Search results for: workforce diversity learning
3289 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 2903288 Achieving Maximum Performance through the Practice of Entrepreneurial Ethics: Evidence from SMEs in Nigeria
Authors: S. B. Tende, H. L. Abubakar
Abstract:
It is acknowledged that small and medium enterprises (SMEs) may encounter different ethical issues and pressures that could affect the way in which they strategize or make decisions concerning the outcome of their business. Therefore, this research aimed at assessing entrepreneurial ethics in the business of SMEs in Nigeria. Secondary data were adopted as source of corpus for the analysis. The findings conclude that a sound entrepreneurial ethics system has a significant effect on the level of performance of SMEs in Nigeria. The Nigerian Government needs to provide both guiding and physical structures; as well as learning systems that could inculcate these entrepreneurial ethics.Keywords: culture, entrepreneurial ethics, performance, SME
Procedia PDF Downloads 3833287 Examining the Teaching and Learning Needs of Science and Mathematics Educators in South Africa
Authors: M. Shaheed Hartley
Abstract:
There has been increasing pressure on education researchers and practitioners at higher education institutions to focus on the development of South Africa’s rural and peri-urban communities and improving their quality of life. Many tertiary institutions are obliged to review their outreach interventions in schools. To ensure that the support provided to schools is still relevant, a systemic evaluation of science educator needs is central to this process. These prioritised needs will serve as guide not only for the outreach projects of tertiary institutions, but also to service providers in general so that the process of addressing educators needs become coordinated, organised and delivered in a systemic manner. This paper describes one area of a broader needs assessment exercise to collect data regarding the needs of educators in a district of 45 secondary schools in the Western Cape Province of South Africa. This research focuses on the needs and challenges faced by science educators at these schools as articulated by the relevant stakeholders. The objectives of this investigation are two-fold: (1) to create a data base that will capture the needs and challenges identified by science educators of the selected secondary schools; and (2) to develop a needs profile for each of the participating secondary schools that will serve as a strategic asset to be shared with the various service providers as part of a community of practice whose core business is to support science educators and science education at large. The data was collected by a means of a needs assessment questionnaire (NAQ) which was developed in both actual and preferred versions. An open-ended questionnaire was also administered which allowed teachers to express their views. The categories of the questionnaire were predetermined by participating researchers, educators and education department officials. Group interviews were also held with the science teachers at each of the schools. An analysis of the data revealed important trends in terms of science educator needs and identified schools that can be clustered around priority needs, logistic reasoning and educator profiles. The needs database also provides opportunity for the community of practice to strategise and coordinate their interventions.Keywords: needs assessment, science and mathematics education, evaluation, teaching and learning, South Africa
Procedia PDF Downloads 1833286 Innovation Management: A Comparative Analysis among Organizations from United Arab Emirates, Saudi Arabia, Brazil and China
Authors: Asmaa Abazaid, Maram Al-Ostah, Nadeen Abu-Zahra, Ruba Bawab, Refaat Abdel-Razek
Abstract:
Innovation audit is defined as a tool that can be used to reflect on how the innovation is managed in an organization. The aim of this study is to audit innovation in the second top Engineering Firms in the world, and one of the Small Medium Enterprises (SMEs) companies that are working in United Arab Emirates (UAE). The obtained results are then compared with four international companies from China and Brazil. The Diamond model has been used for auditing innovation in the two companies in UAE to evaluate their innovation management and to identify each company’s strengths and weaknesses from an innovation perspective. The results of the comparison between the two companies (Jacobs and Hyper General Contracting) revealed that Jacobs has support for innovation, its innovation processes are well managed, the company is committed to the development of its employees worldwide and the innovation system is flexible. Jacobs was doing best in all innovation management dimensions: strategy, process, organization, linkages and learning, while Hyper General Contracting did not score as Jacobs in any of the innovation dimensions. Furthermore, the audit results of both companies were compared with international companies to examine how well the two construction companies in UAE manage innovation relative to SABIC (Saudi company), Poly Easy and Arnious (Brazilian companies), Huagong tools and Guizohou Yibai (Chinese companies). The results revealed that Jacobs is doing best in learning and organization dimensions, while PolyEasy and Jacobs are equal in the linkage dimension. Huagong Tools scored the highest score in process dimension among all the compared companies. However, the highest score of strategy dimension was given to PolyEasy. On the other hand, Hyper General Contracting scored the lowest in all of the innovation management dimensions. It needs to improve its management of all the innovation management dimensions with special attention to be given to strategy, process, and linkage as they got scores below 4 out of 7 comparing with other dimensions. Jacobs scored the highest in three innovation management dimensions related to the six companies. However, the strategy dimension is considered low, and special attention is needed in this dimension.Keywords: Brazil, China, innovation audit, innovation evaluation, innovation management, Saudi Arabia, United Arab Emirates
Procedia PDF Downloads 2853285 Drama Education: Towards Building Multicultural Adolescent Peer Relationships
Authors: Tahnee West
Abstract:
Drama education is increasingly understood as a useful tool in promoting positive social change and cultural awareness. The effects of both positive and negative peer relationships are also a researched facet of education systems. Despite this, very little research has been conducted in the intersection of these two areas, even given current, significant public interest surrounding multicultural relationships. This research addresses a problem faced by educators and students: facilitating meaningful multicultural relationships. The research explores the following question in an Australian context: in what ways does Drama education affect peer relationships between culturally diverse students? In doing so, the study explores the various challenges and experiences of a multicultural group of adolescents, in terms of forming and maintaining effective intercultural friendships, while participating in a series of drama workshops. The project presents a starting point for providing educators with strategies for inclusivity and relationship development amongst diverse student populations. Findings show that Drama education can positively affect culturally diverse young people’s peer relationships; interactions between participants and data collected in focus groups throughout the eight-week Drama program show a steady improvement in sense of trust, support, tolerance, empathy, familiarity with other participants, and enjoyment. Data also points to a positive correlation between the Drama activities and improved conflict resolution and communication skills, as well as an improved understanding of the other participants’ cultures. Diversities and commonalities within the group were explored, with similarities encouraging social cohesion, and decreasing cultural ‘cliques’.Keywords: cultural diversity, drama education, friendship, multicultural, peer relationships
Procedia PDF Downloads 1433284 Game “EZZRA” as an Innovative Solution
Authors: Mane Varosyan, Diana Tumanyan, Agnesa Martirosyan
Abstract:
There are many catastrophic events that end with dire consequences, and to avoid them, people should be well-armed with the necessary information about these situations. During the last years, Serious Games have increasingly gained popularity for training people for different types of emergencies. The major discussed problem is the usage of gamification in education. Moreover, it is mandatory to understand how and what kind of gamified e-learning modules promote engagement. As the theme is emergency, we also find out people’s behavior for creating the final approach. Our proposed solution is an educational video game, “EZZRA”.Keywords: gamification, education, emergency, serious games, game design, virtual reality, digitalisation
Procedia PDF Downloads 763283 Contextualization and Localization: Acceptability of the Developed Activity Sheets in Science 5 Integrating Climate Change Adaptation
Authors: Kim Alvin De Lara
Abstract:
The research aimed to assess the level of acceptability of the developed activity sheets in Science 5 integrating climate change adaptation of grade 5 science teachers in the District of Pililla school year 2016-2017. In this research, participants were able to recognize and understand the importance of environmental education in improving basic education and integrating them in lessons through localization and contextualization. The researcher conducted the study to develop a material to use by Science teachers in Grade 5. It served also as a self-learning resource for students. The respondents of the study were the thirteen Grade 5 teachers teaching Science 5 in the District of Pililla. Respondents were selected purposively and identified by the researcher. A descriptive method of research was utilized in the research. The main instrument was a checklist which includes items on the objectives, content, tasks, contextualization and localization of the developed activity sheets. The researcher developed a 2-week lesson in Science 5 for 4th Quarter based on the curriculum guide with integration of climate change adaptation. The findings revealed that majority of respondents are female, 31 years old and above, 10 years above in teaching science and have units in master’s degree. With regards to the level of acceptability, the study revealed developed activity sheets in science 5 is very much acceptable. In view of the findings, lessons in science 5 must be contextualized and localized to improve to make the curriculum responds, conforms, reflects, and be flexible to the needs of the learners, especially the 21st century learners who need to be holistically and skillfully developed. As revealed by the findings, it is more acceptable to localized and contextualized the learning materials for pupils. Policy formation and re-organization of the lessons and competencies in Science must be reviewed and re-evaluated. Lessons in science must also be integrated with climate change adaptation since nowadays, people are experiencing change in climate due to global warming and other factors. Through developed activity sheets, researcher strongly supports environmental education and believes this to serve as a way to instill environmental literacy to students.Keywords: activity sheets, climate change adaptation, contextualization, localization
Procedia PDF Downloads 3273282 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described as more refined, complex, and detailed. In this context, we analyzed a set of experimental data obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model becomes extremely challenging. After a series of feature selection and parameters adjustment, a well-performed SVM classifier has been trained.Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia PDF Downloads 1443281 An Ethnobotanical Survey of Medicinal Plants for the Treatment of Infantile Diarrhea in the Eastern Cape Province of South Africa
Authors: Anela Lupuwana
Abstract:
The main objective of this paper is to develop an ethnobotanical survey that documents medicinal plants used to treat diarrhea among infants in the Eastern Cape province of South Africa. In South Africa’s pluralistic healthcare system, medicinal plants are an integral part of healing and treating an array of diseases. This is also the case in rural areas of South Africa, where healthcare facilities are hard to access. There is a lack of literature on the use of medicinal plants to cure ailments common to children, and this paper fills this gap. A total of 18 participants were interviewed using semi-structured interviews. A purposive approach was used to sample the study cohorts. A total of 28 medicinal plants representing 19 different families were recorded, with the family Asteraceae (11%) having the most medicinal plants. The remaining plants (82%) were distributed equally among the following families: Rubiaceae, Canellaceae, Aloaceae, Rutaceae, Thymeleaceae, Myrinaceae, Olinaceae, Iradeceae, Zingiberaceae, Capparaceae, Aizoaceae, Fabaceae, Geraniaceae, Cornaceae, Monimiaceae, Talinaceae, Chrysobalanaceae, and Icacinaceae. Oral administration was the most common mode of administration, with 82% of plants taken orally. Healing was proven to be holistic; it was more than just treating physical ailments as such; infants were protected from evil spirits that made them vulnerable to illnesses. There was also evidence of the assimilation of Dutch medicine and animal products into traditional healing methods. In order to mitigate the prevalence of disease and illness in South Africa, I recommend that diversity in healing practices should be acknowledged and appreciated.Keywords: infants, traditional healers, primary care givers, traditional medicine
Procedia PDF Downloads 843280 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models
Authors: V. Mantey, N. Findlay, I. Maddox
Abstract:
The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.Keywords: building detection, disaster relief, mask-RCNN, satellite mapping
Procedia PDF Downloads 1693279 Biosynthesis, Characterization and Interplay of Bacteriocin-nanoparticles to Combat Infectious Drug Resistant Pathogens
Authors: Asma Ansari, Afsheen Aman, Shah Ali Ul Qader
Abstract:
In the past few years, numerous concerns have been raised against increased bacterial resistance towards effective drugs and become a debated issue all over the world. With the emergence of drug resistant pathogens, the interaction of natural antimicrobial compounds and antibacterial nanoparticles has emerged as a potential candidate for combating infectious diseases. Microbial diversity in the biome provides an opportunity to screen new species which are capable of producing large number of antimicrobial compounds. Among these antimicrobial compounds, bacteriocins are highly specific and efficient antagonists. A combination of bacteriocin along with nanoparticles could prove to be more potent due to broadened antibacterial spectrum with possibly lower doses. In the current study, silver nanoparticles were synthesized through biological reduction using various isolated bacterial, fungal and yeast strains. Spectroscopy and scanning electron microscopy (SEM) was performed for the confirmation of nanoparticles. Bacteriocin was characterized and purified to homogeneity through gel permeation chromatography. The estimated molecular weight of bacteriocin was 10 kDa. Amino acid analysis and N-terminal sequencing revealed the novelty of the protein. Then antibacterial potential of silver nanoparticles and broad inhibitory spectrum bacteriocin was determined through agar well diffusion assay. These synthesized bacteriocin-Nanoparticles exhibit a good potential for clinical applications as compared to bacteriocin alone. This combination of bacteriocin with nanoparticles will be used as a new sort of biocide in the field of nano-proteomics. The advancement of nanoparticles-mediated drug delivery system will open a new age for rapid eradication of pathogens from biological systems.Keywords: BAC-IB17, multidrug resistance, purification, silver nanoparticles
Procedia PDF Downloads 4943278 Minimizing Vehicular Traffic via Integrated Land Use Development: A Heuristic Optimization Approach
Authors: Babu Veeregowda, Rongfang Liu
Abstract:
The current traffic impact assessment methodology and environmental quality review process for approval of land development project are conventional, stagnant, and one-dimensional. The environmental review policy and procedure lacks in providing the direction to regulate or seek alternative land uses and sizes that exploits the existing or surrounding elements of built environment (‘4 D’s’ of development – Density, Diversity, Design, and Distance to Transit) or smart growth principles which influence the travel behavior and have a significant effect in reducing vehicular traffic. Additionally, environmental review policy does not give directions on how to incorporate urban planning into the development in ways such as incorporating non-motorized roadway elements such as sidewalks, bus shelters, and access to community facilities. This research developed a methodology to optimize the mix of land uses and sizes using the heuristic optimization process to minimize the auto dependency development and to meet the interests of key stakeholders. A case study of Willets Point Mixed Use Development in Queens, New York, was used to assess the benefits of the methodology. The approved Willets Point Mixed Use project was based on maximum envelop of size and land use type allowed by current conventional urban renewal plans. This paper will also evaluate the parking accumulation for various land uses to explore the potential for shared parking to further optimize the mix of land uses and sizes. This research is very timely and useful to many stakeholders interested in understanding the benefits of integrated land uses and its development.Keywords: traffic impact, mixed use, optimization, trip generation
Procedia PDF Downloads 2143277 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.Keywords: ABET, accreditation, benchmark collection, machine learning, program educational objectives, student outcomes, supervised multi-class classification, text mining
Procedia PDF Downloads 1733276 Influence of Spelling Errors on English Language Performance among Learners with Dysgraphia in Public Primary Schools in Embu County, Kenya
Authors: Madrine King'endo
Abstract:
This study dealt with the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools in West Embu, Embu County, Kenya. The study purposed to investigate the influence of spelling errors on the English language performance among the class three pupils with dysgraphia in public primary schools. The objectives of the study were to identify the spelling errors that learners with dysgraphia make when writing English words and classify the spelling errors they make. Further, the study will establish how the spelling errors affect the performance of the language among the study participants, and suggest the remediation strategies that teachers could use to address the errors. The study could provide the stakeholders with relevant information in writing skills that could help in developing a responsive curriculum to accommodate the teaching and learning needs of learners with dysgraphia, and probably ensure training of teachers in teacher training colleges is tailored within the writing needs of the pupils with dysgraphia. The study was carried out in Embu county because the researcher did not find any study in related literature review concerning the influence of spelling errors on English language performance among learners with dysgraphia in public primary schools done in the area. Moreover, besides being relatively populated enough for a sample population of the study, the area was fairly cosmopolitan to allow a generalization of the study findings. The study assumed the sampled schools will had class three pupils with dysgraphia who exhibited written spelling errors. The study was guided by two spelling approaches: the connectionist stimulation of spelling process and orthographic autonomy hypothesis with a view to explain how participants with learning disabilities spell written words. Data were collected through interviews, pupils’ exercise books, and progress records, and a spelling test made by the researcher based on the spelling scope set for class three pupils by the ministry of education in the primary education syllabus. The study relied on random sampling techniques in identifying general and specific participants. Since the study used children in schools as participants, voluntary consent was sought from themselves, their teachers and the school head teachers who were their caretakers in a school setting.Keywords: dysgraphia, writing, language, performance
Procedia PDF Downloads 1543275 Using Optical Character Recognition to Manage the Unstructured Disaster Data into Smart Disaster Management System
Authors: Dong Seop Lee, Byung Sik Kim
Abstract:
In the 4th Industrial Revolution, various intelligent technologies have been developed in many fields. These artificial intelligence technologies are applied in various services, including disaster management. Disaster information management does not just support disaster work, but it is also the foundation of smart disaster management. Furthermore, it gets historical disaster information using artificial intelligence technology. Disaster information is one of important elements of entire disaster cycle. Disaster information management refers to the act of managing and processing electronic data about disaster cycle from its’ occurrence to progress, response, and plan. However, information about status control, response, recovery from natural and social disaster events, etc. is mainly managed in the structured and unstructured form of reports. Those exist as handouts or hard-copies of reports. Such unstructured form of data is often lost or destroyed due to inefficient management. It is necessary to manage unstructured data for disaster information. In this paper, the Optical Character Recognition approach is used to convert handout, hard-copies, images or reports, which is printed or generated by scanners, etc. into electronic documents. Following that, the converted disaster data is organized into the disaster code system as disaster information. Those data are stored in the disaster database system. Gathering and creating disaster information based on Optical Character Recognition for unstructured data is important element as realm of the smart disaster management. In this paper, Korean characters were improved to over 90% character recognition rate by using upgraded OCR. In the case of character recognition, the recognition rate depends on the fonts, size, and special symbols of character. We improved it through the machine learning algorithm. These converted structured data is managed in a standardized disaster information form connected with the disaster code system. The disaster code system is covered that the structured information is stored and retrieve on entire disaster cycle such as historical disaster progress, damages, response, and recovery. The expected effect of this research will be able to apply it to smart disaster management and decision making by combining artificial intelligence technologies and historical big data.Keywords: disaster information management, unstructured data, optical character recognition, machine learning
Procedia PDF Downloads 1293274 Quality Assurance in Higher Education: Doha Institute for Graduate Studies as a Case Study
Authors: Ahmed Makhoukh
Abstract:
Quality assurance (QA) has recently become a common practice, which is endorsed by most Higher Education (HE) institutions worldwide, due to the pressure of internal and external forces. One of the aims of this quality movement is to make the contribution of university education to socio-economic development highly significant. This entails that graduates are currently required have a high-quality profile, i.e., to be competent and master the 21st-century skills needed in the labor market. This wave of change, mostly imposed by globalization, has the effect that university education should be learner-centered in order to satisfy the different needs of students and meet the expectations of other stakeholders. Such a shift of focus on the student learning outcomes has led HE institutions to reconsider their strategic planning, their mission, the curriculum, the pedagogical competence of the academic staff, among other elements. To ensure that the overall institutional performance is on the right way, a QA system should be established to assume this task of checking regularly the extent to which the set of standards of evaluation are strictly respected as expected. This operation of QA has the advantage of proving the accountability of the institution, gaining the trust of the public with transparency and enjoying an international recognition. This is the case of Doha Institute (DI) for Graduate Studies, in Qatar, the object of the present study. The significance of this contribution is to show that the conception of quality has changed in this digital age, and the need to integrate a department responsible for QA in every HE institution to ensure educational quality, enhance learners and achieve academic leadership. Thus, to undertake the issue of QA in DI for Graduate Studies, an elite university (in the academic sense) that focuses on a small and selected number of students, a qualitative method will be adopted in the description and analysis of the data (document analysis). In an attempt to investigate the extent to which QA is achieved in Doha Institute for Graduate Studies, three broad indicators will be evaluated (input, process and learning outcomes). This investigation will be carried out in line with the UK Quality Code for Higher Education represented by Quality Assurance Agency (QAA).Keywords: accreditation, higher education, quality, quality assurance, standards
Procedia PDF Downloads 1473273 Subtitling in the Classroom: Combining Language Mediation, ICT and Audiovisual Material
Authors: Rossella Resi
Abstract:
This paper describes a project carried out in an Italian school with English learning pupils combining three didactic tools which are attested to be relevant for the success of young learner’s language curriculum: the use of technology, the intralingual and interlingual mediation (according to CEFR) and the cultural dimension. Aim of this project was to test a technological hands-on translation activity like subtitling in a formal teaching context and to exploit its potential as motivational tool for developing listening and writing, translation and cross-cultural skills among language learners. The activities proposed involved the use of professional subtitling software called Aegisub and culture-specific films. The workshop was optional so motivation was entirely based on the pleasure of engaging in the use of a realistic subtitling program and on the challenge of meeting the constraints that a real life/work situation might involve. Twelve pupils in the age between 16 and 18 have attended the afternoon workshop. The workshop was organized in three parts: (i) An introduction where the learners were opened up to the concept and constraints of subtitling and provided with few basic rules on spotting and segmentation. During this session learners had also the time to familiarize with the main software features. (ii) The second part involved three subtitling activities in plenum or in groups. In the first activity the learners experienced the technical dimensions of subtitling. They were provided with a short video segment together with its transcription to be segmented and time-spotted. The second activity involved also oral comprehension. Learners had to understand and transcribe a video segment before subtitling it. The third activity embedded a translation activity of a provided transcription including segmentation and spotting of subtitles. (iii) The workshop ended with a small final project. At this point learners were able to master a short subtitling assignment (transcription, translation, segmenting and spotting) on their own with a similar video interview. The results of these assignments were above expectations since the learners were highly motivated by the authentic and original nature of the assignment. The subtitled videos were evaluated and watched in the regular classroom together with other students who did not take part to the workshop.Keywords: ICT, L2, language learning, language mediation, subtitling
Procedia PDF Downloads 4163272 Comparison between Approaches Used in Two Walk About Projects
Authors: Derek O Reilly, Piotr Milczarski, Shane Dowdall, Artur Hłobaż, Krzysztof Podlaski, Hiram Bollaert
Abstract:
Learning through creation of contextual games is a very promising way/tool for interdisciplinary and international group projects. During 2013 and 2014 we took part and organized two intensive students projects in different conditions. The projects enrolled 68 students and 12 mentors from 5 countries. In the paper we want to share our experience how to strengthen the chances to succeed in short (12-15 days long) student projects. In our case almost all teams prepared working prototype and the results were highly appreciated by external experts.Keywords: contextual games, mobile games, GGULIVRR, walkabout, Erasmus intensive programme
Procedia PDF Downloads 5023271 Mothers and Daughters’ Relationships: The Gender Dialectic in Cross Cultural Comparison
Authors: Ronit Reuven Even Zahav
Abstract:
Context: Mother-daughter relationships are crucial in shaping women's identities, yet research on these relationships during cross-cultural transitions is limited. Research aim: To explore and compare adult mother-daughter relationships among Ethiopian, Russian, and Israeli groups, focusing on gender and ethnicity. Methodology: Qualitative study with 87 participants, included 37 mother-daughter dyads, and 13 mothers, using semi-structured interviews on various themes related to the relationships. Findings: Revealed three relationship patterns among the groups, highlighting differences in sharing, expectations, and stress, with Ethiopian mothers showing distinct characteristics. Theoretical importance: Highlights the impact of intercultural transitions and societal status on mother-daughter relationships, contributing to understanding the gender dialectic. Data collection: Through semi-structured interviews that were thematically coded and analyzed for similarities and differences, providing insights into the relationships. Question addressed: Explored how mother-daughter relationships are influenced by gender, ethnicity, and cross-cultural transitions. Conclusion: Stresses the significance of comprehending the effects of intercultural transitions and social exclusion on mother-daughter relationships, emphasizing the gender dialectic and women's societal status. Cultural aspects of mother-daughter relationships such as sharing and closeness in context of gender expectations of similarity and difference in relationships emphasize the need for a gender-informed tool and contribute to the development of a gender-informed tool that can help comprehend and address inequalities and promote empowerment in mother-daughter relationships within diverse cultural groups.Keywords: gender dialectic, diversity, mother-daughter relationships, gender informed perspectives
Procedia PDF Downloads 173270 The Effect of Oil Pollution on Marine Microbial Populations in Israeli Coastal Waters
Authors: Yael Shai, Dror L. Angel, Dror Zurel, Peleg Astrahan, Maxim Rubin-Blum, Eyal Rahav
Abstract:
The high demand for oil and its by-products is symptomatic of the 21st century and occasionally leads to oil spills and pollution of coastal waters. Marine oil pollution may originate from a variety of sources -urban runoff, tanker cleaning, drilling activities, and oil spills. These events may release large amounts of highly toxic polycyclic aromatic hydrocarbons (PAHs) and other pollutants to coastal water, thereby threatening local marine life. Here, we investigated the effects of crude oil on the temporal dynamics of phytoplankton and heterotrophic bacteria in Israeli coastal waters. To this end, we added crude oil (500 µm thick layer, with and without additional nutrients; NO₃ and PO₄) to mesocosms (1m³ bags) containing oligotrophic surface coastal water collected near Haifa during summer and winter. Changes in phytoplankton biomass, activity and diversity were monitored daily for 5-6 days. Our results demonstrate that crude oil addition resulted in a pronounced decrease in phytoplankton biomass and production rates, while heterotrophic bacterial production increased significantly. Importantly, a few days post addition we found that the oil-degrading bacteria, Oleibacter sp. and Oleispira sp. appeared in the mesocosms and that the addition of nutrients (along with the crude oil) further increased this trend. This suggests that oil-degrading bacteria may be NO₃ and PO₄ limited in Israeli coastal waters. The results of this study should enable us to establish improved science-based environmental policy with respect to handling crude oil pollution in this region.Keywords: heterotrophic bacteria, nutrients, mesocosm, oil pollution, oligotrophic, phytoplankton
Procedia PDF Downloads 1593269 Towards Learning Query Expansion
Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier
Abstract:
The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.Keywords: supervised leaning, classification, query expansion, association rules
Procedia PDF Downloads 3253268 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1673267 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1593266 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes
Authors: Peng Zhang, Cai Liang
Abstract:
The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.Keywords: plastic waste, recycling, hydrogen, microwave
Procedia PDF Downloads 713265 Framework for Explicit Social Justice Nursing Education and Practice: A Constructivist Grounded Theory Research
Authors: Victor Abu
Abstract:
Background: Social justice ideals are considered as the foundation of nursing practice. These ideals are not always clearly integrated into nursing professional standards or curricula. This hinders concerted global nursing agendas for becoming aware of social injustice or engaging in action for social justice to improve the health of individuals and groups. Aim and objectives: The aim was to create an educational framework for empowering nursing students for social justice awareness and action. This purpose was attained by understanding the meaning of social justice, the effect of social injustice, the visibility of social justice learning, and ways of integrating social justice in nursing education and practice. Methods: Critical interpretive methodologies and constructivist grounded theory research designs guided the processes of recruiting nursing students (n = 11) and nurse educators (n = 11) at a London nursing university to participate in interviews and focus groups, which were analysed by coding systems. Findings: Firstly, social justice was described as ethical practices that enable individuals and groups to have good access to health resources. Secondly, social injustice was understood as unfair practices that caused minimal access to resources, social deprivation, and poor health. Thirdly, social justice learning was considered to be invisible in nursing education due to a lack of explicit modules, educator knowledge, and organisational support. Lastly, explicit modules, educating educators, and attracting leaders’ support were suggested as approaches for the visible integration of social justice in nursing education and practice. Discussion: This research proposes approaches for nursing awareness and action for the development of critical active nurse-learner, critical conscious nurse-educator, and servant nurse leader. The framework on Awareness for Social Justice Action (ASJA) created in this research is an approach for empowering nursing students for social justice practices. Conclusion: This research contributes to and advocates for greater nursing scholarship to raise the spotlight on social justice in the profession.Keywords: social justice, nursing practice, nursing education, nursing curriculum, social justice awareness, social justice action, constructivist grounded theory
Procedia PDF Downloads 583264 Analysing Trends in Rice Cropping Intensity and Seasonality across the Philippines Using 14 Years of Moderate Resolution Remote Sensing Imagery
Authors: Bhogendra Mishra, Andy Nelson, Mirco Boschetti, Lorenzo Busetto, Alice Laborte
Abstract:
Rice is grown on over 100 million hectares in almost every country of Asia. It is the most important staple crop for food security and has high economic and cultural importance in Asian societies. The combination of genetic diversity and management options, coupled with the large geographic extent means that there is a large variation in seasonality (when it is grown) and cropping intensity (how often it is grown per year on the same plot of land), even over relatively small distances. Seasonality and intensity can and do change over time depending on climatic, environmental and economic factors. Detecting where and when these changes happen can provide information to better understand trends in regional and even global rice production. Remote sensing offers a unique opportunity to estimate these trends. We apply the recently published PhenoRice algorithm to 14 years of moderate resolution remote sensing (MODIS) data (utilizing 250m resolution 16 day composites from Terra and Aqua) to estimate seasonality and cropping intensity per year and changes over time. We compare the results to the surveyed data collected by International Rice Research Institute (IRRI). The study results in a unique and validated dataset on the extent and change of extent, the seasonality and change in seasonality and the cropping intensity and change in cropping intensity between 2003 and 2016 for the Philippines. Observed trends and their implications for food security and trade policies are also discussed.Keywords: rice, cropping intensity, moderate resolution remote sensing (MODIS), phenology, seasonality
Procedia PDF Downloads 3063263 Women Academics' Insecure Identity at Work: A Millennials Phenomenon
Authors: Emmanouil Papavasileiou, Nikos Bozionelos, Liza Howe-Walsh, Sarah Turnbull
Abstract:
Purpose: The research focuses on women academics’ insecure identity at work and examines its link with generational identity. The aim is to enrich understanding of identities at work as a crucial attribute of managing academics in the context of the proliferation of managerialist controls of audit, accountability, monitoring, and performativity. Methodology: Positivist quantitative methodology was utilized. Data were collected from the Scientific Women's Academic Network (SWAN) Charter. Responses from 155 women academics based in the British Higher Education system were analysed. Findings: Analysis showed high prevalence of strong imposter feelings among participants, suggesting high insecurity at work among women academics in the United Kingdom. Generational identity was related to imposter feelings. In particular, Millennials scored significantly higher than the other generational groups. Research implications: The study shows that imposter feelings are variously manifested among the prevalent generations of women academics, while generational identity is a significant antecedent of such feelings. Research limitations: Caution should be exercised in generalizing the findings to national cultural contexts beyond the United Kingdom. Practical and social implications: Contrary to popular depictions of Millennials as self-centered, narcissistic, materialistic and demanding, women academics who are members of this generational group appear significantly more insecure than the preceding generations. Value: The study provides insightful understandings into women academics’ identity at work as a function of generational identity, and provides a fruitful avenue for further research within and beyond this gender group and profession.Keywords: academics, generational diversity, imposter feelings, United Kingdom, women, work identity
Procedia PDF Downloads 1463262 Extended Knowledge Exchange with Industrial Partners: A Case Study
Authors: C. Fortin, D. Tokmeninova, O. Ushakova
Abstract:
Among 500 Russian universities Skolkovo Institute of Science and Technology (Skoltech) is one of the youngest (established in 2011), quite small and vastly international, comprising 20 percent of international students and 70 percent of faculty with significant academic experience at top-100 universities (QS, THE). The institute has emerged from close collaboration with MIT and leading Russian universities. Skoltech is an entirely English speaking environment. Skoltech curriculum plans of ten Master programs are based on the CDIO learning outcomes model. However, despite the Institute’s unique focus on industrial innovations and startups, one of the main challenges has become an evident large proportion of nearly half of MSc graduates entering PhD programs at Skoltech or other universities rather than industry or entrepreneurship. In order to increase the share of students joining the industrial sector after graduation, Skoltech started implementing a number of unique practices with a focus on employers’ expectations incorporated into the curriculum redesign. In this sense, extended knowledge exchange with industrial partners via collaboration in learning activities, industrial projects and assessments became essential for students’ headway into industrial and entrepreneurship pathways. Current academic curriculum includes the following types of components based on extended knowledge exchange with industrial partners: innovation workshop, industrial immersion, special industrial tracks, MSc defenses. Innovation workshop is a 4 week full time diving into the Skoltech vibrant ecosystem designed to foster innovators, focuses on teamwork, group projects, and sparks entrepreneurial instincts from the very first days of study. From 2019 the number of mentors from industry and startups significantly increased to guide students across these sectors’ demands. Industrial immersion is an exclusive part of Skoltech curriculum where students after the first year of study spend 8 weeks in an industrial company carrying out an individual or team project and are guided jointly by both Skoltech and company supervisors. The aim of the industrial immersion is to familiarize students with relevant needs of Russian industry and to prepare graduates for job placement. During the immersion a company plays the role of a challenge provider for students. Skoltech has started a special industrial track comprising deep collaboration with IPG Photonics – a leading R&D company and manufacturer of high-performance fiber lasers and amplifiers for diverse applications. The track is aimed to train a new cohort of engineers and includes a variety of activities for students within the “Photonics” MSc program. It is expected to be a successful story and used as an example for similar initiatives with other Russian high-tech companies. One of the pathways of extended knowledge exchange with industrial partners is an active involvement of potential employers in MSc Defense Committees to review and assess MSc thesis projects and to participate in defense procedures. The paper will evaluate the effect and results of the above undertaken measures.Keywords: Curriculum redesign, knowledge exchange model, learning outcomes framework, stakeholder engagement
Procedia PDF Downloads 813261 Harnessing Deep-Level Metagenomics to Explore the Three Dynamic One Health Areas: Healthcare, Domiciliary and Veterinary
Authors: Christina Killian, Katie Wall, Séamus Fanning, Guerrino Macori
Abstract:
Deep-level metagenomics offers a useful technical approach to explore the three dynamic One Health axes: healthcare, domiciliary and veterinary. There is currently limited understanding of the composition of complex biofilms, natural abundance of AMR genes and gene transfer occurrence in these ecological niches. By using a newly established small-scale complex biofilm model, COMBAT has the potential to provide new information on microbial diversity, antimicrobial resistance (AMR)-encoding gene abundance, and their transfer in complex biofilms of importance to these three One Health axes. Shotgun metagenomics has been used to sample the genomes of all microbes comprising the complex communities found in each biofilm source. A comparative analysis between untreated and biocide-treated biofilms is described. The basic steps include the purification of genomic DNA, followed by library preparation, sequencing, and finally, data analysis. The use of long-read sequencing facilitates the completion of metagenome-assembled genomes (MAG). Samples were sequenced using a PromethION platform, and following quality checks, binning methods, and bespoke bioinformatics pipelines, we describe the recovery of individual MAGs to identify mobile gene elements (MGE) and the corresponding AMR genotypes that map to these structures. High-throughput sequencing strategies have been deployed to characterize these communities. Accurately defining the profiles of these niches is an essential step towards elucidating the impact of the microbiota on each niche biofilm environment and their evolution.Keywords: COMBAT, biofilm, metagenomics, high-throughput sequencing
Procedia PDF Downloads 563260 DNA Prime/MVTT Boost Enhances Broadly Protective Immune Response against Mosaic HIV-1 Gag
Authors: Wan Liu, Haibo Wang, Cathy Huang, Zhiwu Tan, Zhiwei Chen
Abstract:
The tremendous diversity of HIV-1 has been a major challenge for an effective AIDS vaccine development. Mosaic approach presents the potential for vaccine design aiming for global protection. The mosaic antigen of HIV-1 Gag allows antigenic breadth for vaccine-elicited immune response against a wider spectrum of viral strains. However, the enhancement of immune response using vaccines is dependent on the strategy used. Heterologous prime/boost regimen has been shown to elicit high levels of immune responses. Here, we investigated whether priming using plasmid DNA with electroporation followed by boosting with the live replication-competent modified vaccinia virus vector TianTan (MVTT) combined with the mosaic antigenic sequence could elicit a greater and broader antigen-specific response against HIV-1 Gag in mice. When compared to DNA or MVTT alone, or MVTT/MVTT group, DNA/MVTT group resulted in coincidentally high frequencies of broadly reactive, Gag-specific, polyfunctional, long-lived, and cytotoxic CD8+ T cells and increased anti-Gag antibody titer. Meanwhile, the vaccination could upregulate PD-1+, and Tim-3+ CD8+ T cell, myeloid-derived suppressive cells and Treg cells to balance the stronger immune response induced. Importantly, the prime/boost vaccination could help control the EcoHIV and mesothelioma AB1-gag challenge. The stronger protective Gag-specific immunity induced by a Mosaic DNA/MVTT vaccine corroborate the promise of the mosaic approach, and the potential of two acceptably safe vectors to enhance anti-HIV immunity and cancer prevention.Keywords: DNA/MVTT vaccine, EcoHIV, mosaic antigen, mesothelioma AB1-gag
Procedia PDF Downloads 242