Search results for: joint mediation learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8553

Search results for: joint mediation learning

2733 The Impact of COVID-19 Measures on Children with Disabilities and Their Families in the Kingdom of Saudi Arabia

Authors: Faris Algahtani

Abstract:

The COVID 19 pandemic and associated public health measures have disrupted the lives of peoplearound the world, including children. There is little knowledge about how pandemic measures have affected children in the Kingdom of Saudi Arabia (KSA). The aim and objectives of this qualitative study was to learn about the outcomes and impacts of the pandemic on children ages 0-8 in KSA. The study was based on 40 in-depth interviews that were conducted with experts in health, social protection, education, and early learning, children with special needs, and economics, including decision makers as well as specialists in service provision. The interviews were recorded and translated from Arabic to English into summary notes. The narrative was coded and analyzed following a thematic analysis.

Keywords: disabilities, COVID-19, families, children

Procedia PDF Downloads 220
2732 Glycosaminoglycan, a Cartilage Erosion Marker in Synovial Fluid of Osteoarthritis Patients Strongly Correlates with WOMAC Function Subscale

Authors: Priya Kulkarni, Soumya Koppikar, Narendrakumar Wagh, Dhanshri Ingle, Onkar Lande, Abhay Harsulkar

Abstract:

Cartilage is an extracellular matrix composed of aggrecan, which imparts it with a great tensile strength, stiffness and resilience. Disruption in cartilage metabolism leading to progressive degeneration is a characteristic feature of Osteoarthritis (OA). The process involves enzymatic depolymerisation of cartilage specific proteoglycan, releasing free glycosaminoglycan (GAG). This released GAG in synovial fluid (SF) of knee joint serves as a direct measure of cartilage loss, however, limited due to its invasive nature. Western Ontario and McMaster Universities Arthritis Index (WOMAC) is widely used for assessing pain, stiffness and physical-functions in OA patients. The scale is comprised of three subscales namely, pain, stiffness and physical-function, intends to measure patient’s perspective of disease severity as well as efficacy of prescribed treatment. Twenty SF samples obtained from OA patients were analysed for their GAG values in SF using DMMB based assay. LK 1.0 vernacular version was used to attain WOMAC scale. The results were evaluated using SAS University software (Edition 1.0) for statistical significance. All OA patients revealed higher GAG values compared to the control value of 78.4±30.1µg/ml (obtained from our non-OA patients). Average WOMAC calculated was 51.3 while pain, stiffness and function estimated were 9.7, 3.9 and 37.7, respectively. Interestingly, a strong statistical correlation was established between WOMAC function subscale and GAG (p = 0.0102). This subscale is based on day-to-day activities like stair-use, bending, walking, getting in/out of car, rising from bed. However, pain and stiffness subscale did not show correlation with any of the studied markers and endorsed the atypical inflammation in OA pathology. On one side, where knee pain showed poor correlation with GAG, it is often noted that radiography is insensitive to cartilage degenerative changes; thus OA remains undiagnosed for long. Moreover, active cartilage degradation phase remains elusive to both, patient and clinician. Through analysis of large number of OA patients we have established a close association of Kellgren-Lawrence grades and increased cartilage loss. A direct attempt to correlate WOMAC and radiographic progression of OA with various biomarkers has not been attempted so far. We found a good correlation in GAG levels in SF and the function subscale.

Keywords: cartilage, Glycosaminoglycan, synovial fluid, western ontario and McMaster Universities Arthritis Index

Procedia PDF Downloads 451
2731 Recessionary Tales: An Investigation into How Children with Intellectual Disability, and Their Families Experience the Current Economic Downturn

Authors: S. Flynn

Abstract:

This paper offers a focused commentary on the impact of the current economic downturn on children with ID (intellectual disability), and their families, in the Republic of Ireland. It will examine the practical challenges, serious concerns, and trends in the field of disability with specific regard to the impact of the economic downturn in the Irish context. This includes the impact of cutbacks to services and supports, and the erosion of possibilities for life progression for children with ID as evident within the existing body of research. This focused commentary on core and seminal literature, policy and research will then be used to provide a discussion on what are the core points of learning for policy makers, researchers, practitioners and society as whole.

Keywords: children, disability, economic, recession

Procedia PDF Downloads 313
2730 The Interplay of Communication and Critical Thinking in the Mathematics Classroom

Authors: Sharon K. O'Kelley

Abstract:

At the heart of mathematics education is the concept of communication which many teachers envision as the influential dialogue they conduct with their students. However, communication in the mathematics classroom operates in different forms at different levels, both externally and internally. Specifically, it can be a central component in the building of critical thinking skills that requires students not only to know how to communicate their solutions to others but that they also be able to navigate their own thought processes in search of those solutions. This paper provides a review of research on the role of communication in the building of critical thinking skills in mathematics with a focus on the problem-solving process and the implications this interplay has for the teaching and learning of mathematics.

Keywords: communication in mathematics, critical thinking skills, mathematics education, problem-solving process

Procedia PDF Downloads 92
2729 Progressive Damage Analysis of Mechanically Connected Composites

Authors: Şeyma Saliha Fidan, Ozgur Serin, Ata Mugan

Abstract:

While performing verification analyses under static and dynamic loads that composite structures used in aviation are exposed to, it is necessary to obtain the bearing strength limit value for mechanically connected composite structures. For this purpose, various tests are carried out in accordance with aviation standards. There are many companies in the world that perform these tests in accordance with aviation standards, but the test costs are very high. In addition, due to the necessity of producing coupons, the high cost of coupon materials, and the long test times, it is necessary to simulate these tests on the computer. For this purpose, various test coupons were produced by using reinforcement and alignment angles of the composite radomes, which were integrated into the aircraft. Glass fiber reinforced and Quartz prepreg is used in the production of the coupons. The simulations of the tests performed according to the American Society for Testing and Materials (ASTM) D5961 Procedure C standard were performed on the computer. The analysis model was created in three dimensions for the purpose of modeling the bolt-hole contact surface realistically and obtaining the exact bearing strength value. The finite element model was carried out with the Analysis System (ANSYS). Since a physical break cannot be made in the analysis studies carried out in the virtual environment, a hypothetical break is realized by reducing the material properties. The material properties reduction coefficient was determined as 10%, which is stated to give the most realistic approach in the literature. There are various theories in this method, which is called progressive failure analysis. Because the hashin theory does not match our experimental results, the puck progressive damage method was used in all coupon analyses. When the experimental and numerical results are compared, the initial damage and the resulting force drop points, the maximum damage load values ​​, and the bearing strength value are very close. Furthermore, low error rates and similar damage patterns were obtained in both test and simulation models. In addition, the effects of various parameters such as pre-stress, use of bushing, the ratio of the distance between the bolt hole center and the plate edge to the hole diameter (E/D), the ratio of plate width to hole diameter (W/D), hot-wet environment conditions were investigated on the bearing strength of the composite structure.

Keywords: puck, finite element, bolted joint, composite

Procedia PDF Downloads 106
2728 Contemporary Issues in Teacher Education in Nigeria

Authors: Salisu Abdu Bagga

Abstract:

This paper attempts to discuss contemporary issues in teacher education and address challenges therein within the context of the Nigeria society. Teacher education is an educational programme aimed at producing the right crop of people (teachers) who will teach at various levels of schooling i.e. primary, secondary and tertiary. The programme targets to inculcate desirable knowledge, skills, attitudes, values and competencies in teachers with the prime motive of keeping them fully abreast with contemporary challenges such as overcrowded classrooms, inadequate instructional materials, ineffective teaching methodology in the teaching industry in Nigeria. Nigeria needs competent, skilful, knowledgeable and innovative classroom teachers for better teaching and learning.

Keywords: teacher education, contemporary issues, competencies, higher education

Procedia PDF Downloads 473
2727 Remote Wireless Communications Lab in Real Time

Authors: El Miloudi Djelloul

Abstract:

Technology nowadays enables the remote access to laboratory equipment and instruments via Internet. This is especially useful in engineering education, where students can conduct laboratory experiment remotely. Such remote laboratory access can enable student to use expensive laboratory equipment, which is not usually available to students. In this paper, we present a method of creating a Web-based Remote Laboratory Experimentation in the master degree course “Wireless Communications Systems” which is part of “ICS (Information and Communication Systems)” and “Investment Management in Telecommunications” curriculums. This is done within the RIPLECS Project and the NI2011 FF005 Research Project “Implementation of Project-Based Learning in an Interdisciplinary Master Program”.

Keywords: remote access, remote laboratory, wireless telecommunications, external antenna-switching controller board (EASCB)

Procedia PDF Downloads 519
2726 Education for Social Justice: University Teachers’ Conceptions and Practice: A Comparative Study

Authors: Digby Warren, Jiri Kropac

Abstract:

While aspirations of social justice are often articulated by universities as a “feel good” mantra, what is meant by education for social justice deserves deeper consideration. Based on in-depth interviews with academics (voluntary participants in this research) in different disciplines and institutions in the UK, Czech Republic, and other EU countries, this comparative study presents thematic findings regarding lecturers’ conceptions of education for social justice -what it is, why it is important, why they are personally committed to it, how it connects with their own values- and their practice of it- how it is implemented through curriculum content, teaching and learning activities, and assessment tasks. It concludes by presenting an analysis of the challenges, constraints, and enabling factors in practising social justice education in different subject, institutional and national contexts.

Keywords: higher education, social justice, inclusivity, diversity

Procedia PDF Downloads 130
2725 Using Lesson-Based Discussion to Improve Teaching Quality: A Case of Chinese Mathematics Teachers

Authors: Jian Wang

Abstract:

Teachers’ lesson-based discussions presume central to their effective learning to teach. Whether and to what extent such discussions offer opportunities for teachers to learn to teach effectively is worth a careful empirical examination. This study examines this assumption by drawing on lesson-based discussions and relevant curriculum materials from Chinese teachers in three urban schools. Their lesson-based discussions consistently focused on pedagogical content knowledge and offered specific and reasoned suggestions for teachers to refine their teaching practices. The mandated curriculum and their working language-mediated their lesson-based discussions.

Keywords: Chinese teachers, curriculum materials, lesson discussion, mathematics instruction

Procedia PDF Downloads 83
2724 Enhancement of Fracture Toughness for Low-Temperature Applications in Mild Steel Weldments

Authors: Manjinder Singh, Jasvinder Singh

Abstract:

Existing theories of Titanic/Liberty ship, Sydney bridge accidents and practical experience generated an interest in developing weldments those has high toughness under sub-zero temperature conditions. The purpose was to protect the joint from undergoing DBT (Ductile to brittle transition), when ambient temperature reach sub-zero levels. Metallurgical improvement such as low carbonization or addition of deoxidization elements like Mn and Si was effective to prevent fracture in weldments (crack) at low temperature. In the present research, an attempt has been made to investigate the reason behind ductile to brittle transition of mild steel weldments when subjected to sub-zero temperatures and method of its mitigation. Nickel is added to weldments using manual metal arc welding (MMAW) preventing the DBT, but progressive reduction in charpy impact values as temperature is lowered. The variation in toughness with respect to nickel content being added to the weld pool is analyzed quantitatively to evaluate the rise in toughness value with increasing nickel amount. The impact performance of welded specimens was evaluated by Charpy V-notch impact tests at various temperatures (20 °C, 0 °C, -20 °C, -40 °C, -60 °C). Notch is made in the weldments, as notch sensitive failure is particularly likely to occur at zones of high stress concentration caused by a notch. Then the effect of nickel to weldments is investigated at various temperatures was studied by mechanical and metallurgical tests. It was noted that a large gain in impact toughness could be achieved by adding nickel content. The highest yield strength (462J) in combination with good impact toughness (over 220J at – 60 °C) was achieved with an alloying content of 16 wt. %nickel. Based on metallurgical behavior it was concluded that the weld metals solidify as austenite with increase in nickel. The microstructure was characterized using optical and high resolution SEM (scanning electron microscopy). At inter-dendritic regions mainly martensite was found. In dendrite core regions of the low carbon weld metals a mixture of upper bainite, lower bainite and a novel constituent coalesced bainite formed. Coalesced bainite was characterized by large bainitic ferrite grains with cementite precipitates and is believed to form when the bainite and martensite start temperatures are close to each other. Mechanical properties could be rationalized in terms of micro structural constituents as a function of nickel content.

Keywords: MMAW, Toughness, DBT, Notch, SEM, Coalesced bainite

Procedia PDF Downloads 528
2723 'Go Baby Go'; Community-Based Integrated Early Childhood and Maternal Child Health Model Improving Early Childhood Stimulation, Care Practices and Developmental Outcomes in Armenia: A Quasi-Experimental Study

Authors: Viktorya Sargsyan, Arax Hovhannesyan, Karine Abelyan

Abstract:

Introduction: During the last decade, scientific studies have proven the importance of Early Childhood Development (ECD) interventions. These interventions are shown to create strong foundations for children’s intellectual, emotional and physical well-being, as well as the impact they have on learning and economic outcomes for children as they mature into adulthood. Many children in rural Armenia fail to reach their full development potential due to lack of early brain stimulation (playing, singing, reading, etc.) from their parents, and lack of community tools and services to follow-up children’s neurocognitive development. This is exacerbated by high rates of stunting and anemia among children under 3(CU3). This research study tested the effectiveness of an integrated ECD and Maternal, Newborn and Childhood Health (MNCH) model, called “Go Baby, Go!” (GBG), against the traditional (MNCH) strategy which focuses solely on preventive health and nutrition interventions. The hypothesis of this quasi-experimental study was: Children exposed to GBG will have better neurocognitive and nutrition outcomes compared to those receiving only the MNCH intervention. The secondary objective was to assess the effect of GBG on parental child care and nutrition practices. Methodology: The 14 month long study, targeted all 1,300 children aged 0 to 23 months, living in 43 study communities the in Gavar and Vardenis regions (Gegharkunik province, Armenia). Twenty-three intervention communities, 680 children, received GBG, and 20 control communities, 630 children, received MCHN interventions only. Baseline and evaluation data on child development, nutrition status and parental child care and nutrition practices were collected (caregiver interview, direct child assessment). In the intervention sites, in addition to MNCH (maternity schools, supportive supervision for Health Care Providers (HCP), the trained GBG facilitators conducted six interactive group sessions for mothers (key messages, information, group discussions, role playing, video-watching, toys/books preparation, according to GBG curriculum), and two sessions (condensed GBG) for adult family members (husbands, grandmothers). The trained HCPs received quality supervision for ECD counseling and screening. Findings: The GBG model proved to be effective in improving ECD outcomes. Children in the intervention sites had 83% higher odd of total ECD composite score (cognitive, language, motor) compared to children in the control sites (aOR 1.83; 95 percent CI: 1.08-3.09; p=0.025). Caregivers also demonstrated better child care and nutrition practices (minimum dietary diversity in intervention site is 55 percent higher compared to control (aOR=1.55, 95 percent CI 1.10-2.19, p =0.013); support for learning and disciplining practices (aOR=2.22, 95 percent CI 1.19-4.16, p=0.012)). However, there was no evidence of stunting reduction in either study arm. he effect of the integrated model was more prominent in Vardenis, a community which is characterised by high food insecurity and limited knowledge of positive parenting skills. Conclusion: The GBG model is effective and could be applied in target areas with the greatest economic disadvantages and parenting challenges to improve ECD, care practices and developmental outcomes. Longitudinal studies are needed to view the long-term effects of GBG on learning and school readiness.

Keywords: early childhood development, integrated interventions, parental practices, quasi-experimental study

Procedia PDF Downloads 175
2722 Curricular Reforms for Inclusive Education: Equalization of Opportunities for the Physically Challenged Persons

Authors: Ede Jairus Adagba

Abstract:

The National Policy on Education has made elaborate and fascinating provisions for the education of the people with Special Needs. This category of people includes the physically challenged, the disadvantaged, the gifted and talented. However, the focus of this paper is people that are physically challenged. The paper reasons that in spite of the commendable provisions, the present curricular and learning conditions are not conducive enough to cater for the interest of the physically challenged persons. As a panacea, some curricular and physical condition reforms are proposed. These are hoped to facilitate access to inclusive education and equalization for opportunities of the physically challenged.

Keywords: curricular reforms, equalization, inclusive education, physically challenged persons

Procedia PDF Downloads 314
2721 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends

Authors: Zheng Yuxun

Abstract:

This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.

Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis

Procedia PDF Downloads 61
2720 Evaluation of the Role of Simulation and Virtual Reality as High-Yield Adjuncts to Paediatric Education

Authors: Alexandra Shipley

Abstract:

Background: Undergraduate paediatric teaching must overcome two major challenges: 1) balancing patient safety with active student engagement and 2) exposing students to a comprehensive range of pathologies within a relatively short clinical placement. Whilst lectures and shadowing on paediatric wards constitute the mainstay of learning, Simulation and Virtual Reality (VR) are emerging as effective teaching tools, which - immune to the unpredictability and seasonal variation of hospital presentations - could expose students to the entire syllabus more reliably, efficiently, and independently. We aim to evaluate the potential utility of Simulation and VR in addressing gaps within the traditional paediatric curriculum from the perspective of medical students. Summary of Work: Exposure to and perceived utility of various learning opportunities within the Paediatric and Emergency Medicine courses were assessed through a questionnaire completed by 5th year medical students (n=23). Summary of Results: Students reported limited exposure to several common acute paediatric presentations, such as bronchiolitis (41%), croup (32%) or pneumonia (14%), and to clinical emergencies, including cardiac/respiratory arrests or trauma calls (27%). Across all conditions, average self-reported confidence in assessment and management to the level expected of an FY1 is greater amongst those who observed at least one case (e.g. 7.6/10 compared with 3.6/10 for croup). Students rated exposure through Simulation or VR to be of similar utility to witnessing a clinical scenario on the ward. In free text responses, students unanimously favoured being ‘challenged’ through ‘hands-on’ patient interaction over passive shadowing, where it is ‘easy to zone out.’ In recognition of the fact that such independence is only appropriate in certain clinical situations, many students reported wanting more Simulation and VR teaching. Importantly, students raised the necessity of ‘proper debriefs’ after these sessions to maximise educational value. Discussion and Conclusion: Our questionnaire elicited several student-perceived challenges in paediatric education, including incomplete exposure to common pathologies and limited opportunities for active involvement in patient care. Indeed, these experiences seem to be important predictors of confidence. Quantitative and qualitative feedback suggests that VR and Simulation satisfy students’ self-reported appetite for independent engagement with authentic clinical scenarios. Take-aways: Our findings endorse further development of VR and Simulation as high-yield adjuncts to paediatric education.

Keywords: paediatric emergency education, simulation, virtual reality, medical education

Procedia PDF Downloads 76
2719 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 322
2718 A Hebbian Neural Network Model of the Stroop Effect

Authors: Vadim Kulikov

Abstract:

The classical Stroop effect is the phenomenon that it takes more time to name the ink color of a printed word if the word denotes a conflicting color than if it denotes the same color. Over the last 80 years, there have been many variations of the experiment revealing various mechanisms behind semantic, attentional, behavioral and perceptual processing. The Stroop task is known to exhibit asymmetry. Reading the words out loud is hardly dependent on the ink color, but naming the ink color is significantly influenced by the incongruent words. This asymmetry is reversed, if instead of naming the color, one has to point at a corresponding color patch. Another debated aspects are the notions of automaticity and how much of the effect is due to semantic and how much due to response stage interference. Is automaticity a continuous or an all-or-none phenomenon? There are many models and theories in the literature tackling these questions which will be discussed in the presentation. None of them, however, seems to capture all the findings at once. A computational model is proposed which is based on the philosophical idea developed by the author that the mind operates as a collection of different information processing modalities such as different sensory and descriptive modalities, which produce emergent phenomena through mutual interaction and coherence. This is the framework theory where ‘framework’ attempts to generalize the concepts of modality, perspective and ‘point of view’. The architecture of this computational model consists of blocks of neurons, each block corresponding to one framework. In the simplest case there are four: visual color processing, text reading, speech production and attention selection modalities. In experiments where button pressing or pointing is required, a corresponding block is added. In the beginning, the weights of the neural connections are mostly set to zero. The network is trained using Hebbian learning to establish connections (corresponding to ‘coherence’ in framework theory) between these different modalities. The amount of data fed into the network is supposed to mimic the amount of practice a human encounters, in particular it is assumed that converting written text into spoken words is a more practiced skill than converting visually perceived colors to spoken color-names. After the training, the network performs the Stroop task. The RT’s are measured in a canonical way, as these are continuous time recurrent neural networks (CTRNN). The above-described aspects of the Stroop phenomenon along with many others are replicated. The model is similar to some existing connectionist models but as will be discussed in the presentation, has many advantages: it predicts more data, the architecture is simpler and biologically more plausible.

Keywords: connectionism, Hebbian learning, artificial neural networks, philosophy of mind, Stroop

Procedia PDF Downloads 272
2717 Robust Electrical Segmentation for Zone Coherency Delimitation Base on Multiplex Graph Community Detection

Authors: Noureddine Henka, Sami Tazi, Mohamad Assaad

Abstract:

The electrical grid is a highly intricate system designed to transfer electricity from production areas to consumption areas. The Transmission System Operator (TSO) is responsible for ensuring the efficient distribution of electricity and maintaining the grid's safety and quality. However, due to the increasing integration of intermittent renewable energy sources, there is a growing level of uncertainty, which requires a faster responsive approach. A potential solution involves the use of electrical segmentation, which involves creating coherence zones where electrical disturbances mainly remain within the zone. Indeed, by means of coherent electrical zones, it becomes possible to focus solely on the sub-zone, reducing the range of possibilities and aiding in managing uncertainty. It allows faster execution of operational processes and easier learning for supervised machine learning algorithms. Electrical segmentation can be applied to various applications, such as electrical control, minimizing electrical loss, and ensuring voltage stability. Since the electrical grid can be modeled as a graph, where the vertices represent electrical buses and the edges represent electrical lines, identifying coherent electrical zones can be seen as a clustering task on graphs, generally called community detection. Nevertheless, a critical criterion for the zones is their ability to remain resilient to the electrical evolution of the grid over time. This evolution is due to the constant changes in electricity generation and consumption, which are reflected in graph structure variations as well as line flow changes. One approach to creating a resilient segmentation is to design robust zones under various circumstances. This issue can be represented through a multiplex graph, where each layer represents a specific situation that may arise on the grid. Consequently, resilient segmentation can be achieved by conducting community detection on this multiplex graph. The multiplex graph is composed of multiple graphs, and all the layers share the same set of vertices. Our proposal involves a model that utilizes a unified representation to compute a flattening of all layers. This unified situation can be penalized to obtain (K) connected components representing the robust electrical segmentation clusters. We compare our robust segmentation to the segmentation based on a single reference situation. The robust segmentation proves its relevance by producing clusters with high intra-electrical perturbation and low variance of electrical perturbation. We saw through the experiences when robust electrical segmentation has a benefit and in which context.

Keywords: community detection, electrical segmentation, multiplex graph, power grid

Procedia PDF Downloads 83
2716 Hedonic Motivations for Online Shopping

Authors: Pui-Lai To, E-Ping Sung

Abstract:

The purpose of this study is to investigate hedonic online shopping motivations. A qualitative analysis was conducted to explore the factors influencing online hedonic shopping motivations. The results of the study indicate that traditional hedonic values, consisting of social, role, self-gratification, learning trends, pleasure of bargaining, stimulation, diversion, status, and adventure, and dimensions of flow theory, consisting of control, curiosity, enjoyment, and telepresence, exist in the online shopping environment. Two hedonic motivations unique to Internet shopping, privacy and online shopping achievement, were found. It appears that the most important hedonic value to online shoppers is having the choice to interact or not interact with others while shopping on the Internet. This study serves as a basis for the future growth of Internet marketing.

Keywords: internet shopping, shopping motivation, hedonic motivation

Procedia PDF Downloads 480
2715 Compensatory Neuro-Fuzzy Inference (CNFI) Controller for Bilateral Teleoperation

Authors: R. Mellah, R. Toumi

Abstract:

This paper presents a new adaptive neuro-fuzzy controller equipped with compensatory fuzzy control (CNFI) in order to not only adjusts membership functions but also to optimize the adaptive reasoning by using a compensatory learning algorithm. The proposed control structure includes both CNFI controllers for which one is used to control in force the master robot and the second one for controlling in position the slave robot. The experimental results obtained, show a fairly high accuracy in terms of position and force tracking under free space motion and hard contact motion, what highlights the effectiveness of the proposed controllers.

Keywords: compensatory fuzzy, neuro-fuzzy, control adaptive, teleoperation

Procedia PDF Downloads 328
2714 Foreign Language Classroom Anxiety: An International Student's Perspective on Indonesian Language Learning

Authors: Ukhtie Nantika Mena, Ahmad Juntika Nurihsan, Ilfiandra

Abstract:

This study aims to explore perspective on Foreign Language Classroom Anxiety (FLCA) of an international student. Descriptive narrative is used to discover written and spoken responses from the student. An online survey was employed as a secondary data to identify the level of FLCA among six UPI international students. A student with the highest score volunteered to be interviewed. Several symptoms were found; lack of concentration, excessive worry, fear, unwanted thoughts, and sweating. The results showed that difficulties to understand lecturers' correction, presentation, and fear of getting left behind are three major causes of his anxiety.

Keywords: foreign language classroom anxiety, FLCA, international students, language anxiety

Procedia PDF Downloads 145
2713 Affects Associations Analysis in Emergency Situations

Authors: Joanna Grzybowska, Magdalena Igras, Mariusz Ziółko

Abstract:

Association rule learning is an approach for discovering interesting relationships in large databases. The analysis of relations, invisible at first glance, is a source of new knowledge which can be subsequently used for prediction. We used this data mining technique (which is an automatic and objective method) to learn about interesting affects associations in a corpus of emergency phone calls. We also made an attempt to match revealed rules with their possible situational context. The corpus was collected and subjectively annotated by two researchers. Each of 3306 recordings contains information on emotion: (1) type (sadness, weariness, anxiety, surprise, stress, anger, frustration, calm, relief, compassion, contentment, amusement, joy) (2) valence (negative, neutral, or positive) (3) intensity (low, typical, alternating, high). Also, additional information, that is a clue to speaker’s emotional state, was annotated: speech rate (slow, normal, fast), characteristic vocabulary (filled pauses, repeated words) and conversation style (normal, chaotic). Exponentially many rules can be extracted from a set of items (an item is a previously annotated single information). To generate the rules in the form of an implication X → Y (where X and Y are frequent k-itemsets) the Apriori algorithm was used - it avoids performing needless computations. Then, two basic measures (Support and Confidence) and several additional symmetric and asymmetric objective measures (e.g. Laplace, Conviction, Interest Factor, Cosine, correlation coefficient) were calculated for each rule. Each applied interestingness measure revealed different rules - we selected some top rules for each measure. Owing to the specificity of the corpus (emergency situations), most of the strong rules contain only negative emotions. There are though strong rules including neutral or even positive emotions. Three examples of the strongest rules are: {sadness} → {anxiety}; {sadness, weariness, stress, frustration} → {anger}; {compassion} → {sadness}. Association rule learning revealed the strongest configurations of affects (as well as configurations of affects with affect-related information) in our emergency phone calls corpus. The acquired knowledge can be used for prediction to fulfill the emotional profile of a new caller. Furthermore, a rule-related possible context analysis may be a clue to the situation a caller is in.

Keywords: data mining, emergency phone calls, emotional profiles, rules

Procedia PDF Downloads 410
2712 Ayurvastra: A Study on the Ancient Indian Textile for Healing

Authors: Reena Aggarwal

Abstract:

The use of textile chemicals in the various pre and post-textile manufacturing processes has made the textile industry conscious of its negative contribution to environmental pollution. Popular environmentally friendly fibers such as recycled polyester and organic cotton have been now increasingly used by fabrics and apparel manufacturers. However, after these textiles or the finished apparel are manufactured, they have to be dyed in the same chemical dyes that are harmful and toxic to the environment. Dyeing is a major area of concern for the environment as well as for people who have chemical sensitivities as it may cause nausea, breathing difficulties, seizures, etc. Ayurvastra or herbal medical textiles are one step ahead of the organic lifestyle, which supports the core concept of holistic well-being and also eliminates the impact of harmful chemicals and pesticides. There is a wide range of herbs that can be used not only for dyeing but also for providing medicinal properties to the textiles like antibacterial, antifungal, antiseptic, antidepressant and for treating insomnia, skin diseases, etc. The concept of herbal dyeing of fabric is to manifest herbal essence in every aspect of clothing, i.e., from production to end-use, additionally to eliminate the impact of harmful chemical dyes and chemicals which are known to result in problems like skin rashes, headache, trouble concentrating, nausea, diarrhea, fatigue, muscle and joint pain, dizziness, difficulty breathing, irregular heartbeat and seizures. Herbal dyeing or finishing on textiles will give an extra edge to the textiles as it adds an extra function to the fabric. The herbal extracts can be applied to the textiles by a simple process like the pad dry cure method and mainly acts on the human body through the skin for aiding in the treatment of disease or managing the medical condition through its herbal properties. This paper, therefore, delves into producing Ayurvastra, which is a perfect amalgamation of cloth and wellness. The aim of the paper is to design and create herbal disposable and non-disposable medical textile products acting mainly topically (through the skin) for providing medicinal properties/managing medical conditions. Keeping that in mind, a range of antifungal socks and antibacterial napkins treated with turmeric and aloe vera were developed, which are recommended for the treatment of fungal and bacterial infections, respectively. Both Herbal Antifungal socks and Antibacterial napkins have proved to be efficient enough in managing and treating fungal and bacterial infections of the skin, respectively.

Keywords: ayurvastra, ayurveda, herbal, pandemic, sustainable

Procedia PDF Downloads 134
2711 Studies on Pre-ignition Chamber Dynamics of Solid Rockets with Different Port Geometries

Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar

Abstract:

In this paper numerical studies have been carried out to examine the starting transient flow features of high-performance solid propellant rocket motors with different port geometries but with same propellant loading density. Numerical computations have been carried out using a 3D SST k-ω turbulence model. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second order implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations are employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create pre-ignition thrust oscillations due to flow unsteadiness and recirculation. Under these conditions the convective flux to the surface of the propellant will be enhanced, which will create reattachment point far downstream of the transition region and it will create a situation for secondary ignition and formation of multiple-flame fronts. As a result the effective time required for the complete burning surface area to be ignited comes down drastically giving rise to a high pressurization rate (dp/dt) in the second phase of starting transient. This in effect could lead to starting thrust oscillations and eventually a hard start of the solid rocket motor. We have also observed that the igniter temperature fluctuations will be diminished rapidly and will reach the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the thrust oscillations and unexpected thrust spike often observed in solid rockets with non-uniform ports are presumably contributed due to the joint effects of the geometry dependent driving forces, transient burning and the chamber gas dynamics forces. We also concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or pressure/thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.

Keywords: ignition transient, solid rockets, starting transient, thrust transient

Procedia PDF Downloads 451
2710 The Relationship between the Social Entrepreneur and the Social Dimension of Sustainability: A Bibliometric Survey of the Last Twelve Years

Authors: Leticia Lengler, Jefferson Oliveira, Vania Estivalete, Jordana Marques Kneipp, Lucia Regina Da Rosa Gama Madruga

Abstract:

The way social entrepreneurs act and can positively impact on our society engages the interest of academics, companies and governments, who seek solutions to solve or alleviate issues related to the abuse of natural resources, as well as the increase of poverty (social aspects). Studies on social entrepreneurship have been characterized by diverse ramifications and their transdisciplinary character, permeating various disciplines and approaches. Different bibliometric studies were conducted within the theme of social entrepreneurship. In this context, because it is a topic in development and multifaceted, the aim of this article is to present the main interfaces of the studies on the Social Entrepreneur figure in relation to the social concern of sustainability, highlighting the relevant researches and their trends, as well as their relationship with the organizations. Aiming to achieve this purpose, the specific goals are: to identify the most cited authors and articles, to verify the authors and journals with the greatest number of publications and their approaches and to point out their affiliations, countries, and languages of publications. It is still a secondary objective to identify the emerging trends in relation to the social entrepreneur and his social concern stemming from the discussions on sustainability. This way, we analyzed articles from two international databases (Scopus and Web of Science), from 2004 to 2016. The main results were the increase in the number of publications, with most of them in English language, coming mainly from the United States institutions (such as Indiana University and Harvard University) and the United Kingdom (whose main institutions are University of London and Robert Gordon University). Although publications in Spanish and Portuguese are the least expressive in quantity, some tendencies point to publications that discuss the social entrepreneur in terms of gender (that relates to female entrepreneurship) and social class (that relates to the need of building communities that contemplate the Social entrepreneur at the base of the pyramid). It should be noted that the trends of the themes emerged from the analysis of the publication titles only in Portuguese, since this is the native language of the authors who carry out their studies mainly in Brazil. When considering articles in Portuguese (57 indicated by WOS and 9 by Scopus), a previous analysis of the titles was carried out to identify how researchers were approaching the theme social entrepreneur in a joint way to the social dimension of sustainability. However, the analysis of the titles themselves brought a limitation to our study, since it was felt a need to carry out a qualitative study, in which it could be possible to consider the abstracts of the available articles.

Keywords: base of pyramid, social dimension, social entrepreneur, sustainability

Procedia PDF Downloads 391
2709 Teaching Speaking Skills to Adult English Language Learners through ALM

Authors: Wichuda Kunnu, Aungkana Sukwises

Abstract:

Audio-lingual method (ALM) is a teaching approach that is claimed that ineffective for teaching second/foreign languages. Because some linguists and second/foreign language teachers believe that ALM is a rote learning style. However, this study is done on a belief that ALM will be able to solve Thais’ English speaking problem. This paper aims to report the findings on teaching English speaking to adult learners with an “adapted ALM”, one distinction of which is to use Thai as the medium language of instruction. The participants are consisted of 9 adult learners. They were allowed to speak English more freely using both the materials presented in the class and their background knowledge of English. At the end of the course, they spoke English more fluently, more confidently, to the extent that they applied what they learnt both in and outside the class.

Keywords: teaching English, audio lingual method, cognitive science, psychology

Procedia PDF Downloads 423
2708 Using Neural Networks for Click Prediction of Sponsored Search

Authors: Afroze Ibrahim Baqapuri, Ilya Trofimov

Abstract:

Sponsored search is a multi-billion dollar industry and makes up a major source of revenue for search engines (SE). Click-through-rate (CTR) estimation plays a crucial role for ads selection, and greatly affects the SE revenue, advertiser traffic and user experience. We propose a novel architecture of solving CTR prediction problem by combining artificial neural networks (ANN) with decision trees. First, we compare ANN with respect to other popular machine learning models being used for this task. Then we go on to combine ANN with MatrixNet (proprietary implementation of boosted trees) and evaluate the performance of the system as a whole. The results show that our approach provides a significant improvement over existing models.

Keywords: neural networks, sponsored search, web advertisement, click prediction, click-through rate

Procedia PDF Downloads 578
2707 Psychological Variables Predicting Academic Achievement in Argentinian Students: Scales Development and Recent Findings

Authors: Fernandez liporace, Mercedes Uriel Fabiana

Abstract:

Academic achievement in high school and college students is currently a matter of concern. National and international assessments show high schoolers as low achievers, and local statistics indicate alarming dropout percentages in this educational level. Even so, 80% of those students intend attending higher education. On the other hand, applications to Public National Universities are free and non-selective by examination procedures. Though initial registrations are massive (307.894 students), only 50% of freshmen pass their first year classes, and 23% achieves a degree. Low performances use to be a common problem. Hence, freshmen adaptation, their adjustment, dropout and low academic achievement arise as topics of agenda. Besides, the hinge between high school and college must be examined in depth, in order to get an integrated and successful path from one educational stratum to the other. Psychology aims at developing two main research lines to analyse the situation. One regarding psychometric scales, designing and/or adapting tests, examining their technical properties and their theoretical validity (e.g., academic motivation, learning strategies, learning styles, coping, perceived social support, parenting styles and parental consistency, paradoxical personality as correlated to creative skills, psychopathological symptomatology). The second research line emphasizes relationships within the variables measured by the former scales, facing the formulation and testing of predictive models of academic achievement, establishing differences by sex, age, educational level (high school vs college), and career. Pursuing these goals, several studies were carried out in recent years, reporting findings and producing assessment technology useful to detect students academically at risk as well as good achievers. Multiple samples were analysed totalizing more than 3500 participants (2500 from college and 1000 from high school), including descriptive, correlational, group differences and explicative designs. A brief on the most relevant results is presented. Providing information to design specific interventions according to every learner’s features and his/her educational environment comes up as a mid-term accomplishment. Furthermore, that information might be helpful to adapt curricula by career, as well as for implementing special didactic strategies differentiated by sex and personal characteristics.

Keywords: academic achievement, higher education, high school, psychological assessment

Procedia PDF Downloads 373
2706 Adaptive Auth - Adaptive Authentication Based on User Attributes for Web Application

Authors: Senthuran Manoharan, Rathesan Sivagananalingam

Abstract:

One of the main issues in system security is Authentication. Authentication can be defined as the process of recognizing the user's identity and it is the most important step in the access control process to safeguard data/resources from being accessed by unauthorized users. The static method of authentication cannot ensure the genuineness of the user. Due to this reason, more innovative authentication mechanisms came into play. At first two factor authentication was introduced and later, multi-factor authentication was introduced to enhance the security of the system. It also had some issues and later, adaptive authentication was introduced. In this research paper, the design of an adaptive authentication engine was put forward. The user risk profile was calculated based on the user parameters and then the user was challenged with a suitable authentication method.

Keywords: authentication, adaptive authentication, machine learning, security

Procedia PDF Downloads 259
2705 Bread-Making Properties of Rice Flour Dough Using Fatty Acid Salt

Authors: T. Hamaishi, Y. Morinaga, H. Morita

Abstract:

Introduction: Rice consumption in Japan has decreased, and Japanese government has recommended use of rice flour in order to expand the consumption of rice. There are two major protein components present in flour, called gliadin and glutenin. Gluten forms when water is added to flour and is mixed. As mixing continues, glutenin interacts with gliadin to form viscoelastic matrix of gluten. Rice flour bread does not expand as much as wheat flour bread. Because rice flour is not included gluten, it cannot construct gluten network in the dough. In recent years, some food additives have been used for dough-improving agent in bread making, especially surfactants has effect in order to improve dough extensibility. Therefore, we focused to fatty acid salt which is one of anionic surfactants. Fatty acid salt is a salt consist of fatty acid and alkali, it is main components of soap. According to JECFA(FAO/WHO Joint Expert Committee on Food Additives), salts of Myristic(C14), Palmitic(C16) and Stearic(C18) could be used as food additive. They have been evaluated ADI was not specified. In this study, we investigated to improving bread-making properties of rice flour dough adding fatty acid salt. Materials and methods: The sample of fatty acid salt is myristic (C14) dissolved in KOH solution to a concentration of 350 mM and pH 10.5. Rice dough was consisted of 100 g of flour using rice flour and wheat gluten, 5 g of sugar, 1.7 g of salt, 1.7g of dry yeast, 80 mL of water and fatty acid salt. Mixing was performed for 500 times by using hand. The concentration of C14K in the dough was 10 % relative to flour weight. Amount of gluten in the dough was 20 %, 30 % relative to flour weight. Dough expansion ability test was performed to measure physical property of bread dough according to the methods of Baker’s Yeast by Japan Yeast Industry Association. In this test, 150 g of dough was filled from bottom of the cylinder and fermented at 30 °C,85 % humidity for 120 min on an incubator. The height of the expansion in the dough was measured and determined its expansion ability. Results and Conclusion: Expansion ability of rice dough with gluten content of 20 %, 30% showed 316 mL, 341 mL for 120 min. When C14K adding to the rice dough, dough expansion abilities were 314 mL, 368 mL for 120 min, there was no significant difference. Conventionally it has been known that the rice flour dough contain gluten of 20 %. The considerable improvement of dough expansion ability was achieved when added C14K to wheat flour. The experimental result shows that c14k adding to the rice dough with gluten content more than 20 % was not improving bread-making properties. In conclusion, rice bread made with gluten content more than 20 % without C14K has been suggested to contribute to the formation of the sufficient gluten network.

Keywords: expansion ability, fatty acid salt, gluten, rice flour dough

Procedia PDF Downloads 250
2704 Data Mining in Healthcare for Predictive Analytics

Authors: Ruzanna Muradyan

Abstract:

Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.

Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health

Procedia PDF Downloads 66