cylinders. The results of several years of experimental investigation, utilizing the University of Wollongong fluid mechanics laboratory towing tank, are analyzed and presented. A reduced velocity test range of 0 to 60 was covered across a large array of device configurations. In particular, power take-off damping ratios spanning from 0.044 to critical damping were examined in order to determine the optimal conditions and hence the maximum device energy conversion efficiency. The experiments conducted revealed acceptable energy conversion efficiencies of around 16% and desirable low flow-speed operating ranges when compared to traditional turbine technology. The potentially out-of-phase spanwise VIV cells on each arm of the device synchronized naturally as no decrease in amplitude response and comparable energy conversion efficiencies to the single cylinder arrangement were observed. In addition to the spatial design benefits related to the horizontal device orientation, the main advantage demonstrated by the current symmetrical horizontal configuration is to allow large velocity range resonant response conditions without the excessive buoyancy. The novel configuration proposed shows clear promise in overcoming many of the practical implementation issues related to flow-induced vibration marine current energy harvesting.Keywords: flow-induced vibration, vortex-induced vibration, energy harvesting, tidal energy
Procedia PDF Downloads 1488651 Alternative Systems of Drinking Water Supply Using Rainwater Harvesting for Small Rural Communities with Zero Greenhouse Emissions
Authors: Martin Mundo-Molina
Abstract:
In Mexico, there are many small rural communities with serious water supply deficiencies. In Chiapas, Mexico, there are 19,972 poor rural communities, 15,712 of which have fewer than 100 inhabitants. The lack of a constant water supply is most severe in the highlands of Chiapas where the population is made up mainly of indigenous groups. The communities are on mountainous terrain with a widely dispersed population. These characteristics combine to make the provision of public utilities, such as water, electricity and sewerage, difficult with conventional means. The introduction of alternative, low-cost technologies represents means of supplying water such as through fog and rain catchment with zero greenhouse emissions. In this paper is presented the rainwater harvesting system (RWS) constructed in Yalentay, Chiapas Mexico. The RWS is able to store 1.2 M liters of water to provide drinking water to small rural indigenous communities of 500 people in the drought stage. Inside the system of rainwater harvesting there isn't photosynthesis in order to conserve water for long periods. The natural filters of the system of rainwater harvesting guarantee the drinking water for using to the community. The combination of potability and low cost makes rain collection a viable alternative for rural areas, weather permitting. The Mexican Institute of Water Technology and Chiapas University constructed a rainwater harvesting system in Yalentay Chiapas, it consists of four parts: 1. Roof of aluminum, for collecting rainwater, 2. Underground-cistern, divided in two tanks, 3. Filters, to improve the water quality and 4. The system of rainwater harvesting dignified the lives of people in Yalentay, saves energy, prevents the emission of greenhouse gases into the atmosphere, conserves natural resources such as water and air.Keywords: appropriate technologies, climate change, greenhouse gases, rainwater harvesting
Procedia PDF Downloads 4078650 Feasibility Study of the Quadcopter Propeller Vibrations for the Energy Production
Authors: Nneka Osuchukwu, Leonid Shpanin
Abstract:
The concept of converting the kinetic energy of quadcopter propellers into electrical energy is considered in this contribution following the feasibility study of the propeller vibrations, theoretical energy conversion, and simulation techniques. Analysis of the propeller vibration performance is presented via graphical representation of calculated and simulated parameters, in order to demonstrate the possibility of recovering the harvested energy from the propeller vibrations of the quadcopter while the quadcopter is in operation. Consideration of using piezoelectric materials in such concept, converting the mechanical energy of the propeller into the electrical energy, is given. Photographic evidence of the propeller in operation is presented and discussed together with experimental results to validate the theoretical concept.Keywords: energy harvesting, piezoelectric material, propeller vibration, unmanned aerial vehicle
Procedia PDF Downloads 473