Search results for: quantum plasma
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1579

Search results for: quantum plasma

1039 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Jai Singh

Abstract:

It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.

Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters

Procedia PDF Downloads 333
1038 Time-Dependent Modulation on Depressive Responses and Circadian Rhythms of Corticosterone in Models of Melatonin Deficit

Authors: Jana Tchekalarova, Milena Atanasova, Katerina Georgieva

Abstract:

Melatonin deficit can cause a disturbance in emotional status and circadian rhythms of the endocrine system in the body. Both pharmacological and alternative approaches are applied for correction of dysfunctions driven by changes in circadian dynamics of many physiological indicators. In the present study, we tested and compare the beneficial effect of agomelatine (40 mg/kg, i.p. for 3 weeks) and endurance training on depressive behavior in two models of melatonin deficit in rat. The role of disturbed circadian rhythms of plasma melatonin and corticosterone secretion in the mechanism of these treatments was also explored. The continuous exercise program attenuated depressive responses associated with disrupted diurnal rhythm of home-cage motor activity, anhedonia in the sucrose preference test, and despair-like behavior in the forced swimming test were attenuated by agomelatine exposed to chronic constant light (CCL) and long-term exercise in pinealectomized rats. Parallel to the observed positive effect on the emotional status, agomelatine restored CCL-induced impairment of circadian patterns of plasma melatonin but not that of corticosterone. In opposite, exercise training diminished total plasma corticosterone levels and corrected its flattened pattern while it was unable to correct melatonin deficit in pinealectomy. These results suggest that the antidepressant-like effect of pharmacological and alternative approach might be mediated via two different mechanism, correction of the disturbed circadian rhythm of melatonin and corticosterone, respectively. Therefore, these treatment approaches might have a potential therapeutic application in different subpopulations of people characterized by a melatonin deficiency. This work was supported by the National Science Fund of Bulgaria (research grant # № DN 03/10; DN# 12/6).

Keywords: agomelatine, exercise training, melatonin deficit, corticosterone

Procedia PDF Downloads 132
1037 Design of Speedy, Scanty Adder for Lossy Application Using QCA

Authors: T. Angeline Priyanka, R. Ganesan

Abstract:

Recent trends in microelectronics technology have gradually changed the strategies used in very large scale integration (VLSI) circuits. Complementary Metal Oxide Semiconductor (CMOS) technology has been the industry standard for implementing VLSI device for the past two decades, but due to scale-down issues of ultra-low dimension achievement is not achieved so far. Hence it paved a way for Quantum Cellular Automata (QCA). It is only one of the many alternative technologies proposed as a replacement solution to the fundamental limit problem that CMOS technology will impose in the years to come. In this brief, presented a new adder that possesses high speed of operation occupying less area is proposed. This adder is designed especially for error tolerant application. Hence in the proposed adder, the overall area (cell count) and simulation time are reduced by 88 and 73 percent respectively. Various results of the proposed adder are shown and described.

Keywords: quantum cellular automata, carry look ahead adder, ripple carry adder, lossy application, majority gate, crossover

Procedia PDF Downloads 556
1036 Determining the Octanol-Water Partition Coefficient for Armchair Polyhex BN Nanotubes Using Topological Indices

Authors: Esmat Mohammadinasab

Abstract:

The aim of this paper is to investigate theoretically and establish a predictive model for determination LogP of armchair polyhex BN nanotubes by using simple descriptors. The relationship between the octanol-water partition coefficient (LogP) and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory (DFT) electric moments and physico-chemical properties of those nanotubes are calculated. The DFT method performed based on the Becke’s 3-parameter formulation with the Lee-Yang-Parr functional (B3LYP) method and 3-21G standard basis sets. For the first time, the relationship between partition coefficient and different properties of polyhex BN nanotubes is investigated.

Keywords: topological indices, quantum descriptors, DFT method, nanotubes

Procedia PDF Downloads 335
1035 Oxidative Antioxidative Status and DNA Damage Profile Induced by Chemotherapy in Algerian Children with Lymphoma

Authors: Assia Galleze, Abdurrahim Kocyigit, Nacira Cherif, Nidel Benhalilou, Nabila Attal, Chafia Touil Boukkoffa, Rachida Raache

Abstract:

Introduction and aims: Chemotherapeutic agents used to inhibit cell division and reduce tumor growth, increase reactive oxygen species levels, which contributes to their genotoxicity [1]. The comet assay is an inexpensive and rapid method to detect the damage at cellular levels and has been used in various cancer populations undergoing chemotherapy [2,3]. The present study aim to assess the oxidative stress and the genotoxicity induced by chemotherapy by the determination of plasma malondialdehyde (MDA) level, protein carbonyl (PC) content, superoxide dismutase (SOD) activity and lymphocyte DNA damage in Algerian children with lymphoma. Materials and Methods: For our study, we selected thirty children with lymphoma treated in university hospital of Beni Messous, Algeria, and fifty unrelated subjects as controls, after obtaining the informed consent in accordance with the Declaration of Helsinki (1964). Plasma levels of MDA, PC and SOD activity were spectrophotometrically measured, while DNA damage was assessed by alkaline comet assay in peripheral blood leukocytes. Results and Discussion: Plasma MDA, PC levels and lymphocyte DNA damage, were found to be significantly higher in lymphoma patients than in controls (p < 0.001). Whereas, SOD activity in lymphoma patients was significantly lower than in healthy controls (p < 0.001). There were significant positive correlations between DNA damage, MDA and PC in patients (r = 0.96, p < 0.001, r = 0.97, p < 0.001, respectively), and negative correlation with SOD (r = 0.87, p < 0.01). Conclusion and Perspective: Our results indicated that, leukocytes DNA damage and oxidative stress were significantly higher in lymphoma patients, suggesting that the direct effect of chemotherapy and the alteration of the redox balance may influence oxidative/antioxidative status.

Keywords: chemotherapy, comet assay, DNA damage, lymphoma

Procedia PDF Downloads 137
1034 Radium Equivalent and External Hazard Indices of Trace Elements Concentrations in Aquatic Species by Neutron Activation Analysis (NAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Authors: B. G. Muhammad, S. M. Jafar

Abstract:

Neutron Activation Analysis (NAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) were employed to analyze the level of trace elements concentrations in sediment samples and their bioaccumulation in some aquatic species selected randomly from surface water resources in the Northern peninsula of Malaysia. The NAA results of the sediment samples indicated a wide range in concentration of different elements were observed. Fe, K, and Na were found to have major concentration values that ranges between 61,000 ± 1400 to 4,500 ± 100 ppm, 20100±1000 to 3100±600 and 3,100±600 and 200±10 ppm, respectively. Traces of heavy metals with much more contamination health concern, such as Cr and As, were also identified in many of the samples analyzed. The average specific activities of 40K, 232Th and 226Ra in soil and the corresponding radium equivalent activity and the external hazard index were all found to be lower than the maximum permissible limits (370 Bq kg-1 and 1).

Keywords: external hazard index, Neutron Activation Analysis, radium equivalent, trace elements concentrations

Procedia PDF Downloads 427
1033 Mixed Hydrotropic Zaleplon Oral Tablets: Formulation and Neuropharmacological Effect on Plasma GABA Level

Authors: Ghada A. Abdelbary, Maha M. Amin, Mostafa Abdelmoteleb

Abstract:

Zaleplon (ZP) is a non-benzodiazepine poorly soluble hypnotic drug indicated for the short term treatment of insomnia having a bioavailability of about 30%. The aim of the present study is to enhance the solubility and consequently the bioavailability of ZP using hydrotropic agents (HA). Phase solubility diagrams of ZP in presence of different molar concentrations of HA (Sodium benzoate, Urea, Ascorbic acid, Resorcinol, Nicotinamide, and Piperazine) were constructed. ZP/Sodium benzoate and Resorcinol microparticles were prepared adopting melt, solvent evaporation and melt-evaporation techniques followed by XRD. Directly compressed mixed hydrotropic ZP tablets of Sodium benzoate and Resorcinol in different weight ratios were prepared and evaluated compared to the commercially available tablets (Sleep aid® 5 mg). The effect of shelf and accelerated stability storage (40°C ± 2°C/75%RH ± 5%RH) on the optimum tablet formula (F5) for six months were studied. The enhancement of ZP solubility follows the order of: Resorcinol > Sodium benzoate > Ascorbic acid > Piperazine > Urea > Nicotinamide with about 350 and 2000 fold increase using 1M of Sodium benzoate and Resorcinol respectively. ZP/HA microparticles exhibit the order of: Solvent evaporation > melt-solvent evaporation > melt > physical mixture which was further confirmed by the complete conversion of ZP into amorphous form. Mixed hydrotropic tablet formula (F5) composed of ZP/(Resorcinol: Sodium benzoate 4:1w/w) microparticles prepared by solvent evaporation exhibits in-vitro dissolution of 31.7±0.11% after five minutes (Q5min) compared to 10.0±0.10% for Sleep aid® (5 mg) respectively. F5 showed significantly higher GABA concentration of 122.5±5.5mg/mL in plasma compared to 118±1.00 and 27.8±1.5 mg/mL in case of Sleep aid® (5 mg) and control taking only saline respectively suggesting a higher neuropharmacological effect of ZP following hydrotropic solubilization.

Keywords: zaleplon, hydrotropic solubilization, plasma GABA level, mixed hydrotropy

Procedia PDF Downloads 445
1032 Evaluation of Human Amnion Hemocompatibility as a Substitute for Vessels

Authors: Ghasem Yazdanpanah, Mona Kakavand, Hassan Niknejad

Abstract:

Objectives: An important issue in tissue engineering (TE) is hemocompatibility. The current engineered vessels are seriously at risk of thrombus formation and stenosis. Amnion (AM) is the innermost layer of fetal membranes that consists of epithelial and mesenchymal sides. It has the advantages of low immunogenicity, anti-inflammatory and anti-bacterial properties as well as good mechanical properties. We recently introduced the amnion as a natural biomaterial for tissue engineering. In this study, we have evaluated hemocompatibility of amnion as potential biomaterial for tissue engineering. Materials and Methods: Amnions were derived from placentas of elective caesarean deliveries which were in the gestational ages 36 to 38 weeks. Extracted amnions were washed by cold PBS to remove blood remnants. Blood samples were obtained from healthy adult volunteers who had not previously taken anti-coagulants. The blood samples were maintained in sterile tubes containing sodium citrate. Plasma or platelet rich plasma (PRP) were collected by blood sample centrifuging at 600 g for 10 min. Hemocompatibility of the AM samples (n=7) were evaluated by measuring of activated partial thromboplastin time (aPTT), prothrombin time (PT), hemolysis, and platelet aggregation tests. P-selectin was also assessed by ELISA. Both epithelial and mesenchymal sides of amnion were evaluated. Glass slide and expanded polytetrafluoroethylene (ePTFE) samples were defined as control. Results: In comparison with glass as control (13.3 ± 0.7 s), prothrombin time was increased significantly while each side of amnion was in contact with plasma (p<0.05). There was no significant difference in PT between epithelial and mesenchymal surfaces (17.4 ± 0.7 s vs. 15.8 ± 0.7 s, respectively). However, aPPT was not significantly changed after incubation of plasma with amnion epithelial and mesenchymal surfaces or glass (28.61 ± 1.39 s, 31.4 ± 2.66 s, glass, 30.76 ± 2.53 s, respectively, p>0.05). Amnion surfaces, ePTFE and glass samples have less hemolysis induction than water considerably (p<0.001), in which no differences were detected. Platelet aggregation measurements showed that platelets were less stimulated by the amnion epithelial and mesenchymal sides, in comparison with ePTFE and glass. In addition, reduction in amount of p-selectin, as platelet activation factor, after incubation of samples with PRP indicated that amnion has less stimulatory effects on platelets than ePTFE and glass. Conclusion: Amnion as a natural biomaterial has the potential to be used in tissue engineering. Our results suggest that amnion has appropriate hemocompatibility to be employed as a vascular substitute.

Keywords: amnion, hemocompatibility, tissue engineering, biomaterial

Procedia PDF Downloads 395
1031 Studies on Influence of Rub on Vibration Signature of Rotating Machines

Authors: K. N. Umesh, K. S. Srinivasan

Abstract:

The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical.

Keywords: rotor rub, orbital analysis, frequency analysis, vibration signatures

Procedia PDF Downloads 313
1030 Biocompatibility of Calcium Phosphate Coatings With Different Crystallinity Deposited by Sputtering

Authors: Ekaterina S. Marchenko, Gulsharat A. Baigonakova, Kirill M. Dubovikov, Igor A. Khlusov

Abstract:

NiTi alloys combine biomechanical and biochemical properties. This makes them a perfect candidate for medical applications. However, there is a serious problem with these alloys, such as the release of Ni from the matrix. Ni ions are known to be toxic to living tissues and leach from the matrix into the surrounding implant tissues due to corrosion after prolonged use. To prevent the release of Ni ions, corrosive strong coatings are usually used. Titanium nitride-based coatings are perfect corrosion inhibitors and also have good bioactive properties. However, there is an opportunity to improve the biochemical compatibility of the surface by depositing another layer. This layer can consist of elements such as calcium and phosphorus. The Ca and P ions form different calcium phosphate phases, which are present in the mineral part of human bones. We therefore believe that these elements must promote osteogenesis and osteointegration. In view of the above, the aim of this study is to investigate the effect of crystallinity on the biocompatibility of a two-layer coating deposited on NiTi substrate by sputtering. The first step of the research, apart from the NiTi polishing, is the layer-by-layer deposition of Ti-Ni-Ti by magnetron sputtering and the subsequent synthesis of this composite in an N atmosphere at 900 °C. The total thickness of the corrosion resistant layer is 150 nm. Plasma assisted RF sputtering was then used to deposit a bioactive film on the titanium nitride layer. A Ca-P powder target was used to obtain such a film. We deposited three types of Ca-P layers with different crystallinity and compared them in terms of cytotoxicity. One group of samples had no Ca-P coating and was used as a control. We obtained different crystallinity by varying the sputtering parameters such as bias voltage, plasma source current and pressure. XRD analysis showed that all coatings are calcium phosphate, but the sample obtained at maximum bias and plasma source current and minimum pressure has the most intense peaks from the coating phase. SEM and EDS showed that all three coatings have a homogeneous and dense structure without cracks and consist of calcium, phosphorus and oxygen. Cytotoxic tests carried out on three types of samples with Ca-P coatings and a control group showed that the control sample and the sample with Ca-P coating obtained at maximum bias voltage and plasma source current and minimum pressure had the lowest number of dead cells on the surface, around 11 ± 4%. Two other types of samples with Ca-P coating have 40 ± 9% and 21 ± 7% dead cells on the surface. It can therefore be concluded that these two sputtering modes have a negative effect on the corrosion resistance of the whole samples. The third sputtering mode does not affect the corrosion resistance and has the same level of cytotoxicity as the control. It can be concluded that the most suitable sputtering mode is the third with maximum bias voltage and plasma source current and minimum pressure.

Keywords: calcium phosphate coating, cytotoxicity, NiTi alloy, two-layer coating

Procedia PDF Downloads 66
1029 Towards the Rapid Synthesis of High-Quality Monolayer Continuous Film of Graphene on High Surface Free Energy Existing Plasma Modified Cu Foil

Authors: Maddumage Don Sandeepa Lakshad Wimalananda, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Graphene is an extraordinary 2D material that shows superior electrical, optical, and mechanical properties for the applications such as transparent contacts. Further, chemical vapor deposition (CVD) technique facilitates to synthesizing of large-area graphene, including transferability. The abstract is describing the use of high surface free energy (SFE) and nano-scale high-density surface kinks (rough) existing Cu foil for CVD graphene growth, which is an opposite approach to modern use of catalytic surfaces for high-quality graphene growth, but the controllable rough morphological nature opens new era to fast synthesis (less than the 50s with a short annealing process) of graphene as a continuous film over conventional longer process (30 min growth). The experiments were shown that high SFE condition and surface kinks on Cu(100) crystal plane existing Cu catalytic surface facilitated to synthesize graphene with high monolayer and continuous nature because it can influence the adsorption of C species with high concentration and which can be facilitated by faster nucleation and growth of graphene. The fast nucleation and growth are lowering the diffusion of C atoms to Cu-graphene interface, which is resulting in no or negligible formation of bilayer patches. High energy (500W) Ar plasma treatment (inductively Coupled plasma) was facilitated to form rough and high SFE existing (54.92 mJm-2) Cu foil. This surface was used to grow the graphene by using CVD technique at 1000C for 50s. The introduced kink-like high SFE existing point on Cu(100) crystal plane facilitated to faster nucleation of graphene with a high monolayer ratio (I2D/IG is 2.42) compared to another different kind of smooth morphological and low SFE existing Cu surfaces such as Smoother surface, which is prepared by the redeposit of Cu evaporating atoms during the annealing (RRMS is 13.3nm). Even high SFE condition was favorable to synthesize graphene with monolayer and continuous nature; It fails to maintain clean (surface contains amorphous C clusters) and defect-free condition (ID/IG is 0.46) because of high SFE of Cu foil at the graphene growth stage. A post annealing process was used to heal and overcome previously mentioned problems. Different CVD atmospheres such as CH4 and H2 were used, and it was observed that there is a negligible change in graphene nature (number of layers and continuous condition) but it was observed that there is a significant difference in graphene quality because the ID/IG ratio of the graphene was reduced to 0.21 after the post-annealing with H2 gas. Addition to the change of graphene defectiveness the FE-SEM images show there was a reduction of C cluster contamination of the surface. High SFE conditions are favorable to form graphene as a monolayer and continuous film, but it fails to provide defect-free graphene. Further, plasma modified high SFE existing surface can be used to synthesize graphene within 50s, and a post annealing process can be used to reduce the defectiveness.

Keywords: chemical vapor deposition, graphene, morphology, plasma, surface free energy

Procedia PDF Downloads 244
1028 Some Integral Inequalities of Hermite-Hadamard Type on Time Scale and Their Applications

Authors: Artion Kashuri, Rozana Liko

Abstract:

In this paper, the authors establish an integral identity using delta differentiable functions. By applying this identity, some new results via a general class of convex functions with respect to two nonnegative functions on a time scale are given. Also, for suitable choices of nonnegative functions, some special cases are deduced. Finally, in order to illustrate the efficiency of our main results, some applications to special means are obtained as well. We hope that current work using our idea and technique will attract the attention of researchers working in mathematical analysis, mathematical inequalities, numerical analysis, special functions, fractional calculus, quantum mechanics, quantum calculus, physics, probability and statistics, differential and difference equations, optimization theory, and other related fields in pure and applied sciences.

Keywords: convex functions, Hermite-Hadamard inequality, special means, time scale

Procedia PDF Downloads 150
1027 MiR-200a/ZEB1 Pathway in Liver Fibrogenesis of Biliary Atresia

Authors: Hai-Ying Liu, Yi-Hao Chen, Shu-Yin Pang, Feng-Hua Wang, Xiao-Fang Peng, Li-Yuan Yang, Zheng-Rong Chen, Yi Chen, Bing Zhu

Abstract:

Objective: Biliary atresia (BA) is characterized by progressive liver fibrosis. Epithelial-mesenchymal transition (EMT) has been implicated as a key mechanism in the pathogenesis of organ fibrosis. MiR-200a has been shown to repress EMT. We aim to explore the role of miR-200a in the fibrogenesis of BA. Methods: We obtained the plasma samples and liver samples from patients with BA or controls to examine the role of miR-200a. Histological liver fibrosis was assessed using the Ishak fibrosis scores. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect the expression of miR-200a in plasma. We also evaluated the expression of miR-200a in liver tissues using tyramide signal amplification fluorescence in situ hybridization (TSA-FISH). The expression of EMT related proteins zinc finger E-box-binding homeobox 1 (ZEB1), E-cadherin and α-smooth muscle actin (α-SMA) in the liver sections were detected by immunohistochemical staining. Results: We found that the expression of miR-200a was both elevated in the plasma and liver tissues from BA patients compared with the controls. The hepatic expression of ZEB1 and α-SMA were markedly increased in the liver sections from BA patients compared to the controls, whereas E-cadherin was downregulated in the BA group. Simultaneously, we noted that the hepatic expression of miR-200a, E-cadherin and α-SMA were upregulated with the progression of liver fibrosis in the BA group, while ZEB1 was downregulated with the progression of liver fibrosis in BA patients. Conclusion: These findings suggest EMT has a critical effect on the fibrotic process of BA, and the interaction between miR-200a and ZEB1 may regulate EMT and eventually influence liver fibrogenesis of BA.

Keywords: biliary atresia, liver fibrosis, MicroRNA, epithelial-mesenchymal transition, zinc finger E-box-binding homeobox 1

Procedia PDF Downloads 359
1026 Inactivation of Listeria innocua ATCC 33092 by Gas-Phase Plasma Treatment

Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak

Abstract:

High voltage electrical discharge plasmas are new nonthermal developing techniques used for water decontamination. To the full understanding of cell inactivation mechanisms, this study brings inactivation, recovery and cellular leakage of L. innocua cells before and after the treatment. Bacterial solution (200 mL) of L. innocua was treated in a glass reactor with a point-to-plate electrode configuration (high voltage electrode-titanium wire, was in the gas phase and grounded electrode was in the liquid phase). Argon was injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min, positive polarity and conductivity of media of 100 µS/cm were chosen to define listed parameters. With a longer treatment time inactivation was higher as well as the increase in cellular leakage. Despite total inactivation recovery of cells occurred probably because of a high leakage of proteins, compared to lower leakage of nucleic acids (DNA and RNA). In order to define mechanisms of inactivation further research is needed.

Keywords: Listeria innocua ATCC 33092, inactivation, gas phase plasma, cellular leakage, recovery of cells

Procedia PDF Downloads 176
1025 Effect of Non-Thermal Plasma, Chitosan and Polymyxin B on Quorum Sensing Activity and Biofilm of Pseudomonas aeruginosa

Authors: Alena Cejkova, Martina Paldrychova, Jana Michailidu, Olga Matatkova, Jan Masak

Abstract:

Increasing the resistance of pathogenic microorganisms to many antibiotics is a serious threat to the treatment of infectious diseases and cleaning medical instruments. It should be added that the resistance of microbial populations growing in biofilms is often up to 1000 times higher compared to planktonic cells. Biofilm formation in a number of microorganisms is largely influenced by the quorum sensing regulatory mechanism. Finding external factors such as natural substances or physical processes that can interfere effectively with quorum sensing signal molecules should reduce the ability of the cell population to form biofilm and increase the effectiveness of antibiotics. The present work is devoted to the effect of chitosan as a representative of natural substances with anti-biofilm activity and non- thermal plasma (NTP) alone or in combination with polymyxin B on biofilm formation of Pseudomonas aeruginosa. Particular attention was paid to the influence of these agents on the level of quorum sensing signal molecules (acyl-homoserine lactones) during planktonic and biofilm cultivations. Opportunistic pathogenic strains of Pseudomonas aeruginosa (DBM 3081, DBM 3777, ATCC 10145, ATCC 15442) were used as model microorganisms. Cultivations of planktonic and biofilm populations in 96-well microtiter plates on horizontal shaker were used for determination of antibiotic and anti-biofilm activity of chitosan and polymyxin B. Biofilm-growing cells on titanium alloy, which is used for preparation of joint replacement, were exposed to non-thermal plasma generated by cometary corona with a metallic grid for 15 and 30 minutes. Cultivation followed in fresh LB medium with or without chitosan or polymyxin B for next 24 h. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Activity of N-acyl homoserine lactones (AHLs) compounds involved in the regulation of biofilm formation was determined using Agrobacterium tumefaciens strain harboring a traG::lacZ/traR reporter gene responsive to AHLs. The experiments showed that both chitosan and non-thermal plasma reduce the AHLs level and thus the biofilm formation and stability. The effectiveness of both agents was somewhat strain dependent. During the eradication of P. aeruginosa DBM 3081 biofilm on titanium alloy induced by chitosan (45 mg / l) there was an 80% decrease in AHLs. Applying chitosan or NTP on the P. aeruginosa DBM 3777 biofilm did not cause a significant decrease in AHLs, however, in combination with both (chitosan 55 mg / l and NTP 30 min), resulted in a 70% decrease in AHLs. Combined application of NTP and polymyxin B allowed reduce antibiotic concentration to achieve the same level of AHLs inhibition in P. aeruginosa ATCC 15442. The results shown that non-thermal plasma and chitosan have considerable potential for the eradication of highly resistant P. aeruginosa biofilms, for example on medical instruments or joint implants.

Keywords: anti-biofilm activity, chitosan, non-thermal plasma, opportunistic pathogens

Procedia PDF Downloads 200
1024 Characterization of Single-Walled Carbon Nano Tubes Forest Decorated with Chromium

Authors: Ana Paula Mousinho, Ronaldo D. Mansano, Nelson Ordonez

Abstract:

Carbon nanotubes are one of the main elements in nanotechnologies; their applications are in microelectronics, nano-electronics devices (photonics, spintronic), chemical sensors, structural material and currently in clean energy devices (supercapacitors and fuel cells). The use of magnetic particle decorated carbon nanotubes increases the applications in magnetic devices, magnetic memory, and magnetic oriented drug delivery. In this work, single-walled carbon nanotubes (CNTs) forest decorated with chromium were deposited at room temperature by high-density plasma chemical vapor deposition (HDPCVD) system. The CNTs forest was obtained using pure methane plasmas and chromium, as precursor material (seed) and for decorating the CNTs. Magnetron sputtering deposited the chromium on silicon wafers before the CNTs' growth. Scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy, and X-ray diffraction characterized the single-walled CNTs forest decorated with chromium. In general, the CNTs' spectra show a unique emission band, but due to the presence of the chromium, the spectra obtained in this work showed many bands that are related to the CNTs with different diameters. The CNTs obtained by the HDPCVD system are highly aligned and showed metallic features, and they can be used as photonic material, due to the unique structural and electrical properties. The results of this work proved the possibility of obtaining the controlled deposition of aligned single-walled CNTs forest films decorated with chromium by high-density plasma chemical vapor deposition system.

Keywords: CNTs forest, high density plasma deposition, high-aligned CNTs, nanomaterials

Procedia PDF Downloads 117
1023 Syndecan -1 as Regulator of Ischemic-Reperfusion Damage Limitation in Experiment

Authors: M. E. Kolpakova, A. A. Jakovleva, L. S. Poliakova, H. El Amghari, S. Soliman, D. R. Faizullina, V. V. Sharoyko

Abstract:

Brain neuroplasticity is associated with blood-brain barrier vascular endothelial proteoglycans and post-stroke microglial activation. The study of the mechanisms of reperfusion injury limitation by remote ischemic postconditioning (RC) is of interest due to the effects on functional recovery after cerebral ischemia. The goal of the study is the assessment of the role of syndecan-1 (SDC-1) in restriction of ischemic-reperfusion injury on middle cerebral artery model in rats using RC protocol. Randomized controlled trials were conducted. Ischemia was performed by middle cerebral artery occlusion by Belayev L. (1996) on the Wistar rat-males (n= 87) weighting 250 ± 50 g. under general anesthesia (Zoletil 100 и Xylazine 2%). Syndecan-1 (SDC-1) concentration difference in plasma samples of false operated animals and animals with brain ischemia was 30% (30 min. МСАо: 41.4 * ± 1.3 ng/ml). SDC-1 concentration in animal plasma samples with ischemia + RC protocol was 112% (30 min МСАо+ RC): 67.8**± 5.8 ng/ml). Calculation of infarction volume in the ischemia group revealed brain injury in 31.97 ± 2.5%; the volume of infarction was 13.6 ± 1.3% in 30 min. МCАо + RC group. Swelling of tissue in the group 30 min. МCАо + RC was 16 ± 2.1%; it was 47 ± 3.3%. in 30 min. МCАо group. Correlation analysis showed a high direct correlation relationship between infarct area and muscle strength in the right forelimb (КК=0.72) in the 30 min. МCАо + RC group. Correlation analysis showed very high inverse correlation between infarct area and capillary blood flow in the 30 min. МCАо + RC group (p <0.01; r = -0.98). We believe the SDC-1 molecule in blood plasma may play role of potential messenger of ischemic-reperfusion injury restriction mechanisms. This leads to infarct-limiting effect of remote ischemic postconditioning and early functioning recovery.

Keywords: ischemia, МСАо, remote ischemic postconditioning, syndecan-1

Procedia PDF Downloads 62
1022 p-Type Multilayer MoS₂ Enabled by Plasma Doping for Ultraviolet Photodetectors Application

Authors: Xiao-Mei Zhang, Sian-Hong Tseng, Ming-Yen Lu

Abstract:

Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as MoS₂, have attracted considerable attention owing to the unique optical and electronic properties related to its 2D ultrathin atomic layer structure. MoS₂ is becoming prevalent in post-silicon digital electronics and in highly efficient optoelectronics due to its extremely low thickness and its tunable band gap (Eg = 1-2 eV). For low-power, high-performance complementary logic applications, both p- and n-type MoS₂ FETs (NFETs and PFETs) must be developed. NFETs with an electron accumulation channel can be obtained using unintentionally doped n-type MoS₂. However, the fabrication of MoS₂ FETs with complementary p-type characteristics is challenging due to the significant difficulty of injecting holes into its inversion channel. Plasma treatments with different species (including CF₄, SF₆, O₂, and CHF₃) have also been found to achieve the desired property modifications of MoS₂. In this work, we demonstrated a p-type multilayer MoS₂ enabled by selective-area doping using CHF₃ plasma treatment. Compared with single layer MoS₂, multilayer MoS₂ can carry a higher drive current due to its lower bandgap and multiple conduction channels. Moreover, it has three times the density of states at its minimum conduction band. Large-area growth of MoS₂ films on 300 nm thick SiO₂/Si substrate is carried out by thermal decomposition of ammonium tetrathiomolybdate, (NH₄)₂MoS₄, in a tube furnace. A two-step annealing process is conducted to synthesize MoS₂ films. For the first step, the temperature is set to 280 °C for 30 min in an N₂ rich environment at 1.8 Torr. This is done to transform (NH₄)₂MoS₄ into MoS₃. To further reduce MoS₃ into MoS₂, the second step of annealing is performed. For the second step, the temperature is set to 750 °C for 30 min in a reducing atmosphere consisting of 90% Ar and 10% H₂ at 1.8 Torr. The grown MoS₂ films are subjected to out-of-plane doping by CHF₃ plasma treatment using a Dry-etching system (ULVAC original NLD-570). The radiofrequency power of this dry-etching system is set to 100 W and the pressure is set to 7.5 mTorr. The final thickness of the treated samples is obtained by etching for 30 s. Back-gated MoS₂ PFETs were presented with an on/off current ratio in the order of 10³ and a field-effect mobility of 65.2 cm²V⁻¹s⁻¹. The MoS₂ PFETs photodetector exhibited ultraviolet (UV) photodetection capability with a rapid response time of 37 ms and exhibited modulation of the generated photocurrent by back-gate voltage. This work suggests the potential application of the mild plasma-doped p-type multilayer MoS₂ in UV photodetectors for environmental monitoring, human health monitoring, and biological analysis.

Keywords: photodetection, p-type doping, multilayers, MoS₂

Procedia PDF Downloads 104
1021 Experimental Optimization in Diamond Lapping of Plasma Sprayed Ceramic Coatings

Authors: S. Gowri, K. Narayanasamy, R. Krishnamurthy

Abstract:

Plasma spraying, from the point of value engineering, is considered as a cost-effective technique to deposit high performance ceramic coatings on ferrous substrates for use in the aero,automobile,electronics and semiconductor industries. High-performance ceramics such as Alumina, Zirconia, and titania-based ceramics have become a key part of turbine blades,automotive cylinder liners,microelectronic and semiconductor components due to their ability to insulate and distribute heat. However, as the industries continue to advance, improved methods are needed to increase both the flexibility and speed of ceramic processing in these applications. The ceramics mentioned were individually coated on structural steel substrate with NiCr bond coat of 50-70 micron thickness with the final thickness in the range of 150 to 200 microns. Optimal spray parameters were selected based on bond strength and porosity. The 'optimal' processed specimens were super finished by lapping using diamond and green SiC abrasives. Interesting results could be observed as follows: The green SiC could improve the surface finish of lapped surfaces almost as that by diamond in case of alumina and titania based ceramics but the diamond abrasives could improve the surface finish of PSZ better than that by green SiC. The conventional random scratches could be absent in alumina and titania ceramics but in PS those marks were found to be less. However, the flatness accuracy could be improved unto 60 to 85%. The surface finish and geometrical accuracy were measured and modeled. The abrasives in the midrange of their particle size could improve the surface quality faster and better than the particles of size in low and high ranges. From the experimental investigations after lapping process, the optimal lapping time, abrasive size, lapping pressure etc could be evaluated.

Keywords: atmospheric plasma spraying, ceramics, lapping, surface qulaity, optimization

Procedia PDF Downloads 414
1020 Comparison of Methods for the Synthesis of Eu+++, Tb+++, and Tm+++ Doped Y2O3 Nanophosphors by Sol-Gel and Hydrothermal Methods for Bioconjugation

Authors: Ravindra P. Singh, Drupad Ram, Dinesh K. Gupta

Abstract:

Rare earth ions doped metal oxides are a class of luminescent materials which have been proved to be excellent for applications in field emission displays and cathode ray tubes, plasma display panels. Under UV irradiation Eu+++ doped Y2O3 is a red phosphor and Tb+++ doped Y 2O3 is a green phosphor. It is possible that, due to their high quantum efficiency, they might serve as improved luminescent markers for identification of biomolecules, as already reported for CdSe and CdSe/ZnS nanocrystals. However, for any biological applications these particle powders must be suspended in water while retaining their phosphorescence. We hereby report synthesis and characterization of Eu+++ and Tb+++ doped yttrium oxide nanoparticles by sol-gel and hydrothermal processes. Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo isopropoxide [Y5O(OPri)13] (crystallized twice) and it’s acetyl acetone modified product [Y(O)(acac)] as precursors. Generally the sol-gel derived metal oxides are required to be annealed to the temperature ranging from 400°C-800°C in order to develop crystalline phases. However, this annealing also results in the development of aggregates which are undesirable for bio-conjugation experiments. In the hydrothermal process, we have achieved crystallinity of the nanoparticles at 300°C and the development of crystalline phases has been found to be proportional to the time of heating of the reactor. The average particle sizes as calculated from XRD were found to be 28 nm, 32 nm, and 34 nm by hydrothermal process. The particles were successfully suspended in chloroform in the presence of trioctyl phosphene oxide and TEM investigations showed the presence of single particles along with agglomerates.

Keywords: nanophosphors, Y2O3:Eu+3, Y2O3:Tb+3, sol-gel, hydrothermal method, TEM, XRD

Procedia PDF Downloads 402
1019 Effect of Mixture of Flaxseed and Pumpkin Seeds Powder on Hypercholesterolemia

Authors: Zahra Ashraf

Abstract:

Flax and pumpkin seeds are a rich source of unsaturated fatty acids, antioxidants and fiber, known to have anti-atherogenic properties. Hypercholesterolemia is a state characterized by the elevated level of cholesterol in the blood. This research was designed to study the effect of flax and pumpkin seeds powder mixture on hypercholesterolemia and body weight. Rat’s species were selected as human representative. Thirty male albino rats were divided into three groups: a control group, a CD-chol group (control diet+cholesterol) fed with 1.5% cholesterol and FP-chol group (flaxseed and pumpkin seed powder+ cholesterol) fed with 1.5% cholesterol. Flax and pumpkin seed powder mixed at proportion of (5/1) (omega-3 and omega-6). Blood samples were collected to examine lipid profile and body weight was also measured. Thus the data was subjected to analysis of variance. In CD-chol group, body weight, total cholesterol TC, triacylglycerides TG in plasma, plasma LDL-C, ratio significantly increased with a decrease in plasma HDL (good cholesterol). In FP-chol group lipid parameters and body weights were decreased significantly with an increase in HDL and decrease in LDL (bad cholesterol). The mean values of body weight, total cholesterol, triglycerides, low density lipoprotein and high density lipoproteins in FP-chol group were 240.66±11.35g, 59.60±2.20mg/dl, 50.20±1.79 mg/dl, 36.20±1.62mg/dl, 36.40±2.20 mg/dl, respectively. Flaxseed and pumpkin seeds powder mixture showed reduction in body weight, serum cholesterol, low density lipoprotein and triglycerides. While significant increase was shown in high density lipoproteins when given to hypercholesterolemic rats. Our results suggested that flax and pumpkin seed mixture has hypocholesterolemic effects which were probably mediated by polyunsaturated fatty acids (omega-3 and omega-6) present in seed mixture.

Keywords: hypercolesterolemia, omega 3 and omega 6 fatty acids, cardiovascular diseases

Procedia PDF Downloads 420
1018 Reactive Sputter Deposition of Titanium Nitride on Silicon Using a Magnetized Sheet Plasma Source

Authors: Janella Salamania, Marcedon Fernandez, Matthew Villanueva Henry Ramos

Abstract:

Titanium nitrite (TiN) a popular functional and decorative coating because of its golden yellow color, high hardness and superior wear resistance. It is also being studied as a diffusion barrier in integrated circuits due to its known chemical stability and low resistivity. While there have been numerous deposition methods done for TiN, most required the heating of substrates at high temperatures. In this work, TiN films are deposited on silicon (111) and (100) substrates without substrate heating using a patented magnetized sheet plasma source. Films were successfully deposited without substrate heating at various target bias, while maintaining a constant 25% N2 to Ar ratio, and deposition of time of 30 minutes. The resulting films exhibited a golden yellow color which is characteristic of TiN. X-ray diffraction patterns show the formation of TiN predominantly oriented in the (111) direction regardless of substrate used. EDX data also confirms the 1:1 stoichiometry of titanium an nitrogen. Ellipsometry measurements estimate the thickness to range from 28 nm to 33 nm. SEM images were also taken to observe the morphology of the film.

Keywords: coatings, nitrides, coatings, reactive magnetron sputtering, thin films

Procedia PDF Downloads 341
1017 Single Crystal Growth in Floating-Zone Method and Properties of Spin Ladders: Quantum Magnets

Authors: Rabindranath Bag, Surjeet Singh

Abstract:

Materials in which the electrons are strongly correlated provide some of the most challenging and exciting problems in condensed matter physics today. After the discovery of high critical temperature superconductivity in layered or two-dimensional copper oxides, many physicists got attention in cuprates and it led to an upsurge of interest in the synthesis and physical properties of copper-oxide based material. The quest to understand superconducting mechanism in high-temperature cuprates, drew physicist’s attention to somewhat simpler compounds consisting of spin-chains or one-dimensional lattice of coupled spins. Low-dimensional quantum magnets are of huge contemporary interest in basic sciences as well emerging technologies such as quantum computing and quantum information theory, and heat management in microelectronic devices. Spin ladder is an example of quasi one-dimensional quantum magnets which provides a bridge between one and two dimensional materials. One of the examples of quasi one-dimensional spin-ladder compounds is Sr14Cu24O41, which exhibits a lot of interesting and exciting physical phenomena in low dimensional systems. Very recently, the ladder compound Sr14Cu24O41 was shown to exhibit long-distance quantum entanglement crucial to quantum information theory. Also, it is well known that hole-compensation in this material results in very high (metal-like) anisotropic thermal conductivity at room temperature. These observations suggest that Sr14Cu24O41 is a potential multifunctional material which invites further detailed investigations. To investigate these properties one must needs a large and high quality of single crystal. But these systems are showing incongruently melting behavior, which brings many difficulties to grow a large and quality of single crystals. Hence, we are using TSFZ (Travelling Solvent Floating Zone) method to grow the high quality of single crystals of the low dimensional magnets. Apart from this, it has unique crystal structure (alternating stacks of plane containing edge-sharing CuO2 chains, and the plane containing two-leg Cu2O3 ladder with intermediate Sr layers along the b- axis), which is also incommensurate in nature. It exhibits abundant physical phenomenon such as spin dimerization, crystallization of charge holes and charge density wave. The maximum focus of research so far involved in introducing defects on A-site (Sr). However, apart from the A-site (Sr) doping, there are only few studies in which the B-site (Cu) doping of polycrystalline Sr14Cu24O41 have been discussed and the reason behind this is the possibility of two doping sites for Cu (CuO2 chain and Cu2O3 ladder). Therefore, in our present work, the crystals (pristine and Cu-site doped) were grown by using TSFZ method by tuning the growth parameters. The Laue diffraction images, optical polarized microscopy and Scanning Electron Microscopy (SEM) images confirm the quality of the grown crystals. Here, we report the single crystal growth, magnetic and transport properties of Sr14Cu24O41 and its lightly doped variants (magnetic and non-magnetic) containing less than 1% of Co, Ni, Al and Zn impurities. Since, any real system will have some amount of weak disorder, our studies on these ladder compounds with controlled dilute disorder would be significant in the present context.

Keywords: low-dimensional quantum magnets, single crystal, spin-ladder, TSFZ technique

Procedia PDF Downloads 274
1016 Normal Coordinate Analysis, Molecular Structure, Vibrational, Electronic Spectra, and NMR Investigation of 4-Amino-3-Phenyl-1H-1,2,4-Triazole-5(4H)-Thione by Ab Initio HF and DFT Method

Authors: Khaled Bahgat

Abstract:

In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000–400 cm_1) and FT-Raman (4000–100 cm_1) spectra of APTT were recorded in solid phase. The UV–Vis absorption spectrum of the APTT was recorded in the range of 200–400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.

Keywords: 4-amino-3-phenyl-1H-1, 2, 4-triazole-5(4H)-thione, vibrational assignments, normal coordinate analysis, quantum mechanical calculations

Procedia PDF Downloads 473
1015 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors

Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche

Abstract:

Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.

Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships

Procedia PDF Downloads 301
1014 Effect of SPS Parameters on the Densification of ZrB2-Based Composites

Authors: Z. Balak, M. Zakeri, M.R.Rahimipur, M. Azizieh

Abstract:

Spark Plasma Sintering is a new technique which was used for ultra high temperature ceramics such as ZrB2-based composites in recent years. Taguchi design was applied to explore effective parameters for achieving the highest hardness. Nine factors including SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure in four levels were considered through the Taguchi technique. In this study, only the effect of SPS conditions on densification and hardness were investigated. ZrB2-based composites were prepared by SPS in different temperatures (1600°C,1700°C, 1800°C, 1900°C), times (4min, 8 min, 12 min, 16min) and pressures (10MPa, 20MPa, 30MPa and 40MPa). The effect of SPS parameters on the densification and hardness were investigated. It was found, by increasing the temperature and time, from level 1 to 4, densification improved continuously. Also, the results shows hardness increases continuously by increasing temperature and time. Finally, it is concluded that temperature and time have more significant effect on densification and harness rather than pressure.

Keywords: spark plasma sintering (SPS), ultra high temperature ceramics (UHTCs), densification, hardness

Procedia PDF Downloads 406
1013 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies

Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel

Abstract:

To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.

Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots

Procedia PDF Downloads 526
1012 Benchmarking Electric Light versus Sunshine

Authors: Courret Gilles, Pidoux Damien

Abstract:

Considering that sunshine is the ultimate reference in lighting, we have examined the spectral correlation between a series of electric light sources and sunlight. As the latter is marked by fluctuations, we have taken two spectra of reference: on the one hand, the CIE daylight standard illuminant, and on the other hand, the global illumination by the clear sky with the sun at 30° above the horizon. We determined the coefficients of correlation between the spectra filtered by the sensitivity of the CIE standard observer for photopic vision. We also calculated the luminous efficiency of the radiation in order to compare the ideal energy performances as well as the CIE color indexes Ra, Ra14, and Rf, since the choice of a light source requires a trade-off between color rendering and luminous efficiency. The benchmarking includes the most commonly used bulbs, various white LED (Lighting Emitting Diode) of warm white or cold white types, incandescent halogen as well as two HID lamps (High-Intensity Discharge) and two plasma lamps of different types, a solar simulator and a new version of the sulfur lamp. The latter obtains the best correlation, whether in comparison with the solar spectrum or that of the standard illuminant.

Keywords: electric light sources, plasma lamp, daylighting, sunlight, spectral correlation

Procedia PDF Downloads 185
1011 Low-Cost Reversible Logic Serial Multipliers with Error Detection Capability

Authors: Mojtaba Valinataj

Abstract:

Nowadays reversible logic has received many attentions as one of the new fields for reducing the power consumption. On the other hand, the processing systems have weaknesses against different external effects. In this paper, some error detecting reversible logic serial multipliers are proposed by incorporating the parity-preserving gates. This way, the new designs are presented for signed parity-preserving serial multipliers based on the Booth's algorithm by exploiting the new arrangements of existing gates. The experimental results show that the proposed 4×4 multipliers in this paper reach up to 20%, 35%, and 41% enhancements in the number of constant inputs, quantum cost, and gate count, respectively, as the reversible logic criteria, compared to previous designs. Furthermore, all the proposed designs have been generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.

Keywords: Booth’s algorithm, error detection, multiplication, parity-preserving gates, quantum computers, reversible logic

Procedia PDF Downloads 228
1010 Nanocharacterization of PIII Treated 7075 Aluminum Alloy

Authors: Bruno Bacci Fernandes, Stephan Mändl, Ataíde Ribeiro da Silva Junior, José Osvaldo Rossi, Mário Ueda

Abstract:

Nitrogen implantation in aluminum and its alloys is acquainted for the difficulties in obtaining modified layers deeper than 200 nm. The present work addresses a new method to overcome such a problem; although, the coating with nitrogen and oxygen obtained by plasma immersion ion implantation (PIII) into a 7075 aluminum alloy surface was too shallow. This alloy is commonly used for structural parts in aerospace applications. Such a layer was characterized by secondary ion mass spectroscopy, electron microscopy, and nanoindentation experiments reciprocating wear tests. From the results, one can assume that the wear of this aluminum alloy starts presenting severe abrasive wear followed by an additional adhesive mechanism. PIII produced a slight difference, as shown in all characterizations carried out in this work. The results shown here can be used as the scientific basis for further nitrogen PIII experiments in aluminum alloys which have the goal to produce thicker modified layers or to improve their surface properties.

Keywords: aluminum alloys, plasma immersion ion implantation, tribological properties, hardness, nanofatigue

Procedia PDF Downloads 339