Search results for: dissolved gases in water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9173

Search results for: dissolved gases in water

8633 Modification of Carbon-Based Gas Sensors for Boosting Selectivity

Authors: D. Zhao, Y. Wang, G. Chen

Abstract:

Gas sensors that utilize carbonaceous materials as sensing media offer numerous advantages, making them the preferred choice for constructing chemical sensors over those using other sensing materials. Carbonaceous materials, particularly nano-sized ones like carbon nanotubes (CNTs), provide these sensors with high sensitivity. Additionally, carbon-based sensors possess other advantageous properties that enhance their performance, including high stability, low power consumption for operation, and cost-effectiveness in their construction. These properties make carbon-based sensors ideal for a wide range of applications, especially in miniaturized devices created through MEMS or NEMS technologies. To capitalize on these properties, a group of chemoresistance-type carbon-based gas sensors was developed and tested against various volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). The results demonstrated exceptional sensitivity to both VOCs and VICs, along with the sensor’s long-term stability. However, this broad sensitivity also led to poor selectivity towards specific gases. This project aims at addressing the selectivity issue by modifying the carbon-based sensing materials and enhancing the sensor's specificity to individual gas. Multiple groups of sensors were manufactured and modified using proprietary techniques. To assess their performance, we conducted experiments on representative sensors from each group to detect a range of VOCs and VICs. The VOCs tested included acetone, dimethyl ether, ethanol, formaldehyde, methane, and propane. The VICs comprised carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), nitric oxide (NO), and nitrogen dioxide (NO2). The concentrations of the sample gases were all set at 50 parts per million (ppm). Nitrogen (N2) was used as the carrier gas throughout the experiments. The results of the gas sensing experiments are as follows. In Group 1, the sensors exhibited selectivity toward CO2, acetone, NO, and NO2, with NO2 showing the highest response. Group 2 primarily responded to NO2. Group 3 displayed responses to nitrogen oxides, i.e., both NO and NO2, with NO2 slightly surpassing NO in sensitivity. Group 4 demonstrated the highest sensitivity among all the groups toward NO and NO2, with NO2 being more sensitive than NO. In conclusion, by incorporating several modifications using carbon nanotubes (CNTs), sensors can be designed to respond well to NOx gases with great selectivity and without interference from other gases. Because the response levels to NO and NO2 from each group are different, the individual concentration of NO and NO2 can be deduced.

Keywords: gas sensors, carbon, CNT, MEMS/NEMS, VOC, VIC, high selectivity, modification of sensing materials

Procedia PDF Downloads 118
8632 Water Distribution Uniformity of Solid-Set Sprinkler Irrigation under Low Operating Pressure

Authors: Manal Osman

Abstract:

Sprinkler irrigation system became more popular to reduce water consumption and increase irrigation efficiency. The water distribution uniformity plays an important role in the performance of the sprinkler irrigation system. The use of low operating pressure instead of high operating pressure can be achieved many benefits including energy and water saving. An experimental study was performed to investigate the water distribution uniformity of the solid-set sprinkler irrigation system under low operating pressure. Different low operating pressures (62, 82, 102 and 122 kPa) were selected. The range of operating pressure was lower than the recommended in the previous studies to investigate the effect of low pressure on the water distribution uniformity. Different nozzle diameters (4, 5, 6 and 7 mm) were used. The outdoor single sprinkler test was performed. The water distribution of single sprinkler, the coefficients of uniformity such as coefficient of uniformity (CU), distribution uniformity of low quarter (DUlq), distribution uniformity of low half (DUlh), coefficient of variation (CV) and the distribution characteristics like rotation speed, throw radius and overlapping distance are presented in this paper.

Keywords: low operating pressure, sprinkler irrigation system, water distribution uniformity

Procedia PDF Downloads 583
8631 Effects of Oil Pollution on Euryglossa orientalis and Psettodes erumei in the Persian Gulf

Authors: Majid Afkhami, Maryam Ehsanpour, Reza Khoshnood, Zahra Khoshnood, Rastin Afkhami

Abstract:

Marine pollution is a global environmental problem. Different human activities on land, in the water and in the air contribute to the contamination of seawater, sediments and organisms with potentially toxic substances. Contaminants can be natural substances or artificially produced compounds. After discharge into the sea, contaminants can stay in the water in dissolved form or they can be removed from the water column through sedimentation to the bottom sediments. Histopathological alterations can be used as indicators for the effects of various anthropogenic pollutants on organisms and are a reflection of the overall health of the entire population in the ecosystem. These histo pathological biomarkers are closely related to other biomarkers of stress since many pollutants have to undergo metabolic activation in order to be able to provoke cellular change in the affected organism. In order to make evaluation of the effects of oil pollution, some heavy metals bioaccumulation and explore their histopathological effects on hepatocytes of Oriental sole (Euryglossa orientalis) and Deep flounder (Psettodes erumei), fishes caught from two areas of north coast of the Persian Gulf: Bandar Abbass and Bandar Lengeh. Concentrations of Ni and V in liver of both species in two sampling regions were in following order: Bandar abbass Bandar lengeh; also between two species, these quantities were higher in P. erumei than E. orientalis in both sampling regions. Histopathology of the liver shows some cellular alterations including: degeneration, necrosis and tissue disruption, and histopathological effects were severe in P. erumei than E. orientalis. Results showed that Bandar Abbass region was more polluted than Bandar Lengeh, and because Ni and V were oil pollution indicators, and two flat fishes were benthic, they can receive considerable amount of oil pollution through their biological activities like feeding. Also higher amounts of heavy metal concentrations and major histopathological effects in E. orientalis showed strong relationship between benthic habitat of the fish and amounts of received pollutants from water and sediments, because E. orientalis is more related to the bottom than P. erumei.

Keywords: heavy metals, flatfishes, Persian Gulf, oil pollution

Procedia PDF Downloads 337
8630 Removal of Heavy Metal, Dye and Salinity from Industrial Wastewaters by Banana Rachis Cellulose Micro Crystal-Clay Composite

Authors: Mohd Maniruzzaman, Md. Monjurul Alam, Md. Hafezur Rahaman, Anika Amir Mohona

Abstract:

The consumption of water by various industries is increasing day by day, and the wastewaters from them are increasing as well. These wastewaters consist of various kinds of color, dissolved solids, toxic heavy metals, residual chlorine, and other non-degradable organic materials. If these wastewaters are exposed directly to the environment, it will be hazardous for the environment and personal health. So, it is very necessary to treat these wastewaters before exposing into the environment. In this research, we have demonstrated the successful processing and utilization of fully bio-based cellulose micro crystal (CMC) composite for the removal of heavy metals, dyes, and salinity from industrial wastewaters. Banana rachis micro-cellulose were prepared by acid hydrolysis (H₂SO₄) of banana (Musa acuminata L.) rachis fiber, and Bijoypur raw clay were treated by organic solvent tri-ethyl amine. Composites were prepared with varying different composition of banana rachis nano-cellulose and modified Bijoypur (north-east part in Bangladesh) clay. After the successful characterization of cellulose micro crystal (CMC) and modified clay, our targeted filter was fabricated with different composition of cellulose micro crystal and clay in the locally fabricated packing column with 7.5 cm as thickness of composites fraction. Waste-water was collected from local small textile industries containing basic yellow 2 as dye, lead (II) nitrate [Pb(NO₃)₂] and chromium (III) nitrate [Cr(NO₃)₃] as heavy metals and saline water was collected from Khulna to test the efficiency of banana rachis cellulose micro crystal-clay composite for removing the above impurities. The filtering efficiency of wastewater purification was characterized by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (X-RD), thermo gravimetric analysis (TGA), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM) analyses. Finally, our all characterizations data are shown with very high expected results for in industrial application of our fabricated filter.

Keywords: banana rachis, bio-based filter, cellulose micro crystal-clay composite, wastewaters, synthetic dyes, heavy metal, water salinity

Procedia PDF Downloads 120
8629 Experimental Investigation on Activated Carbon Based Cryosorption Pump

Authors: K. B. Vinay, K. G. Vismay, S. Kasturirengan, G. A. Vivek

Abstract:

Cryosorption pumps are considered to be safe, quiet and ultra-high vacuum production pumps which have their application from Semiconductor industries to ITER [International Thermonuclear Experimental Reactor] units. The principle of physisorption of gases over highly porous materials like activated charcoal at cryogenic temperatures (below -1500°C) is involved in determining the pumping speed of gases like Helium, Hydrogen, Argon and Nitrogen. This paper aims at providing detailed overview of development of Cryosorption pump which is the modern ultra-high vacuum pump and characterization of different activated charcoal materials that optimizes the performance of the pump. Different grades of charcoal were tested in order to determine the pumping speed of the pump and were compared with commercially available Varian cryopanel. The results for bare panel, bare panel with adhesive, cryopanel with pellets, and cryopanel with granules were obtained and compared. The comparison showed that cryopanel adhered with small granules gave better pumping speeds than large sized pellets.

Keywords: adhesive, cryopanel, granules, pellets

Procedia PDF Downloads 416
8628 Multivariate Analytical Insights into Spatial and Temporal Variation in Water Quality of a Major Drinking Water Reservoir

Authors: Azadeh Golshan, Craig Evans, Phillip Geary, Abigail Morrow, Zoe Rogers, Marcel Maeder

Abstract:

22 physicochemical variables have been determined in water samples collected weekly from January to December in 2013 from three sampling stations located within a major drinking water reservoir. Classical Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) analysis was used to investigate the environmental factors associated with the physico-chemical variability of the water samples at each of the sampling stations. Matrix augmentation MCR-ALS (MA-MCR-ALS) was also applied, and the two sets of results were compared for interpretative clarity. Links between these factors, reservoir inflows and catchment land-uses were investigated and interpreted in relation to chemical composition of the water and their resolved geographical distribution profiles. The results suggested that the major factors affecting reservoir water quality were those associated with agricultural runoff, with evidence of influence on algal photosynthesis within the water column. Water quality variability within the reservoir was also found to be strongly linked to physical parameters such as water temperature and the occurrence of thermal stratification. The two methods applied (MCR-ALS and MA-MCR-ALS) led to similar conclusions; however, MA-MCR-ALS appeared to provide results more amenable to interpretation of temporal and geological variation than those obtained through classical MCR-ALS.

Keywords: drinking water reservoir, multivariate analysis, physico-chemical parameters, water quality

Procedia PDF Downloads 285
8627 Household Water Source Substitution and Demand for Water Connections

Authors: Elizabeth Spink

Abstract:

The United Nations' Sustainable Development Goal 6 sets a target for safe and affordable drinking water for all. Developing country governments aiming to achieve this goal often face significant challenges when trying to service last mile customers, particularly those in peri-urban and rural areas. Expansion of water networks often requires high connection fees from households, and demand for connections may be low if there are cheaper substitute sources of water available. This research studies the effect of the availability of substitute sources of water on demand for individual water connections in Livingstone, Zambia, using an event study analysis of metering campaigns. Metering campaigns reduce the share of a household's neighbors that can provide free water to the household if their water connection becomes disconnected due to nonpayment. The results show that household payments in newly metered regions increase by 10 percentage points in the months following metering events, with a decrease in disconnections of 6 percentage points for low-income households. To isolate the effect of changes in a household's substitution possibilities, a similar analysis is conducted among households that neighbor the metered region. These results show mixed evidence of the impact of substitutes on payment behavior and disconnections. The results suggest that metering may be effective in increasing household demand for individual water connections primarily through a lower monthly cost burden for newly metered households.

Keywords: piped-water access, water demand, water utilities, water sharing

Procedia PDF Downloads 191
8626 Health Risk Assessment According to Exposure with Heavy Metals and Physicochemical Parameters; Water Quality Index and Contamination Degree Evaluation in Bottled Water

Authors: Samaneh Abolli, Mahmood Alimohammadi

Abstract:

The survey analyzed 71 bottled water brands in Tehran, Iran, examining 10 physicochemical parameters and 16 heavy metals. The water quality index (WQI) approach was used to assess water quality, and methods such as carcinogen risk (CR) and hazard index (HI) were employed to evaluate health risks. The results indicated that the bottled water had good quality overall, but some brands were of poor or very poor quality. The study also revealed significant human health risks, especially for children, due to the presence of minerals and heavy metals in bottled water. Correlation analyses and risk assessments for various substances were conducted, providing valuable insights into the potential health impacts of the analyzed bottled water.

Keywords: bottled wate, rwater quality index, health risk assessment, contamination degree, heavy metal evaluation index

Procedia PDF Downloads 45
8625 Water Injection in One of the Southern Iranian Oil Field, a Case Study

Authors: Hooman Fallah

Abstract:

Seawater injection and produced water re-injection are presently the most commonly used approach to enhanced recovery. The dominant factors for total oil recovery are the reservoir temperature, reservoir pressure, crude oil and water composition. In this study, the production under water injection in Soroosh, one of the southern Iranian heavy oil field has been simulated (the fluid properties are focused). In order to reveal the dominant factors in this production process, the sensitivity analysis has been done for the following effective factors, fluid viscosity, initial water saturation, gravity force and injection well strategy. It is crystal clear that the study of the dominant factors in production processes will help the engineers to design the best production mechanisms in our numerous hydrocarbon reservoirs.

Keywords: water injection, initial water saturation, oil viscosity, gravity force, injection well strategy

Procedia PDF Downloads 406
8624 Water Irrigation in the Chlef Region Using Photovoltaic Solar Energy

Authors: T. Tahri, H. Zahloul, K. E. Meddah, H. Lazergue

Abstract:

This paper presents a theoretical study that leads to the design of a photovoltaic pumping system to irrigate six hectares of oranges in the valley of Chlef using the software "PVSYST". It was shown that the site of Chlef presents a favorable climate to this type of energy with an irradiation of over 5 kWh/m2/day, and significant resources underground water. Another very important coincidence still promotes the use of this type of energy for pumping water in Chlef is that the demand for water, especially in agriculture, peaked in hot and dry where it is precisely when one has access to the maximum of solar energy.

Keywords: solar energy, irradiation, water pumping, design, Valley of Chlef

Procedia PDF Downloads 245
8623 Application of Nanofiltration Membrane for River Nile Water Treatment in Egypt

Authors: Tarek S. Jamil, Ahmed M. Shaban, Eman S. Mansor, Ahmed A. Karim, Azza M. Abdel Aty

Abstract:

In this manuscript, 35 m³/d NF unit was designed and applied for surface water treatment of river Nile water. Intake of Embaba drinking water treatment plant was selected to install that unit at since; it has the lowest water quality index value through the examined 6 sites in greater Cairo area. The optimized operating conditions were feed and permeate flow, 40 and 7 m³/d, feed pressure 2.68 bar and flux rate 37.7 l/m2.h. The permeate water was drinkable according to Egyptian Ministerial decree 458/2007 for the tested parameters (physic-chemical, heavy metals, organic, algal, bacteriological and parasitological). Single and double sand filters were used as pretreatment for NF membranes, but continuous clogging for sand filters moved us to use UF membrane as pretreatment for NF membrane.

Keywords: River Nile, NF membrane, pretreatment, UF membrane, water quality

Procedia PDF Downloads 702
8622 Controlling of Water Temperature during the Electrocoagulation Process Using an Innovative Flow Columns -Electrocoagulation Reactor

Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, Montserrat Ortoneda Pedrola

Abstract:

A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 35 0C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-35 0C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 35 0C to the vicinity of 28 0C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.8 0C and from 29.8 to 31.9 0C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 28 0C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 35 0C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density.

Keywords: water temperature, flow column, electrocoagulation

Procedia PDF Downloads 368
8621 Viability of Irrigation Water Conservation Practices in the Low Desert of California

Authors: Ali Montazar

Abstract:

California and the Colorado River Basin are facing increasing uncertainty concerning water supplies. The Colorado River is the main source of irrigation water in the low desert of California. Currently, due to an increasing water-use competition and long-term drought at the Colorado River Basin, efficient use of irrigation water is one of the highest conservation priorities in the region. This study aims to present some of current irrigation technologies and management approaches in the low desert and assess the viability and potential of these water management practices. The results of several field experiments are used to assess five water conservation practices of sub-surface drip irrigation, automated surface irrigation, sprinkler irrigation, tail-water recovery system, and deficit irrigation strategy. The preliminary results of several ongoing studies at commercial fields are presented, particularly researches in alfalfa, sugar beets, kliengrass, sunflower, and spinach fields. The findings indicate that all these practices have significant potential to conserve water (an average of 1 ac-ft/ac) and enhance the efficiency of water use (15-25%). Further work is needed to better understand the feasibility of each of these applications and to help maintain profitable and sustainable agricultural production system in the low desert as water and labor costs, and environmental issues increase.

Keywords: automated surface irrigation, deficit irrigation, low desert of California, sprinkler irrigation, sub-surface drip irrigation, tail-water recovery system

Procedia PDF Downloads 147
8620 Government Intervention Strategies in Providing Water to Rural Communities in the O R Tambo District Municipality, South Africa

Authors: Cecilia Kunseh Betek

Abstract:

Managing rural water supply systems effectively and efficiently is a challenge in the O R Tambo District Municipality due to the long distances between consumers and municipal centres. This is a couple with the low income of most residents and the government's policy of free basic water which is making rural water provision very difficult. With regard to cartage, the results reveal that the majority (84.4%) of the population covers distances of about 1kilometre to fetch water, and 15.6% travel up kilometer to access water facilities. This means that the water sources are located very far from households, outside the officially legislated array of 200metres. These are many reasons to account for this situation. Firstly, this implies that there are inadequate stand pipes to cater for all the homesteads scattered across the rugged terrain of OR Tambo District municipality. Secondly, and following from the first explanation, it would be seen that funding that is made available is not adequate, or is not efficiently spent on the targeted projects. The situation in the rural areas of South Africa is fraught with cumbersome complexity when it comes to service delivery.

Keywords: water, management, government, rural

Procedia PDF Downloads 278
8619 Impact of Reclamation on the Water Exchange in Bohai Bay

Authors: Luyao Liu, Dekui Yuan, Xu Li

Abstract:

As one of the most important bays of China, the water exchange capacity of Bohai Bay can influence the economic development and urbanization of surrounding cities. However, the rapid reclamation has influenced the weak water exchange capacity of this semi-enclosed bay in recent years. This paper sets two hydrodynamic models of Bohai Bay with two shorelines before and after reclamation. The mean value and distribution of Turn-over Time, the distribution of residual current, and the feature of the tracer path are compared. After comparison, it is found that Bohai Bay keeps these characteristics; the spending time of water exchange in the northern is longer than southern, and inshore is longer than offshore. However, the mean water exchange time becomes longer after reclamation. In addition, the material spreading is blocked because of the inwardly extending shorelines, and the direction changed from along the shoreline to towards the center after reclamation.

Keywords: Bohai Bay, water exchange, reclamation, turn-over time

Procedia PDF Downloads 130
8618 Sustainability and Awareness with Natural Dyes in Textile

Authors: Recep Karadag

Abstract:

Natural dyeing had started since pre-historical times for dyeing of textile materials. The natural dyeing had continued to beginning of 20th century. At the end of 19th century some synthetic dyes were synthesized. Although development of dyeing technologies and methods, natural dyeing was not developed in recent years. Despite rapid advances of synthetic dyestuff industries, natural dye processes have not developed. Therefore natural dyeing was not competed against synthetic dyes. At the same time, it was very difficult that large quantities of coloured textile was dyed with natural dyes And it was very difficult to get reproducible results in the natural dyeing using classical and traditional processes. However, natural dyeing has used slightly in the textile handicraft up to now. It is very important view that re-using of natural dyes to create awareness in textiles in recent years. Natural dyes have got many awareness and sustainability properties. Natural dyes are more eco-friendly than synthetic dyes. A lot of natural dyes have got antioxidant, antibacterial, antimicrobial, antifungal and anti –UV properties. It had been known that were obtained limited numbers colours with natural dyes in the past. On the contrary, colour scale is too wide with natural dyes. Except fluorescent colours, numerous colours can be obtained with natural dyes. Fastnesses of dyed textiles with natural dyes are good that there are light, washing, rubbing, etc. The fastness values can be improved depend on dyeing processes. Thanks to these properties mass production can be made with natural dyes in textiles. Therefore fabric dyeing machine was designed. This machine is too suitable for natural dyeing and mass production. Also any dyeing machine can be modified for natural dyeing. Although dye extraction and dyeing are made separately in the traditional natural dyeing processes and these procedures are become by designed this machine. Firstly, colouring compounds are extracted from natural dye resources, then dyeing is made with extracted colouring compounds. The colouring compounds are moderately dissolved in water. Less water is used in the extraction of colouring compounds from dye resources and dyeing with this new technique on the contrary much quantity water needs to use for dissolve of the colouring compounds in the traditional dyeing. This dyeing technique is very useful method for mass productions with natural dyes in traditional natural dyeing that use less energy, less dye materials, less water, etc. than traditional natural dyeing techniques. In this work, cotton, silk, linen and wool fabrics were dyed with some natural dye plants by the technique. According to the analysis very good results were obtained by this new technique. These results are shown sustainability and awareness of natural dyes for textiles.

Keywords: antibacterial, antimicrobial, natural dyes, sustainability

Procedia PDF Downloads 513
8617 Application Water Quality Modelling In Total Maximum Daily Load (TMDL) Management: A Review

Authors: S. A. Che Osmi, W. M. F. W. Ishak, S. F. Che Osmi

Abstract:

Nowadays the issues of water quality and water pollution have been a major problem across the country. A lot of management attempt to develop their own TMDL database in order to control the river pollution. Over the past decade, the mathematical modeling has been used as the tool for the development of TMDL. This paper presents the application of water quality modeling to develop the total maximum daily load (TMDL) information. To obtain the reliable database of TMDL, the appropriate water quality modeling should choose based on the available data provided. This paper will discuss on the use of several water quality modeling such as QUAL2E, QUAL2K, and EFDC to develop TMDL. The attempts to integrate several modeling are also being discussed in this paper. Based on this paper, the differences in the application of water quality modeling based on their properties such as one, two or three dimensional are showing their ability to develop the modeling of TMDL database.

Keywords: TMDL, water quality modeling, QUAL2E, EFDC

Procedia PDF Downloads 432
8616 [Keynote Talk]: Some Underlying Factors and Partial Solutions to the Global Water Crisis

Authors: Emery Jr. Coppola

Abstract:

Water resources are being depleted and degraded at an alarming and non-sustainable rate worldwide. In some areas, it is progressing more slowly. In other areas, irreversible damage has already occurred, rendering regions largely unsuitable for human existence with destruction of the environment and the economy. Today, 2.5 billion people or 36 percent of the world population live in water-stressed areas. The convergence of factors that created this global water crisis includes local, regional, and global failures. In this paper, a survey of some of these factors is presented. They include abuse of political power and regulatory acquiescence, improper planning and design, ignoring good science and models, systemic failures, and division between the powerful and the powerless. Increasing water demand imposed by exploding human populations and growing economies with short-falls exacerbated by climate change and continuing water quality degradation will accelerate this growing water crisis in many areas. Without regional measures to improve water efficiencies and protect dwindling and vulnerable water resources, environmental and economic displacement of populations and conflict over water resources will only grow. Perhaps more challenging, a global commitment is necessary to curtail if not reverse the devastating effects of climate change. Factors will be illustrated by real-world examples, followed by some partial solutions offered by water experts for helping to mitigate the growing water crisis. These solutions include more water efficient technologies, education and incentivization for water conservation, wastewater treatment for reuse, and improved data collection and utilization.

Keywords: climate change, water conservation, water crisis, water technologies

Procedia PDF Downloads 228
8615 Bayesian Inference of Physicochemical Quality Elements of Tropical Lagoon Nokoué (Benin)

Authors: Hounyèmè Romuald, Maxime Logez, Mama Daouda, Argillier Christine

Abstract:

In view of the very strong degradation of aquatic ecosystems, it is urgent to set up monitoring systems that are best able to report on the effects of the stresses they undergo. This is particularly true in developing countries, where specific and relevant quality standards and funding for monitoring programs are lacking. The objective of this study was to make a relevant and objective choice of physicochemical parameters informative of the main stressors occurring on African lakes and to identify their alteration thresholds. Based on statistical analyses of the relationship between several driving forces and the physicochemical parameters of the Nokoué lagoon, relevant Physico-chemical parameters were selected for its monitoring. An innovative method based on Bayesian statistical modeling was used. Eleven Physico-chemical parameters were selected for their response to at least one stressor and their threshold quality standards were also established: Total Phosphorus (<4.5mg/L), Orthophosphates (<0.2mg/L), Nitrates (<0.5 mg/L), TKN (<1.85 mg/L), Dry Organic Matter (<5 mg/L), Dissolved Oxygen (>4 mg/L), BOD (<11.6 mg/L), Salinity (7.6 .), Water Temperature (<28.7 °C), pH (>6.2), and Transparency (>0.9 m). According to the System for the Evaluation of Coastal Water Quality, these thresholds correspond to” good to medium” suitability classes, except for total phosphorus. One of the original features of this study is the use of the bounds of the credibility interval of the fixed-effect coefficients as local weathering standards for the characterization of the Physico-chemical status of this anthropized African ecosystem.

Keywords: driving forces, alteration thresholds, acadjas, monitoring, modeling, human activities

Procedia PDF Downloads 84
8614 Enhancement Performance of Desalination System Using Humidification and Dehumidification Processes

Authors: Zeinab Syed Abdel Rehim

Abstract:

Water shortage is considered as one of the huge problems the world encounter now. Water desalination is considered as one of the more suitable methods governments can use to substitute the increased need for potable water. The humidification-dehumidification process for water desalination is viewed as a promising technique for small capacity production plants. The process has several attraction features which include the use of sustainable energy sources, low technology, and low-temperature dehumidification. A pilot experimental set-up plant was constructed with the conventional HVAC components such as air blower that supplies air to an air duct inside which air preheater, steam injector and cooling coil of a small refrigeration unit are placed. The present work evaluates the characteristics of humidification-dehumidification process for water desalination as a function of air flow rate, total power input and air inlet temperature in order to study the optimum conditions required to produce distilled water.

Keywords: condensation, dehumidification, evaporation, humidification, water desalination

Procedia PDF Downloads 236
8613 The Influence of Conservation Measures, Limiting Soil Degradation, on the Quality of Surface Water Resources

Authors: V. Sobotková, B. Šarapatka, M. Dumbrovský, J. Uhrová, M. Bednář

Abstract:

The paper deals with the influence of implemented conservation measures on the quality of surface water resources. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity to improve the quality of the environment and sustainability of crop production by means of better soil and water conservation. The most important degradation factor in our study area in the Hubenov drinking water reservoir catchment basin was water erosion together with loss of organic matter. Hubenov Reservoir water resources were monitored for twenty years (1990–2010) to collect water quality data for nitrate nitrogen (N-NO3-), total P, and undissolved substances. Results obtained from measurements taken before and after land consolidation indicated a decrease in the linear trend of N-NO3- and total P concentrations, this was achieved through implementation of conservation measures limiting soil degradation in the Hubenov reservoir catchment area.

Keywords: complex land consolidation, degradation, land use, soil and water conservation, surface water resources

Procedia PDF Downloads 348
8612 Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon

Authors: Lucija Pustahija, Christine Bandl, Wolfgang Kern, Christian Mitterer

Abstract:

Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well.

Keywords: building materials, dry oxidation, organosilanes, pyrolytic carbon, resins, surface functionalization, wet oxidation

Procedia PDF Downloads 92
8611 CO2 Capture in Porous Silica Assisted by Lithium

Authors: Lucero Gonzalez, Salvador Alfaro

Abstract:

Carbon dioxide (CO2) and methane (CH4) are considered as the compounds with higher abundance among the greenhouse gases (CO2, NOx, SOx, CxHx, etc.), due to its higher concentration, this two gases have a greater impact in the environment pollution and provokes global warming. So, recovery, disposal and subsequent reuse, are of great interest, especially from the ecological and health perspective. By one hand, porous inorganic materials are good candidates to capture gases, because these type of materials are higher stability from the point view of thermal, chemical and mechanical under adsorption gas processes. By another hand, during the design and the synthetic preparation of the porous materials is possible add other intrinsic properties (physicochemical and structural) by adding chemical compounds as dopants or using structured directed agents or surfactants to improve the porous structure, the above features allow to have alternative materials for separation, capture and storage of greenhouse gases. In this work, ordered mesoporous materials base silica were prepared using Surfynol as surfactant. The surfactant micelles are commonly used as self-assembly templates for the development of new structure porous silica’s, adding a variety of textures and structures. By another hand, the Surfynol is a commercial surfactant, is non-ionic, for that is necessary determine its critical micelles concentration (cmc) by the pyrene I1/I3 ratio method, before to prepare silica particles. One time known the CMC, a precursor gel was prepared via sol-gel process at room temperature using TEOS as silica precursor, NH4OH as catalyst, Surfynol as template and H2O as solvent. Then, the gel precursor was treatment hydrothermally in a Teflon-lined stainless steel autoclave with a volume of 100 mL and kept at 100 ºC for 24 h under static conditions in a convection oven. After that, the porous silica particles obtained were impregnated with lithium to improve the CO2 adsorption capacity. Then the silica particles were characterized physicochemical, morphology and structurally, by XRD, FTIR, BET and SEM techniques. The thermal stability and the CO2 adsorption capacity was evaluated by thermogravimetric analysis (TGA). According the results, we found that the Surfynol is a good candidate to prepare silica particles with an ordered structure. Also the TGA analysis shown that the particles has a good thermal stability in the range of 250 °C and 800 °C. The best materials had, the capacity to adsorbing 70 and 90 mg per gram of silica particles and its CO2 adsorption capacity depends on the way to thermal pretreatment of the porous silica before of the adsorption experiments and of the concentration of surfactant used during the synthesis of silica particles. Acknowledgments: This work was supported by SIP-IPN through project SIP-20161862.

Keywords: CO2 adsorption, lithium as dopant, porous silica, surfynol as surfactant, thermogravimetric analysis

Procedia PDF Downloads 263
8610 Analysis of Pavement Lifespan - Cost and Emissions of Greenhouse Gases: A Comparative Study of 10-year vs 30-year Design

Authors: Claudeny Simone Alves Santana, Alexandre Simas De Medeiros, Marcelino Aurélio Vieira Da Silva

Abstract:

The aim of the study was to assess the performance of pavements over time, considering the principles of Life Cycle Assessment (LCA) and the ability to withstand vehicle loads and associated environmental impacts. Within the study boundary, pavement design was conducted using the Mechanistic-Empirical Method, adopting criteria based on pavement cracking and wheel path rutting while also considering factors such as soil characteristics, material thickness, and the distribution of forces exerted by vehicles. The Ecoinvent® 3.6 database and SimaPro® software were employed to calculate emissions, and SICRO 3 information was used to estimate costs. Consequently, the study sought to identify the service that had the greatest impact on greenhouse gas emissions. The results were compared for design life periods of 10 and 30 years, considering structural performance and load-bearing capacity. Additionally, environmental impacts in terms of CO2 emissions per standard axle and construction costs in dollars per standard axle were analyzed. Based on the conducted analyses, it was possible to determine which pavement exhibited superior performance over time, considering technical, environmental, and economic criteria. One of the findings indicated that the mechanical characteristics of the soils used in the pavement layer directly influence the thickness of the pavement and the quantity of greenhouse gases, with a difference of approximately 7000 Kg CO2 Eq. The transportation service was identified as having the most significant negative impact. Other notable observations are that the study can contribute to future project guidelines and assist in decision-making regarding the selection of the most suitable pavement in terms of durability, load-bearing capacity, and sustainability.

Keywords: life cycle assessment, greenhouse gases, urban paving, service cost

Procedia PDF Downloads 65
8609 Water Safety Strategies by Service: A Study of Implementation Studies

Authors: Prince Amartey

Abstract:

Water is critical to public health, quality of life, environmental preservation, economic activity, and long-term growth. In this environment, it is critical to ensure the ongoing improvement of all processes and practices that contribute to the quality and safety of water. Water safety plans (WSPs) developed by water companies are an essential public policy instrument for achieving these objectives. This manuscript examines international evidence of water safety planning adoption and implementation and reports on the current situation in Portugal as part of the necessary adaptation of the national legal framework to the publication of the Directive on water quality for human consumption. The goal is to take lessons from various successful WSP projects throughout the world while writing new legislation in Ghana and elsewhere. According to the findings, four crucial aspects and key factors of success in establishing and implementing WSPs exist commitment from leadership, technical proficiency, administration, and cooperation among agencies.

Keywords: safe drinking, risk, policy, implementation

Procedia PDF Downloads 81
8608 Fertilizer Value of Nitrogen Captured from Poultry Facilities Using Ammonia Scrubbers

Authors: Philip A. Moore Jr., Jerry Martin, Hong Li

Abstract:

Research has shown that over half of the nitrogen (N) excreted from broiler chickens is emitted to the atmosphere before the manure is removed from the barns, resulting in air and water pollution, as well as the loss of a valuable fertilizer resource. The objective of this study was to determine the fertilizer efficiency of N captured from the exhaust air from poultry houses using acid scrubbers. This research was conducted using 24 plots located on a Captina silt loam soil. There were six treatments: (1) unfertilized control, (2) aluminum sulfate (alum) scrubber solution, (3) potassium bisulfate scrubber solution, (4) sodium bisulfate scrubber solution, (5) sulfuric acid scrubber solution and (6) ammonium nitrate fertilizer dissolved in water. There were four replications per treatment in a randomized block design. The scrubber solutions were obtained from acid scrubbers attached to exhaust fans on commercial broiler houses. All N sources were applied at an application rate equivalent to 112 kg N ha⁻¹. Forage yields were measured five times throughout the growing season. Five months after the fertilizer sources were applied, a rainfall simulation study was conducted to determine the potential effects on phosphorus (P) runoff. Forage yields were significantly higher in plots fertilized with scrubber solutions from potassium bisulfate and sodium bisulfate than plots fertilized with scrubber solutions made from alum or sulfuric acid or ammonium nitrate, which were higher than the controls (7.61, 7.46, 6.87, 6.72, 6.45, and 5.12 Mg ha ⁻¹, respectively). Forage N uptake followed similar trends as yields. Phosphorus runoff and water soluble P was significantly lower in plots fertilized with the scrubber solutions made from aluminum sulfate. This study demonstrates that N captured using ammonia scrubbers is as good or possibly better than commercial ammonium nitrate fertilizer.

Keywords: air quality, ammonia emissions, nitrogen fertilizer, poultry

Procedia PDF Downloads 195
8607 Water, Hygiene, and Sanitation in Senegal’s School Environment: A Study of the Performance of a Reed Bed Filter Installed at Gandiol School for Wastewater Treatment and Reuse

Authors: Abdou Khafor Ndiaye

Abstract:

The article examines clean water and sanitation in Saint-Louis region schools. It finds that 59% have clean water, with disparities between departments, urban/rural areas, and school types. Podor and Dagana lack water due to distance and costs. 70% have sanitation, but rural schools lack it due to low investment. Podor and Dagana suffer the most. Many sanitation facilities need renovation. Wastewater treatment is effective, reducing pollutants and nitrogen, but adjustments are needed for nitrates. Treated water meets Senegalese standards and can be used for irrigation but needs monitoring for strict standards. In conclusion, the wastewater system is good for regions with limited water. Meeting stricter European standards and monitoring for health and environmental standards are needed.

Keywords: water, constructed wetland, sanitation, hygiene

Procedia PDF Downloads 71
8606 Service Life Prediction of Tunnel Structures Subjected to Water Seepage

Authors: Hassan Baji, Chun-Qing Li, Wei Yang

Abstract:

Water seepage is one of the most common causes of damage in tunnel structures, which can cause direct and indirect e.g. reinforcement corrosion and calcium leaching damages. Estimation of water seepage or inflow is one of the main challenges in probabilistic assessment of tunnels. The methodology proposed in this study is an attempt for mathematically modeling the water seepage in tunnel structures and further predicting its service life. Using the time-dependent reliability, water seepage is formulated as a failure mode, which can be used for prediction of service life. Application of the formulated seepage failure mode to a case study tunnel is presented.

Keywords: water seepage, tunnels, time-dependent reliability, service life

Procedia PDF Downloads 477
8605 Nano Sol Based Solar Responsive Smart Window for Aircraft

Authors: K. A. D. D. Kuruppu, R. M. De Silva, K. M. N. De Silva

Abstract:

This research work was based on developing a solar responsive aircraft window panel which can be used as a self-cleaning surface and also a surface which degrade Volatile Organic compounds (VOC) available in the aircraft cabin areas. Further, this surface has the potential of harvesting energy from Solar. The transparent inorganic nano sol solution was prepared. The obtained sol solution was characterized using X-ray diffraction, Particle size analyzer and FT-IR. The existing nano material which shows the similar characteristics was also used to compare the efficiencies with the newly prepared nano sol. Nano sol solution was coated on cleaned four aircraft window pieces separately using a spin coater machine. The existing nano material was dissolved and prepared a solution having the similar concentration as nano sol solution. Pre-cleaned four aircraft window pieces were coated with this solution and the rest cleaned four aircraft window pieces were considered as control samples. The control samples were uncoated from anything. All the window pieces were allowed to dry at room temperature. All the twelve aircraft window pieces were uniform in all the factors other than the type of coating. The surface morphologies of the samples were analyzed using SEM. The photocatalytic degradation of VOC was determined after incorporating gas of Toluene to each sample followed by the analysis done by UV-VIS spectroscopy. The self- cleaning capabilities were analyzed after adding of several types of stains on the window pieces. The self-cleaning property of each sample was analyzed using UV-VIS spectroscopy. The highest photocatalytic degradation of Volatile Organic compound and the highest photocatalytic degradation of stains were obtained for the samples which were coated by the nano sol solution. Therefore, the experimental results clearly show that there is a potential of using this nano sol in aircraft window pieces which favors the self-cleaning property as well as efficient photocatalytic degradation of VOC gases. This will ensure safer environment inside aircraft cabins.

Keywords: aircraft, nano, smart windows, solar

Procedia PDF Downloads 247
8604 Optimization of Synergism Extraction of Toxic Metals (Lead, Copper) from Chlorides Solutions with Mixture of Cationic and Solvating Extractants

Authors: F. Hassaine-Sadi, S. Chelouaou

Abstract:

In recent years, environmental contamination by toxic metals such as Pb, Cu, Ni, Zn ... has become a worldwide crucial problem, particularly in some areas where the population depends on groundwater for drinking daily consumption. Thus, the sources of metal ions come from the metal manufacturing industry, fertilizers, batteries, paints, pigments and so on. Solvent extraction of metal ions has given an important role in the development of metal purification processes such as the synergistic extraction of some divalent cations metals ( M²⁺), the ions metals from various sources. This work consists of a water purification technique that involves the lead and copper systems: Pb²⁺, H₃O+, Cl⁻ and Cu²⁺, H₃O⁺, Cl⁻ for diluted solutions by a mixture of tri-n-octylphosphine oxide (TOPO) or Tri-n-butylphosphate(TBP) and di (2-ethyl hexyl) phosphoric acid (HDEHP) dissolved in kerosene. The study of the fundamental parameters influencing the extraction synergism: cation exchange/extraction solvent have been examined.

Keywords: synergistic extraction, lead, copper, environment

Procedia PDF Downloads 438