Search results for: heat exchange coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6349

Search results for: heat exchange coefficient

679 Morphology Analysis of Apple-Carrot Juice Treated by Manothermosonication (MTS) and High Temperature Short Time (HTST) Processes

Authors: Ozan Kahraman, Hao Feng

Abstract:

Manothermosonication (MTS), which consists of the simultaneous application of heat and ultrasound under moderate pressure (100-700 kPa), is one of the technologies which destroy microorganisms and inactivates enzymes. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes through it. The environmental scanning electron microscope or ESEM is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are "wet," uncoated. These microscopy techniques allow us to observe the processing effects on the samples. This study was conducted to investigate the effects of MTS and HTST treatments on the morphology of apple-carrot juices by using TEM and ESEM microscopy. Apple-carrot juices treated with HTST (72 0C, 15 s), MTS 50 °C (60 s, 200 kPa), and MTS 60 °C (30 s, 200 kPa) were observed in both ESEM and TEM microscopy. For TEM analysis, a drop of the solution dispersed in fixative solution was put onto a Parafilm ® sheet. The copper coated side of the TEM sample holder grid was gently laid on top of the droplet and incubated for 15 min. A drop of a 7% uranyl acetate solution was added and held for 2 min. The grid was then removed from the droplet and allowed to dry at room temperature and presented into the TEM. For ESEM analysis, a critical point drying of the filters was performed using a critical point dryer (CPD) (Samdri PVT- 3D, Tousimis Research Corp., Rockville, MD, USA). After the CPD, each filter was mounted onto a stub and coated with gold/palladium with a sputter coater (Desk II TSC Denton Vacuum, Moorestown, NJ, USA). E.Coli O157:H7 cells on the filters were observed with an ESEM (Philips XL30 ESEM-FEG, FEI Co., Eindhoven, The Netherland). ESEM (Environmental Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images showed extensive damage for the samples treated with MTS at 50 and 60 °C such as ruptured cells and breakage on cell membranes. The damage was increasing with increasing exposure time.

Keywords: MTS, HTST, ESEM, TEM, E.COLI O157:H7

Procedia PDF Downloads 281
678 Model Based Design and Development of Horticultural Produce Crate from Bamboo

Authors: Sisay Wondmagegn Molla, Mulugeta Admasu Delele, Tadelle Nigusu Mekonen

Abstract:

It is common to observe quality deterioration and mechanical injury of horticulture products as a result of suboptimal design and handling of the packaging systems. Society uses the old and primitive way of handling horticulture products, which is produced through trial and error This method is known to have many limitations on quality, environmental pollution, labor and cost. Ethiopia stands first in bamboo resources in Africa, which is 67 % of the African and 7 % of the world's bamboo resources. The purpose of this project was to design and develop bamboo-based ventilated horticultural produce crates using validated computational fluid dynamics (CFD). The model was used to predict the airflow and temperature distribution inside the loaded crate. The study included: sizing, collection of the thermo-physical properties, and designing and developing a CFD model of the bamboo-based ventilated horticultural crate. The designed crate (40×30×25cm) had a capacity of about 18 kg, and cold air temperature (130C) was used for cooling the fruit. Airflow in the loaded crate is far from uniform. There is a relatively high-velocity flow at the top, near inlet and near outlet sections, and a relatively low airflow near the center of the loaded crate. The predicted velocity variation within the bulk of the produce was relatively large, it was in the range of 0.04-7m/s. The vented produce package contributed the highest cooling airflow resistance. Similar to the airflow, the cooling characteristics of the product were not uniform. There was a difference in the cooling rate of the produce in the airflow direction and from the top to the bottom section of the loaded crate. The products that were located near the inlet side and top of the bulk showed a faster cooling rate than the rest of the bulk. The result showed that the produced volume average temperature was 17.9°C after a cooling period of 3 hr. It was reduced by 12.05°C. The result showed the potential of the CFD modeling approach in developing the bamboo-based design of horticultural produce crates in terms of airflow and heat transfer characteristics.

Keywords: bamboo, modeling, cooling, horticultural, packaging

Procedia PDF Downloads 18
677 A Comparative Study on the Thermophysical and Lubricity Characteristics of Multiwall Carbon Nanotube/Oil and Nanoclay/Oil Nanofluids

Authors: H. Singh, H. Bhowmick

Abstract:

Now-a-days, particle based lubricants have been widely used to enhance the lubrication performance. Use of tailor made micro/nanofluids can reduce the friction losses and dissipate heat in a better way. Use of Carbon Nanotubes (CNTs) has gained interests because of its structure that can endure much better in a system mechanically or thermally in comparison to any other additive in oil. On the other hand, nanoclays have been characterized mechanically and tribologically for the use of clay/polymer composite, and they have been gaining huge interest. Hence it is interesting to be investigated the effect of nanoclays as additive in oil. Thermophysical characteristics of lubricant play a predominant role in defining the friction and wear characteristics of lubricated contacts. However, very limited studies have been carried out to correlate the thermophysical properties of nanolubricants with their lubricity characteristics. Besides, most of the lubricant formulations till dates are found to be optimized for steel/steel contacts. In the present study, Multiwall Carbon Nanotube (MWCNT) and nanoclay are used as particle additives in mineral oil to develop nanofluids of various concentrations. The prepared lubricants are tested for their rheological, thermal and lubricity characteristics under aluminium-steel contacts. From the thermophysical investigation, it is observed that nanoclay particles significantly improve the viscosity of lubricant with an insignificant improvement in thermal conductivity. On the other hand, MWCNT particles moderately increase the viscosity but significantly increase the thermal conductivity of the base oil. Frictional responses of the nanofluids are characterized using a Pin-on-Disc tribometer which reveal some interesting facts. The findings from this study will greatly aid in formulating the particle based lubricants for cutting fluid in metal forming industries as well as fully developed nanolubricants for aluminium and Aluminium Metal Matrix Composite (AMMC) tribocontact for the use in the automotive and their allied industries.

Keywords: MWCNT, Multiwall Carbon Nanotube, nanoclay, nanolubricant, rheology, thermal conductivity

Procedia PDF Downloads 134
676 Tribological Behavior of Hybrid Nanolubricants for Internal Combustion Engines

Authors: José M. Liñeira Del Río, Ramón Rial, Khodor Nasser, María J.G. Guimarey

Abstract:

The need to develop new lubricants that offer better anti-friction and anti-wear performance in internal combustion vehicles is one of the great challenges of lubrication in the automotive field. The addition of nanoparticles has emerged as a possible solution and, combined with the lubricating power of ionic liquids, may become one of the alternatives to reduce friction losses and wear of the contact surfaces in the conditions to which tribo-pairs are subjected, especially in the contact of the piston rings and the cylinder liner surface. In this study, the improvement in SAE 10W-40 engine oil tribological performance after the addition of magnesium oxide (MgO) nanoadditives and two different phosphonium-based ionic liquids (ILs) was investigated. The nanoparticle characterization was performed by means of transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The tribological properties, friction coefficients and wear parameters of the formulated oil modified with 0.01 wt.% MgO and 1 wt.% ILs compared with the neat 10W-40 oil were performed and analyzed using a ball-on-three-pins tribometer and a 3D optical profilometer, respectively. Further analysis on the worn surface was carried out by Raman spectroscopy and SEM microscopy, illustrating the formation of the protective IL and MgO tribo-films as hybrid additives. In friction tests with sliding steel-steel tribo-pairs, IL3-based hybrid nanolubricant decreased the friction coefficient and wear volume by 7% and 59%, respectively, in comparison with the neat SAE 10W-40, while the one based on IL1 only achieved a reduction of these parameters by 6% and 39%, respectively. Thus, the tribological characterization also revealed that the MgO and IL3 addition has a positive synergy over the commercial lubricant, adequately meeting the requirements for their use in internal combustion engines. In summary, this study has shown that the addition of ionic liquids to MgO nanoparticles can improve the stability and lubrication behavior of MgO nanolubricant and encourages more investigations on using nanoparticle additives with green solvents such as ionic liquids to protect the environment as well as prolong the lifetime of machinery. The improvement in the lubricant properties was attributed to the following wear mechanisms: the formation of a protective tribo-film and the ability of nanoparticles to fill out valleys between asperities, thereby effectively smoothing out the shearing surfaces.

Keywords: lubricant, nanoparticles, phosphonium-based ionic liquids, tribology

Procedia PDF Downloads 80
675 Investigating the Impact of Enterprise Resource Planning System and Supply Chain Operations on Competitive Advantage and Corporate Performance (Case Study: Mamot Company)

Authors: Mohammad Mahdi Mozaffari, Mehdi Ajalli, Delaram Jafargholi

Abstract:

The main purpose of this study is to investigate the impact of the system of ERP (Enterprise Resource Planning) and SCM (Supply Chain Management) on the competitive advantage and performance of Mamot Company. The methods for collecting information in this study are library studies and field research. A questionnaire was used to collect the data needed to determine the relationship between the variables of the research. This questionnaire contains 38 questions. The direction of the current research is applied. The statistical population of this study consists of managers and experts who are familiar with the SCM system and ERP. Number of statistical society is 210. The sampling method is simple in this research. The sample size is 136 people. Also, among the distributed questionnaires, Reliability of the Cronbach's Alpha Cronbach's Questionnaire is evaluated and its value is more than 70%. Therefore, it confirms reliability. And formal validity has been used to determine the validity of the questionnaire, and the validity of the questionnaire is confirmed by the fact that the score of the impact is greater than 1.5. In the present study, one variable analysis was used for central indicators, dispersion and deviation from symmetry, and a general picture of the society was obtained. Also, two variables were analyzed to test the hypotheses; measure the correlation coefficient between variables using structural equations, SPSS software was used. Finally, multivariate analysis was used with statistical techniques related to the SPLS structural equations to determine the effects of independent variables on the dependent variables of the research to determine the structural relationships between the variables. The results of the test of research hypotheses indicate that: 1. Supply chain management practices have a positive impact on the competitive advantage of the Mammoth industrial complex. 2. Supply chain management practices have a positive impact on the performance of the Mammoth industrial complex. 3. Planning system Organizational resources have a positive impact on the performance of the Mammoth industrial complex. 4. The system of enterprise resource planning has a positive impact on Mamot's competitive advantage. 5.The competitive advantage has a positive impact on the performance of the Mammoth industrial complex 6.The system of enterprise resource planning Mamot Industrial Complex Supply Chain Management has a positive impact. The above results indicate that the system of enterprise resource planning and supply chain management has an impact on the competitive advantage and corporate performance of Mamot Company.

Keywords: enterprise resource planning, supply chain management, competitive advantage, Mamot company performance

Procedia PDF Downloads 90
674 Hydration Matters: Impact on 3 km Running Performance in Trained Male Athletes Under Heat Conditions

Authors: Zhaoqi He

Abstract:

Research Context: Endurance performance in hot environments is influenced by the interplay of hydration status and physiological responses. This study aims to investigate how dehydration, up to 2.11% body weight loss, affects the 3 km running performance of trained male athletes under conditions mimicking high temperatures. Methodology: In a randomized crossover design, five male athletes participated in two trials – euhydrated (EU) and dehydrated (HYPO). Both trials included a 70-minute preload run at 55-60% VO2max in 32°C and 50% humidity, followed by a 3-kilometer time trial. Fluid intake was restricted in HYPO to induce a 2.11% body weight loss. Physiological metrics, including heart rate, core temperature, and oxygen uptake, were measured, along with perceptual metrics like perceived exertion and thirst sensation. Findings: The 3-kilometer run completion times showed no significant differences between EU and HYPO trials (p=0.944). Physiological indicators, including heart rate, core temperature, and oxygen uptake, did not significantly vary (p>0.05). Thirst sensation was markedly higher in HYPO (p=0.013), confirming successful induction of dehydration. Other perceptual metrics and gastrointestinal comfort remained consistent. Conclusion: Contrary to the hypothesis, the study reveals that dehydration, inducing up to 2.11% body weight loss, does not significantly impair 3 km running performance in trained male athletes under hot conditions. Thirst sensation was notably higher in the dehydrated state, emphasizing the importance of considering perceptual factors in hydration strategies. The findings suggest that trained runners can maintain performance despite moderate dehydration, highlighting the need for nuanced hydration guidelines in hot-weather running.

Keywords: hypohydration, euhydration, hot environment, 3km running time trial, endurance performance, trained athletes, perceptual metrics, dehydration impact, physiological responses, hydration strategies

Procedia PDF Downloads 63
673 Awareness and Perception of Food Safety, Nutrition and Food Security among Omani Women

Authors: Abeer Al Kalbani

Abstract:

Oman is a sub-tropical country with limited water resources, harsh weather and limited soil fertility, constraining food production. Therefore, it largely depends on international markets to assure supply of food. In the light of these circumstances, food security in Oman is defined as the ability of the country to grant the staple food needs of people (e.g. rice, wheat, lentil, sugar, dates, dairy products, fish and plant or vegetable oils). It also involves exporting local goods with high production rates to exchange them with required food products. This concept of food security includes the availability of food through production and/or importing, stability of the market prices during all circumstances, and the ability of people to meet their needs within their income capabilities. As a result, most of the food security work is focused on availability and access dimensions of the issue. Not much research is focused on the utilization aspect of food security in Oman. Although women play a vital role in food security, there is limited research on women’s role in food security neither in Oman nor in neighboring Gulf countries. Women play an important role not only by carrying the responsibility of feeding their families but also by setting the consumption model for the household. Therefore, the research aims to contribute to the work done on food security in Oman and similar regions of the world by studying the role women play at the utilization level. Methods used in this research include Qualitative unstructured interviews, focus groups, survey questionnaire and an experimental study. Based on the FAO definition of food security, it consists of availability, access, utilization and sustainability. Results from a pilot study conducted for this research on two groups of women in Oman; urban and rural women, showed that women in Oman are responsible for achieving these four pillars at the household level. Moreover, awareness of women increased as their educational level increased. Urban women showed more awareness and openness to adopt healthier and proper food related choices than rural women. Urban women seem also more open than rural women to new ideas and concepts and ways to healthier food. However, both urban and rural women claim that no training and educational programs are available for them and awareness of food security in general remains relatively low in both groups. In the light of these findings, this research attempts to further investigate the social beliefs, practices and attitudes women adopt in relation to food purchase, storage, preparation and consumption as considered as important parts of the food system. It also seeks to examine the effect of educational training programs and media on the level of women awareness on the issue.

Keywords: food security, household food security, utilization, role of women

Procedia PDF Downloads 403
672 Thermal Instability in Solid under Irradiation

Authors: P. Selyshchev

Abstract:

Construction materials for nuclear facilities are operated under extreme thermal and radiation conditions. First of all, they are nuclear fuel, fuel assemblies, and reactor vessel. It places high demands on the control of their state, stability of their state, and their operating conditions. An irradiated material is a typical example of an open non-equilibrium system with nonlinear feedbacks between its elements. Fluxes of energy, matter and entropy maintain states which are far away from thermal equilibrium. The links that arise under irradiation are inherently nonlinear. They form the mechanisms of feed-backs that can lead to instability. Due to this instability the temperature of the sample, heat transfer, and the defect density can exceed the steady-state value in several times. This can lead to change of typical operation and an accident. Therefore, it is necessary to take into account the thermal instability to avoid the emergency situation. The point is that non-thermal energy can be accumulated in materials because irradiation produces defects (first of all these are vacancies and interstitial atoms), which are metastable. The stored energy is about energy of defect formation. Thus, an annealing of the defects is accompanied by releasing of non-thermal stored energy into thermal one. Temperature of the material grows. Increase of temperature results in acceleration of defect annealing. Density of the defects drops and temperature grows more and more quickly. The positive feed-back is formed and self-reinforcing annealing of radiation defects develops. To describe these phenomena a theoretical approach to thermal instability is developed via formalism of complex systems. We consider system of nonlinear differential equations for different components of microstructure and temperature. The qualitative analysis of this non-linear dynamical system is carried out. Conditions for development of instability have been obtained. Points of bifurcation have been found. Convenient way to represent obtained results is a set of phase portraits. It has been shown that different regimes of material state under irradiation can develop. Thus degradation of irradiated material can be limited by means of choice appropriate kind of evolution of materials under irradiation.

Keywords: irradiation, material, non-equilibrium state, nonlinear feed-back, thermal instability

Procedia PDF Downloads 265
671 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations

Authors: K. Al Ammari, B. G. Clarke

Abstract:

Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.

Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column

Procedia PDF Downloads 373
670 A Double Ended AC Series Arc Fault Location Algorithm Based on Currents Estimation and a Fault Map Trace Generation

Authors: Edwin Calderon-Mendoza, Patrick Schweitzer, Serge Weber

Abstract:

Series arc faults appear frequently and unpredictably in low voltage distribution systems. Many methods have been developed to detect this type of faults and commercial protection systems such AFCI (arc fault circuit interrupter) have been used successfully in electrical networks to prevent damage and catastrophic incidents like fires. However, these devices do not allow series arc faults to be located on the line in operating mode. This paper presents a location algorithm for series arc fault in a low-voltage indoor power line in an AC 230 V-50Hz home network. The method is validated through simulations using the MATLAB software. The fault location method uses electrical parameters (resistance, inductance, capacitance, and conductance) of a 49 m indoor power line. The mathematical model of a series arc fault is based on the analysis of the V-I characteristics of the arc and consists basically of two antiparallel diodes and DC voltage sources. In a first step, the arc fault model is inserted at some different positions across the line which is modeled using lumped parameters. At both ends of the line, currents and voltages are recorded for each arc fault generation at different distances. In the second step, a fault map trace is created by using signature coefficients obtained from Kirchhoff equations which allow a virtual decoupling of the line’s mutual capacitance. Each signature coefficient obtained from the subtraction of estimated currents is calculated taking into account the Discrete Fast Fourier Transform of currents and voltages and also the fault distance value. These parameters are then substituted into Kirchhoff equations. In a third step, the same procedure described previously to calculate signature coefficients is employed but this time by considering hypothetical fault distances where the fault can appear. In this step the fault distance is unknown. The iterative calculus from Kirchhoff equations considering stepped variations of the fault distance entails the obtaining of a curve with a linear trend. Finally, the fault distance location is estimated at the intersection of two curves obtained in steps 2 and 3. The series arc fault model is validated by comparing current registered from simulation with real recorded currents. The model of the complete circuit is obtained for a 49m line with a resistive load. Also, 11 different arc fault positions are considered for the map trace generation. By carrying out the complete simulation, the performance of the method and the perspectives of the work will be presented.

Keywords: indoor power line, fault location, fault map trace, series arc fault

Procedia PDF Downloads 135
669 Urban Health and Strategic City Planning: A Case from Greece

Authors: Alexandra P. Alexandropoulou, Andreas Fousteris, Eleni Didaskalou, Dimitrios A. Georgakellos

Abstract:

As urbanization is becoming a major stress factor not only for the urban environment but also for the wellbeing of city dwellers, incorporating the issues of urban health in strategic city planning and policy-making has never been more relevant. The impact of urbanization can vary from low to severe and relates to all non-communicable diseases caused by the different functions of cities. Air pollution, noise pollution, water and soil pollution, availability of open green spaces, and urban heat island are the major factors that can compromise citizens' health. Urban health describes the effects of the social environment, the physical environment, and the availability and accessibility to health and social services. To assess the quality of urban wellbeing, all urban characteristics that might have an effect on citizens' health must be considered, evaluated, and introduced in integrated local planning. A series of indices and indicators can be used to better describe these effects and set the target values in policy making. Local strategic planning is one of the most valuable development tools a local city administration can possess; thus, it has become mandatory under Greek law for all municipalities. It involves a two-stage procedure; the first aims to collect, analyse and evaluate data on the current situation of the city (administrative data, population data, environmental data, social data, swot analysis), while the second aims to introduce a policy vision described and supported by distinct (nevertheless integrated) actions, plans and measures to be implemented with the aim of city development and citizen wellbeing. In this procedure, the element of health is often neglected or under-evaluated. A relative survey was conducted among all Greek local authorities in order to shed light on the current situation. Evidence shows that the rate of incorporation of health in strategic planning is lacking behind. The survey also highlights key hindrances and concerns raised by local officials and suggests a path for the way forward.

Keywords: urban health, strategic planning, local authorities, integrated development

Procedia PDF Downloads 65
668 Equilibrium, Kinetic and Thermodynamic Studies of the Biosorption of Textile Dye (Yellow Bemacid) onto Brahea edulis

Authors: G. Henini, Y. Laidani, F. Souahi, A. Labbaci, S. Hanini

Abstract:

Environmental contamination is a major problem being faced by the society today. Industrial, agricultural, and domestic wastes, due to the rapid development in the technology, are discharged in the several receivers. Generally, this discharge is directed to the nearest water sources such as rivers, lakes, and seas. While the rates of development and waste production are not likely to diminish, efforts to control and dispose of wastes are appropriately rising. Wastewaters from textile industries represent a serious problem all over the world. They contain different types of synthetic dyes which are known to be a major source of environmental pollution in terms of both the volume of dye discharged and the effluent composition. From an environmental point of view, the removal of synthetic dyes is of great concern. Among several chemical and physical methods, adsorption is a promising technique due to the ease of use and low cost compared to other applications in the process of discoloration, especially if the adsorbent is inexpensive and readily available. The focus of the present study was to assess the potentiality of Brahea edulis (BE) for the removal of synthetic dye Yellow bemacid (YB) from aqueous solutions. The results obtained here may transfer to other dyes with a similar chemical structure. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, initial dye concentration, and temperature. The biosorption kinetic data of the material (BE) was tested by the pseudo first-order and the pseudo-second-order kinetic models. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of YB on the BE is feasible, spontaneous, and endothermic. The equilibrium data were analyzed by using Langmuir, Freundlich, Elovich, and Temkin isotherm models. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g: 12 mg/g; 1.5 g: 47.44 mg/g). The maximum biosorption occurred at around pH value of 2 for the YB. The equilibrium uptake was increased with an increase in the initial dye concentration in solution (Co = 120 mg/l; q = 35.97 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficient (R2 > 0.998) and a maximum monolayer adsorption capacity of 35.97 mg/g for YB.

Keywords: adsorption, Brahea edulis, isotherm, yellow Bemacid

Procedia PDF Downloads 172
667 Feasibility and Energy Efficiency Analysis of Chilled Water Radiant Cooling System of Office Apartment in Nigeria’s Tropical Climate City

Authors: Rasaq Adekunle Olabomi

Abstract:

More than 30% of the global building energy consumption is attributed to heating, ventilation and air-conditioning (HVAC) due to increasing urbanization and the need for more personal comfort. While heating is predominant in the temperate regions (especially during winter), comfort cooling is constantly needed in tropical regions such as Nigeria. This makes cooling a major contributor to the peak electrical load in the tropics. Meanwhile, the high solar energy availability in the tropical climate region presents a higher application potentials for solar thermal cooling systems; more so, the need for cooling mostly coincides with the solar energy availability. In addition to huge energy consumption, conventional (compressor type) air-conditioning systems mostly use refrigerants that are regarded as environmental unfriendly because of their ozone depletion potentials; this has made the alternative cooling systems to become popular in the present time. The better thermal capacity and less pumping power requirement of chilled water than chilled air has also made chilled water a preferred option over the chilled air cooling system. Radiant floor chilled water cooling is particularly is also considered suitable for spaces such as meeting room, seminar hall, auditorium, airport arrival and departure halls among others. This study did the analysis of the feasibility and energy efficiency of solar thermal chilled water for radiant flood cooling of an office apartment in a tropical climate city in Nigeria with a view to recommend its up-scaling. The analysis considered the weather parameters including available solar irradiance (kWh/m2-day) as well as the technical details of the solar thermal cooling systems to determine the feasibility. Project cost, its energy savings, emission reduction potentials and cost-to-benefits ration are used to analyze its energy efficiency as well as the viability of the cooling system. The techno-economic analysis of the proposed system, carried out using RETScreen software shows that its viability in but SWOT analysis of policy and institutional framework to promote solar energy utilization for the cooling systems shows weakness such as poor infrastructure and inadequate local capacity for technological development as major challenges.

Keywords: cooling load, absorption cooling system, coefficient of performance, radiant floor, cost saving, emission reduction

Procedia PDF Downloads 16
666 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language

Authors: Leo Laine, Morgan Johansson

Abstract:

To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.

Keywords: airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure

Procedia PDF Downloads 126
665 FEM Simulation of Tool Wear and Edge Radius Effects on Residual Stress in High Speed Machining of Inconel718

Authors: Yang Liu, Mathias Agmell, Aylin Ahadi, Jan-Eric Stahl, Jinming Zhou

Abstract:

Tool wear and tool geometry have significant effects on the residual stresses in the component produced by high-speed machining. In this paper, Coupled Eulerian and Lagrangian (CEL) model is adopted to investigate the residual stress in high-speed machining of Inconel718 with a CBN170 cutting tool. The result shows that the mesh with the smallest size of 5 um yields cutting forces and chip morphology in close agreement with the experimental data. The analysis of thermal loading and mechanical loading are performed to study the effect of segmented chip morphology on the machined surface topography and residual stress distribution. The effects of cutting edge radius and flank wear on residual stresses formation and distribution on the workpiece were also investigated. It is found that the temperature within 100um depth of the machined surface increases drastically due to the more friction heat generation with the contact area of tool and workpiece increasing when a larger edge radius and flank wear are used. With the depth further increasing, the temperature drops rapidly for all cases due to the low conductivity of Inconel718. Consequently, higher and deeper tensile residual stress is generated on the superficial. Furthermore, an increased depth of plastic deformation and compressive residual stress is noticed in the subsurface, which is attributed to the reduction of the yield strength under the thermal effect. Besides, the ploughing effect produced by a larger tool edge radius contributes more than flank wear. The magnitude variation of the compressive residual stress caused by various edge radius and flank wear have a totally opposite trend, which depends on the magnitude of the ploughing and friction pressure acting on the machined surface.

Keywords: Coupled Eulerian Lagrangian, segmented chip, residual stress, tool wear, edge radius, Inconel718

Procedia PDF Downloads 142
664 Climate Change Adaptation: Methodologies and Tools to Define Resilience Scenarios for Existing Buildings in Mediterranean Urban Areas

Authors: Francesca Nicolosi, Teresa Cosola

Abstract:

Climate changes in Mediterranean areas, such as the increase of average seasonal temperatures, the urban heat island phenomenon, the intensification of solar radiation and the extreme weather threats, cause disruption events, so that climate adaptation has become a pressing issue. Due to the strategic role that the built heritage holds in terms of environmental impact and energy waste and its potentiality, it is necessary to assess the vulnerability and the adaptive capacity of the existing building to climate change, in order to define different mitigation scenarios. The aim of this research work is to define an optimized and integrated methodology for the assessment of resilience levels and adaptation scenarios for existing buildings in Mediterranean urban areas. Moreover, the study of resilience indicators allows us to define building environmental and energy performance in order to identify the design and technological solutions for the improvement of the building and its urban area potentialities. The methodology identifies step-by-step different phases, starting from the detailed study of characteristic elements of urban system: climatic, natural, human, typological and functional components are analyzed in their critical factors and their potential. Through the individuation of the main perturbing factors and the vulnerability degree of the system to the risks linked to climate change, it is possible to define mitigation and adaptation scenarios. They can be different, according to the typological, functional and constructive features of the analyzed system, divided into categories of intervention, and characterized by different analysis levels (from the single building to the urban area). The use of software simulations allows obtaining information on the overall behavior of the building and the urban system, to generate predictive models in the medium and long-term environmental and energy retrofit and to make a comparative study of the mitigation scenarios identified. The studied methodology is validated on a case study.

Keywords: climate impact mitigation, energy efficiency, existing building heritage, resilience

Procedia PDF Downloads 236
663 Affective Attributes and Second Language Performance of Third Year Maritime Students: A Teacher's Compass

Authors: Sonia Pajaron, Flaviano Sentina, Ranulfo Etulle

Abstract:

Learning a second language calls for a total commitment from the learner whose response is necessary to successfully send and receive linguistic messages. It is relevant to virtually every aspect of human behaviour which is even more challenging when the components on -affective domains- are involved in second language learning. This study investigated the association between the identified affective attributes and second language performance of the one hundred seventeen (117) randomly selected third year maritime students. A descriptive-correlational method was utilized to generate data on their affective attributes while composition writing (2 series) and IELTS-based interview was done for speaking test. Additionally, to establish the respondents’ English language profile, data on their high school grades (GPA), entrance exam results in English subject (written) as well as in the interview was extracted as baseline information. Data were subjected to various statistical treatment (average means, percentages and pearson-r moment coefficient correlation) and found out that, Nautical Science and Marine Engineering students were found to have average high school grade, entrance test results, both written and in the interview turned out to be very satisfactory at 50% passing percentage. Varied results were manifested in their affective attributes towards learning the second language. On attitude, nautical science students had true positive attitude while marine engineering had only a moderate positive one. Secondly, the former were positively motivated to learn English while the latter were just moderately motivated. As regards anxiety, both groups embodied a moderate level of anxiety in the English language. Finally, data showed that nautical science students exuded real confidence while the marine engineering group had only moderate confidence with the second language. Respondents’ English academic achievement (GWA) was significantly correlated with confidence and speaking with anxiety towards the second language among the students from the nautical science group with moderate positive and low negative degree of correlation, respectively. On the other hand, the marine engineering students’ speaking test result was significantly correlated with anxiety and self-confidence with a moderate negative and low positive degree of correlation, respectively while writing was significantly correlated with motivation bearing a low positive degree of correlation.

Keywords: affective attributes, second language, second language performance, anxiety, attitude, self-confidence and motivation

Procedia PDF Downloads 267
662 Development of the Integrated Quality Management System of Cooked Sausage Products

Authors: Liubov Lutsyshyn, Yaroslava Zhukova

Abstract:

Over the past twenty years, there has been a drastic change in the mode of nutrition in many countries which has been reflected in the development of new products, production techniques, and has also led to the expansion of sales markets for food products. Studies have shown that solution of the food safety problems is almost impossible without the active and systematic activity of organizations directly involved in the production, storage and sale of food products, as well as without management of end-to-end traceability and exchange of information. The aim of this research is development of the integrated system of the quality management and safety assurance based on the principles of HACCP, traceability and system approach with creation of an algorithm for the identification and monitoring of parameters of technological process of manufacture of cooked sausage products. Methodology of implementation of the integrated system based on the principles of HACCP, traceability and system approach during the manufacturing of cooked sausage products for effective provision for the defined properties of the finished product has been developed. As a result of the research evaluation technique and criteria of performance of the implementation and operation of the system of the quality management and safety assurance based on the principles of HACCP have been developed and substantiated. In the paper regularities of influence of the application of HACCP principles, traceability and system approach on parameters of quality and safety of the finished product have been revealed. In the study regularities in identification of critical control points have been determined. The algorithm of functioning of the integrated system of the quality management and safety assurance has also been described and key requirements for the development of software allowing the prediction of properties of finished product, as well as the timely correction of the technological process and traceability of manufacturing flows have been defined. Based on the obtained results typical scheme of the integrated system of the quality management and safety assurance based on HACCP principles with the elements of end-to-end traceability and system approach for manufacture of cooked sausage products has been developed. As a result of the studies quantitative criteria for evaluation of performance of the system of the quality management and safety assurance have been developed. A set of guidance documents for the implementation and evaluation of the integrated system based on the HACCP principles in meat processing plants have also been developed. On the basis of the research the effectiveness of application of continuous monitoring of the manufacturing process during the control on the identified critical control points have been revealed. The optimal number of critical control points in relation to the manufacture of cooked sausage products has been substantiated. The main results of the research have been appraised during 2013-2014 under the conditions of seven enterprises of the meat processing industry and have been implemented at JSC «Kyiv meat processing plant».

Keywords: cooked sausage products, HACCP, quality management, safety assurance

Procedia PDF Downloads 244
661 Air–Water Two-Phase Flow Patterns in PEMFC Microchannels

Authors: Ibrahim Rassoul, A. Serir, E-K. Si Ahmed, J. Legrand

Abstract:

The acronym PEM refers to Proton Exchange Membrane or alternatively Polymer Electrolyte Membrane. Due to its high efficiency, low operating temperature (30–80 °C), and rapid evolution over the past decade, PEMFCs are increasingly emerging as a viable alternative clean power source for automobile and stationary applications. Before PEMFCs can be employed to power automobiles and homes, several key technical challenges must be properly addressed. One technical challenge is elucidating the mechanisms underlying water transport in and removal from PEMFCs. On one hand, sufficient water is needed in the polymer electrolyte membrane or PEM to maintain sufficiently high proton conductivity. On the other hand, too much liquid water present in the cathode can cause “flooding” (that is, pore space is filled with excessive liquid water) and hinder the transport of the oxygen reactant from the gas flow channel (GFC) to the three-phase reaction sites. The experimental transparent fuel cell used in this work was designed to represent actual full scale of fuel cell geometry. According to the operating conditions, a number of flow regimes may appear in the microchannel: droplet flow, blockage water liquid bridge /plug (concave and convex forms), slug/plug flow and film flow. Some of flow patterns are new, while others have been already observed in PEMFC microchannels. An algorithm in MATLAB was developed to automatically determine the flow structure (e.g. slug, droplet, plug, and film) of detected liquid water in the test microchannels and yield information pertaining to the distribution of water among the different flow structures. A video processing algorithm was developed to automatically detect dynamic and static liquid water present in the gas channels and generate relevant quantitative information. The potential benefit of this software allows the user to obtain a more precise and systematic way to obtain measurements from images of small objects. The void fractions are also determined based on images analysis. The aim of this work is to provide a comprehensive characterization of two-phase flow in an operating fuel cell which can be used towards the optimization of water management and informs design guidelines for gas delivery microchannels for fuel cells and its essential in the design and control of diverse applications. The approach will combine numerical modeling with experimental visualization and measurements.

Keywords: polymer electrolyte fuel cell, air-water two phase flow, gas diffusion layer, microchannels, advancing contact angle, receding contact angle, void fraction, surface tension, image processing

Procedia PDF Downloads 309
660 Extent of Fruit and Vegetable Waste at Wholesaler Stage of the Food Supply Chain in Western Australia

Authors: P. Ghosh, S. B. Sharma

Abstract:

The growing problem of food waste is causing unacceptable economic, environmental and social impacts across the globe. In Australia, food waste is estimated at about AU$8 billion per year; however, information on the extent of wastage at different stages of the food value chain from farm to fork is very limited. This study aims to identify causes for and extent of food waste at wholesaler stage of the food value chain in the state of Western Australia. It also explores approaches applied to reduce and utilize food waste by the wholesalers. The study was carried out at Perth city market in Caning Vale, the main wholesale distribution centre for fruits and vegetables in Western Australia. A survey questionnaire was prepared and shared with 51 wholesalers and their responses to 10 targeted questions on quantity of produce (fruits and vegetables) delivery received and further supplied, reasons for waste generation and innovations applied or being considered to reduce and utilize food waste. Data were computed using the Statistical Package for the Social Sciences (SPSS version 21). Among the wholesalers 52% were primary wholesalers (buy produce directly from growers) and 48% were secondary wholesalers (buy produce in bulk from major wholesalers and supply to the local retail market, caterers, and customers with specific requirements). Average fruit and vegetable waste was 180 Kilogram per week per primary wholesaler and 30 Kilogram per secondary wholesaler. Based on this survey, the fruit and vegetable waste at wholesaler stage was estimated at about 286 tonnes per year. The secondary wholesalers distributed pre-ordered commodities, which minimized the potential to cause waste. Non-parametric test (Mann Whitney test) was carried out to assess contributions of wholesalers to waste generation. Over 56% of secondary wholesalers generally had nothing to bin as waste. Pearson’s correlation coefficient analysis showed positive correlation (r = 0.425; P=0.01) between the quantity of produce received and waste generated. Low market demand was the predominant reason identified by the wholesalers for waste generation. About a third of the wholesalers suggested that high cosmetic standards for fruits and vegetables - appearance, shape, and size - should be relaxed to reduce waste. Donation of unutilized fruits and vegetables to charity was overwhelmingly (95%) considered as one of the best options for utilization of discarded produce. The extent of waste at other stages of fruit and vegetable supply chain is currently being studied.

Keywords: food waste, fruits and vegetables, supply chain, waste generation

Procedia PDF Downloads 308
659 Road Systems as Environmental Barriers: An Overview of Roadways in Their Function as Fences for Wildlife Movement

Authors: Rachael Bentley, Callahan Gergen, Brodie Thiede

Abstract:

Roadways have a significant impact on the environment in so far as they function as barriers to wildlife movement, both through road mortality and through resultant road avoidance. Roads have an im-mense presence worldwide, and it is predicted to increase substantially in the next thirty years. As roadways become even more common, it is important to consider their environmental impact, and to mitigate the negative effects which they have on wildlife and wildlife mobility. In a thorough analysis of several related studies, a common conclusion was that roads cause habitat fragmentation, which can lead split populations to evolve differently, for better or for worse. Though some populations adapted positively to roadways, becoming more resistant to road mortality, and more tolerant to noise and chemical contamination, many others experienced maladaptation, either due to chemical contamination in and around their environment, or because of genetic mutations from inbreeding when their population was fragmented too substantially to support a large enough group for healthy genetic exchange. Large mammals were especially susceptible to maladaptation from inbreed-ing, as they require larger areas to roam and therefore require even more space to sustain a healthy population. Regardless of whether a species evolved positively or negatively as a result of their proximity to a road, animals tended to avoid roads, making the genetic diversity from habitat fragmentation an exceedingly prevalent issue in the larger discussion of road ecology. Additionally, the consideration of solu-tions, such as overpasses and underpasses, is crucial to ensuring the long term survival of many wildlife populations. In studies addressing the effectiveness of overpasses and underpasses, it seemed as though animals adjusted well to these sorts of solutions, but strategic place-ment, as well as proper sizing, proper height, shelter from road noise, and other considerations were important in construction. When an underpass or overpass was well-built and well-shielded from human activity, animals’ usage of the structure increased significantly throughout its first five years, thus reconnecting previously divided populations. Still, these structures are costly and they are often unable to fully address certain issues such as light, noise, and contaminants from vehicles. Therefore, the need for further discussion of new, crea-tive solutions remains paramount. Roads are one of the most consistent and prominent features of today’s landscape, but their environmental impacts are largely overlooked. While roads are useful for connecting people, they divide landscapes and animal habitats. Therefore, further research and investment in possible solutions is necessary to mitigate the negative effects which roads have on wildlife mobility and to pre-vent issues from resultant habitat fragmentation.

Keywords: fences, habitat fragmentation, roadways, wildlife mobility

Procedia PDF Downloads 170
658 An Investigation into the Crystallization Tendency/Kinetics of Amorphous Active Pharmaceutical Ingredients: A Case Study with Dipyridamole and Cinnarizine

Authors: Shrawan Baghel, Helen Cathcart, Biall J. O'Reilly

Abstract:

Amorphous drug formulations have great potential to enhance solubility and thus bioavailability of BCS class II drugs. However, the higher free energy and molecular mobility of the amorphous form lowers the activation energy barrier for crystallization and thermodynamically drives it towards the crystalline state which makes them unstable. Accurate determination of the crystallization tendency/kinetics is the key to the successful design and development of such systems. In this study, dipyridamole (DPM) and cinnarizine (CNZ) has been selected as model compounds. Thermodynamic fragility (m_T) is measured from the heat capacity change at the glass transition temperature (Tg) whereas dynamic fragility (m_D) is evaluated using methods based on extrapolation of configurational entropy to zero 〖(m〗_(D_CE )), and heating rate dependence of Tg 〖(m〗_(D_Tg)). The mean relaxation time of amorphous drugs was calculated from Vogel-Tammann-Fulcher (VTF) equation. Furthermore, the correlation between fragility and glass forming ability (GFA) of model drugs has been established and the relevance of these parameters to crystallization of amorphous drugs is also assessed. Moreover, the crystallization kinetics of model drugs under isothermal conditions has been studied using Johnson-Mehl-Avrami (JMA) approach to determine the Avrami constant ‘n’ which provides an insight into the mechanism of crystallization. To further probe into the crystallization mechanism, the non-isothermal crystallization kinetics of model systems was also analysed by statistically fitting the crystallization data to 15 different kinetic models and the relevance of model-free kinetic approach has been established. In addition, the crystallization mechanism for DPM and CNZ at each extent of transformation has been predicted. The calculated fragility, glass forming ability (GFA) and crystallization kinetics is found to be in good correlation with the stability prediction of amorphous solid dispersions. Thus, this research work involves a multidisciplinary approach to establish fragility, GFA and crystallization kinetics as stability predictors for amorphous drug formulations.

Keywords: amorphous, fragility, glass forming ability, molecular mobility, mean relaxation time, crystallization kinetics, stability

Procedia PDF Downloads 350
657 Binder-Free Porous Photocathode Based on Cuprous Oxide for High-Performing P-Type Dye-Sensitized Solar Cells

Authors: Marinela Miclau, Melinda Vajda, Nicolae Miclau, Daniel Ursu

Abstract:

Characterized by a simple structure, easy and low cost fabrication, the dye-sensitized solar cell (DSSC) attracted the interest of the scientific community as an attractive alternative of conventional Si-based solar cells and thin-film solar cells. Over the past 20 years, the main efforts have attempted to enhance the efficiency of n-type DSSCs, the highest efficiency record of 14.30% was achieved using the co-sensitization of two metal-free organic dyes and Co (II/III) tris(phenanthroline)-based redox electrolyte. In the last years, the development of the efficient p-type DSSC has become a research focus owing to the fact that the concept of tandem solar cell was proposed as the solution to increase the power conversion efficiency. A promising alternative for the photocathodes of p-type DSSC, cuprous (Cu2O) and cupric (CuO) oxides have been investigated because of its nontoxic nature, low cost, high natural abundance, a good absorption coefficient for visible light and a higher dielectric constant than NiO. In case of p-type DSSC based on copper oxides with I3-/I- as redox mediator, the highest conversion efficiency of 0.42% (Cu2O) and 0.03% (CuO) has achieved. Towards the increase in the performance, we have fabricated and analyzed the performance of p-type DSSC prepared with the binder-free porous Cu2O photocathodes. Porous thin film could be an attractive alternative for DSSC because of their large surface areas which enable the efficient absorption of the dyes and light. We propose a simple and one-step hydrothermal method for the preparation of porous Cu2O thin film using copper substrate, cupric acetate and ethyl cellulose. The cubic structure of Cu2O has been determined by X-ray diffraction (XRD) and porous morphology of thin film was emphasized by Scanning Electron Microscope Inspect S (SEM). Optical and Mott-Schottky measurements attest of the high quality of the Cu2O thin film. The binder-free porous Cu2O photocathode has confirmed the excellent photovoltaic properties, the best value reported for p-type DSSC (1%) in similar conditions being reached.

Keywords: cuprous oxide, dye-sensitized solar cell, hydrothermal method, porous photocathode

Procedia PDF Downloads 165
656 Application of Recycled Tungsten Carbide Powder for Fabrication of Iron Based Powder Metallurgy Alloy

Authors: Yukinori Taniguchi, Kazuyoshi Kurita, Kohei Mizuta, Keigo Nishitani, Ryuichi Fukuda

Abstract:

Tungsten carbide is widely used as a tool material in metal manufacturing process. Since tungsten is typical rare metal, establishment of recycle process of tungsten carbide tools and restore into cemented carbide material bring great impact to metal manufacturing industry. Recently, recycle process of tungsten carbide has been developed and established gradually. However, the demands for quality of cemented carbide tool are quite severe because hardness, toughness, anti-wear ability, heat resistance, fatigue strength and so on should be guaranteed for precision machining and tool life. Currently, it is hard to restore the recycled tungsten carbide powder entirely as raw material for new processed cemented carbide tool. In this study, to suggest positive use of recycled tungsten carbide powder, we have tried to fabricate a carbon based sintered steel which shows reinforced mechanical properties with recycled tungsten carbide powder. We have made set of newly designed sintered steels. Compression test of sintered specimen in density ratio of 0.85 (which means 15% porosity inside) has been conducted. As results, at least 1.7 times higher in nominal strength in the amount of 7.0 wt.% was shown in recycled WC powder. The strength reached to over 600 MPa for the Fe-WC-Co-Cu sintered alloy. Wear test has been conducted by using ball-on-disk type friction tester using 5 mm diameter ball with normal force of 2 N in the dry conditions. Wear amount after 1,000 m running distance shows that about 1.5 times longer life was shown in designed sintered alloy. Since results of tensile test showed that same tendency in previous testing, it is concluded that designed sintered alloy can be used for several mechanical parts with special strength and anti-wear ability in relatively low cost due to recycled tungsten carbide powder.

Keywords: tungsten carbide, recycle process, compression test, powder metallurgy, anti-wear ability

Procedia PDF Downloads 246
655 Designing, Manufacturing and Testing a Portable Tractor Unit Biocoal Harvester Combine of Agriculture and Animal Wastes

Authors: Ali Moharrek, Hosein Mobli, Ali Jafari, Ahmad Tabataee Far

Abstract:

Biomass is a material generally produced by plants living on soil or water and their derivatives. The remains of agricultural and forest products contain biomass which is changeable into fuel. Besides, you can obtain biogas and ethanol from the charcoal produced from biomass through specific actions. this technology was designed for as a useful Native Fuel and Technology in Energy disasters Management Due to the sudden interruption of the flow of heat energy One of the problems confronted by mankind in the future is the limitations of fossil energy which necessitates production of new energies such as biomass. In order to produce biomass from the remains of the plants, different methods shall be applied considering factors like cost of production, production technology, area of requirement, speed of work easy utilization, ect. In this article we are focusing on designing a biomass briquetting portable machine. The speed of installation of the machine on a tractor is estimated as 80 MF 258. Screw press is used in designing this machine. The needed power for running this machine which is estimated as 17.4 kW is provided by the power axis of tractor. The pressing speed of the machine is considered to be 375 RPM Finally the physical and mechanical properties of the product were compared with utilized material which resulted in appropriate outcomes. This machine is designed for Gathering Raw materials of the ground by Head Section. During delivering the raw materials to Briquetting section, they Crushed, Milled & Pre Heated in Transmission section. This machine is a Combine Portable Tractor unit machine and can use all type of Agriculture, Forest & Livestock Animals Resides as Raw material to make Bio fuel. The Briquetting Section was manufactured and it successfully made bio fuel of Sawdust. Also this machine made a biofuel with Ethanol of sugarcane Wastes. This Machine is using P.T.O power source for Briquetting and Hydraulic Power Source for Pre Processing of Row Materials.

Keywords: biomass, briquette, screw press, sawdust, animal wastes, portable, tractors

Procedia PDF Downloads 314
654 The Influence of Mycelium Species and Incubation Protocols on Heat and Moisture Transfer Properties of Mycelium-Based Composites

Authors: Daniel Monsalve, Takafumi Noguchi

Abstract:

Mycelium-based composites (MBC) are made by growing living mycelium on lignocellulosic fibres to create a porous composite material which can be lightweight, and biodegradable, making them suitable as a sustainable thermal insulation. Thus, they can help to reduce material extraction while improving the energy efficiency of buildings, especially when agricultural by-products are used. However, as MBC are hygroscopic materials, moisture can reduce their thermal insulation efficiency. It is known that surface growth, or “mycelium skin”, can form a natural coating due to the hydrophobic properties in the mycelium cell wall. Therefore, this research aims to biofabricate a homogeneous mycelium skin and measure its influence on the final composite material by testing material properties such as thermal conductivity, vapour permeability and water absorption by partial immersion over 24 hours. In addition, porosity, surface morphology and chemical composition were also analyzed. The white-rot fungi species Pleurotus ostreatus, Ganoderma lucidum, and Trametes versicolor were grown on 10 mm hemp fibres (Cannabis sativa), and three different biofabrication protocols were used during incubation, varying the time and surface treatment, including the addition of pre-colonised sawdust. The results indicate that density can be reduced by colonisation time, which will favourably impact thermal conductivity but will negatively affect vapour and liquid water control. Additionally, different fungi can exhibit different resistance to prolonged water absorption, and due to osmotic sensitivity, mycelium skin may also diminish moisture control. Finally, a collapse in the mycelium network after water immersion was observed through SEM, indicating how the microstructure is affected, which is also dependent on fungi species and the type of skin achieved. These results help to comprehend the differences and limitations of three of the most common species used for MBC fabrication and how precise engineering is needed to effectively control the material output.

Keywords: mycelium, thermal conductivity, vapor permeability, water absorption

Procedia PDF Downloads 37
653 Identifying the Risks on Philippines’ Pre- and Post-Disaster Media Communication on Natural Hazards

Authors: Neyzielle Ronnicque Cadiz

Abstract:

The Philippine is a hotbed of disasters and is a locus of natural hazards. With an average of 20 typhoons entering the Philippine Area of Responsibility (PAR) each year, seven to eight (7-8) of which makes landfall. The country rather inevitably suffers from climate-related calamities. With this vulnerability to natural hazards, the relevant hazard-related issues that come along with the potential threat and occurrence of a disaster oftentimes garners lesser media attention than when a disaster actually occurred. Post-disaster news and events flood the content of news networks primarily focusing on, but not limited to, the efforts of the national government in resolving post-disaster displacement, and all the more on the community leaders’ incompetence in disaster mitigation-- even though the University of the Philippines’ NOAH Center work hand in hand with different stakeholders for disaster mitigation communication efforts. Disaster risk communication is actually a perennial dilemma. There are so many efforts to reach the grassroots level but emergency and disaster preparedness messages inevitably fall short.. The Philippines is very vulnerable to hazards risk and disasters but social media posts and communication efforts mostly go unnoticed, if not argued upon. This study illustrates the outcomes of a research focusing on the print, broadcast, and social media’s role on disaster communication involving the natural catastrophic events that took place in the Philippines from 2009 to present. Considering the country’s state of development, this study looks on the rapid and reliable communication between the government, and the relief/rescue workers in the affected regions; and how the media portrays these efforts effectively. Learning from the disasters that have occurred in the Philippines over the past decade, effective communication can ensure that any efforts to prepare and respond to disasters can make a significant difference. It can potentially either break or save lives. Recognizing the role of communications is not only in improving the coordination of vital services for post disaster; organizations gave priority in reexamining disaster preparedness mechanisms through the Communication with Communities (CwC) programs. This study, however, looks at the CwC efforts of the Philippine media platforms. CwC, if properly utilized by the media, is an essential tool in ensuring accountability and transparency which require effective exchange of information between disasters and survivors and responders. However, in this study, it shows that the perennial dilemma of the Philippine media is that the Disaster Risk Reduction and Management (DRRM) efforts of the country lie in the clouded judgment of political aims. This kind of habit is a multiplier of the country’s risk and insecurity. Sometimes the efforts in urging the public to take action seem useless because the challenge lies on how to achieve social, economic, and political unity using the tri-media platform.

Keywords: Philippines at risk, pre/post disaster communication, tri-media platform, UP NOAH

Procedia PDF Downloads 173
652 Development of Gully Erosion Prediction Model in Sokoto State, Nigeria, using Remote Sensing and Geographical Information System Techniques

Authors: Nathaniel Bayode Eniolorunda, Murtala Abubakar Gada, Sheikh Danjuma Abubakar

Abstract:

The challenge of erosion in the study area is persistent, suggesting the need for a better understanding of the mechanisms that drive it. Thus, the study evolved a predictive erosion model (RUSLE_Sok), deploying Remote Sensing (RS) and Geographical Information System (GIS) tools. The nature and pattern of the factors of erosion were characterized, while soil losses were quantified. Factors’ impacts were also measured, and the morphometry of gullies was described. Data on the five factors of RUSLE and distances to settlements, rivers and roads (K, R, LS, P, C, DS DRd and DRv) were combined and processed following standard RS and GIS algorithms. Harmonized World Soil Data (HWSD), Shuttle Radar Topographical Mission (SRTM) image, Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), Sentinel-2 image accessed and processed within the Google Earth Engine, road network and settlements were the data combined and calibrated into the factors for erosion modeling. A gully morphometric study was conducted at some purposively selected sites. Factors of soil erosion showed low, moderate, to high patterns. Soil losses ranged from 0 to 32.81 tons/ha/year, classified into low (97.6%), moderate (0.2%), severe (1.1%) and very severe (1.05%) forms. The multiple regression analysis shows that factors statistically significantly predicted soil loss, F (8, 153) = 55.663, p < .0005. Except for the C-Factor with a negative coefficient, all other factors were positive, with contributions in the order of LS>C>R>P>DRv>K>DS>DRd. Gullies are generally from less than 100m to about 3km in length. Average minimum and maximum depths at gully heads are 0.6 and 1.2m, while those at mid-stream are 1 and 1.9m, respectively. The minimum downstream depth is 1.3m, while that for the maximum is 4.7m. Deeper gullies exist in proximity to rivers. With minimum and maximum gully elevation values ranging between 229 and 338m and an average slope of about 3.2%, the study area is relatively flat. The study concluded that major erosion influencers in the study area are topography and vegetation cover and that the RUSLE_Sok well predicted soil loss more effectively than ordinary RUSLE. The adoption of conservation measures such as tree planting and contour ploughing on sloppy farmlands was recommended.

Keywords: RUSLE_Sok, Sokoto, google earth engine, sentinel-2, erosion

Procedia PDF Downloads 68
651 Kinetic Modelling of Fermented Probiotic Beverage from Enzymatically Extracted Annona Muricata Fruit

Authors: Calister Wingang Makebe, Wilson Ambindei Agwanande, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1 as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated, and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 75
650 Competitive Effects of Differential Voting Rights and Promoter Control in Indian Start-Ups

Authors: Prateek Bhattacharya

Abstract:

The definition of 'control' in India is a rapidly evolving concept, owing to varying rights attached to varying securities. Shares with differential voting rights (DVRs) provide the holder with differential rights as to voting, as compared to ordinary equity shareholders of the company. Such DVRs can amount to both superior voting rights and inferior voting rights, where DVRs with superior voting rights amount to providing the holder with golden shares in the company. While DVRs are not a novel concept in India having been recognized since 2000, they were placed on a back burner by the Securities and Exchange Board of India (SEBI) in 2010 after issuance of DVRs with superior voting rights was restricted. In June 2019, the SEBI rekindled the ebbing fire of DVRs, keeping mind the fast-paced nature of the global economy, the government's faith that India’s ‘new age technology companies’ (i.e., Start-Ups) will lead the charge in achieving its goal of India becoming a $5 trillion dollar economy by 2024, and recognizing that the promoters of such Start-Ups seek to raise capital without losing control over their companies. DVRs with superior voting rights guarantee promoters with up to 74% shareholding in Start-Ups for a period of 5 years, meaning that the holder of such DVRs can exercise sole control and material influence over the company for that period. This manner of control has the potential of causing both pro-competitive and anti-competitive effects in the markets where these companies operate. On the one hand, DVRs will allow Start-Up promoters/founders to retain control of their companies and protect its business interests from foreign elements such as private/public investors – in a scenario where such investors have multiple investments in firms engaged in associated lines of business (whether on a horizontal or vertical level) and would seek to influence these firms to enter into potential anti-competitive arrangements with one another, DVRs will enable the promoters to thwart such scenarios. On the other hand, promoters/founders who themselves have multiple investments in Start-Ups, which are in associated lines of business run the risk of influencing these associated Start-Ups to engage in potentially anti-competitive arrangements in the name of profit maximisation. This paper shall be divided into three parts: Part I shall deal with the concept of ‘control’, as deliberated upon and decided by the SEBI and the Competition Commission of India (CCI) under both company/securities law and competition law; Part II shall review this definition of ‘control’ through the lens of DVRs, and Part III shall discuss the aforementioned potential pro-competitive and anti-competitive effects caused by the DVRs by examining the current Indian Start-Up scenario. The paper shall conclude by providing suggestions for the CCI to incorporate a clearer and more progressive concept of ‘control’.

Keywords: competition law, competitive effects, control, differential voting rights, DVRs, investor shareholding, merger control, start-ups

Procedia PDF Downloads 119