Search results for: chemical synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6173

Search results for: chemical synthesis

5633 Synthesis of NiO and ZnO Nanoparticles and Charactiration for the Eradication of Lead (Pb) from Wastewater

Authors: Sadia Ata, Anila Tabassum, Samina ghafoor, Ijaz ul Mohsin, Azam Muktar

Abstract:

Heavy metal ions such as Pb2+, Cd2+, Zn2+, Ni2+ and Hg2+, in wastewater are considered as the serious environmental problem. Among these heavy metals, Lead or Pb (II) is the most toxic heavy metal. Exposure to lead causes damage of nervous system, mental retardation, renal kidney disease, anemia and cancer in human beings. Adsorption is the most widely used method to remove metal ions based on the physical interaction between metal ions and sorbents. With the development of nanotechnology, nano-sized materials are proved to be effective sorbents for the removal of heavy metal ions from wastewater due to their unique structural properties. The present work mainly focuses on the synthesis of NiO and ZnO nanoparticles for the removal of Lead ions, their preparation, characterization by XRD, FTIR, SEM, and TEM, adsorption characteristics and mechanism, along with adsorption isotherm model and adsorption kinetics to understand the adsorption procedure.

Keywords: heavy metal, adsorption isotherms, nanoparticles, wastewater

Procedia PDF Downloads 587
5632 Using Atomic Force Microscope to Investigate the Influence of UVA Radiation and HA on Cell Behaviour and Elasticity of Dermal Fibroblasts

Authors: Pei-Hsiu Chiang, Ling Hong Huang, Hsin-I Chang

Abstract:

In this research, we used UVA irradiation, which can penetrate into dermis and fibroblasts, the most abundant cells in dermis, to investigate the effect of UV light on dermis, such as inflammation, ECM degradation and elasticity loss. Moreover, this research is focused on the influence of hyaluronic acid (HA) on UVA treated dermal fibroblasts. We aim to establish whether HA can effectively relief ECM degradation, and restore the elasticity of UVA-damaged fibroblasts. Prolonged exposure to UVA radiation can damage fibroblasts and led variation in cell morphology and reduction in cell viability. Besides, UVA radiation can induce IL-1β expression on fibroblasts and then promote MMP-1 and MMP-3 expression, which can accelerate ECM degradation. On the other hand, prolonged exposure to UVA radiation reduced collagen and elastin synthesis on fibroblasts. Due to the acceleration of ECM degradation and the reduction of ECM synthesis, Atomic force microscope (AFM) was used to analyze the elasticity reduction on UVA-damaged fibroblasts. UVA irradiation causes photoaging on fibroblasts. UVA damaged fibroblasts with HA treatment can down-regulate the gene expression of MMP-1, MMP-3, and then slow down ECM degradation. On the other hand, HA may restore elastin and collagen synthesis in UV-damaged fibroblasts. Based on the slowdown of ECM degradation, UVA-damaged fibroblast elasticity can be effectively restored by HA treatment. In summary, HA can relief the photoaging conditions on fibroblasts, but may not be able to return fibroblasts to normal, healthy state. Although HA cannot fully recover UVA-damaged fibroblasts, HA is still potential for repairing photoaging skin.

Keywords: atomic force microscope, hyaluronic acid, UVA radiation, dermal fibroblasts

Procedia PDF Downloads 390
5631 Study the Influence of Zn in Zn-MgFe₂O₄ Nanoparticles for CO₂ Gas Sensors

Authors: Maryam Kiani, Xiaoqin Tian, Yu Du, Abdul Basit Kiani

Abstract:

Zn-doped MgFe₂O₄ nanoparticles (ZMFO) (Zn=0.0, 0.2, 0.35, 0.5,) were prepared by Co-precipitation synthesis route. Structural and morphological analysis confirmed the formation of spinel cubic nanostructure by X-Ray diffraction (XRD) data shows high reactive surface area owing to a small average particle size of about 14 nm, which greatly influences the gas sensing mechanism. The gas sensing property of ZMFO for several gases was obtained by measuring the resistance as a function of different factors, like composition and response time in air and in the presence of gas. The sensitivity of spinel ferrite to gases CO₂, O₂, and O₂ at room temperature has been compared. The nanostructured ZMFO exhibited high sensitivity in the order of CO₂>O₂ and showed a good response time of (~1min) to CO₂, demonstrating that this expanse of research can be used in the field of gas sensors devising high sensitivity and good selectivity at 25°C.

Keywords: MgFe₂O₄ nanoparticles, hydrothermal synthesis, gas sensing properties, XRD

Procedia PDF Downloads 116
5630 Engineering Ligand-Free Biodegradable-Based Nanoparticles for Cell Attachment and Growth

Authors: Simone F. Medeiros, Isabela F. Santos, Rodolfo M. Moraes, Jaspreet K. Kular, Marcus A. Johns, Ram Sharma, Amilton M. Santos

Abstract:

Tissue engineering aims to develop alternatives to treat damaged tissues by promoting their regeneration. Its basic principle is to place cells on a scaffold capable of promoting cell functions, and for this purpose, polymeric nanoparticles have been successfully used due to the ability of some macro chains to mimic the extracellular matrix and influence cell functions. In general, nanoparticles require surface chemical modification to achieve cell adhesion, and recent advances in their synthesis include methods for modifying the ligand density and distribution onto nanoparticles surface. However, this work reports the development of biodegradable polymeric nanoparticles capable of promoting cellular adhesion without any surface chemical modification by ligands. Biocompatible and biodegradable nanoparticles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) were synthesized by solvent evaporation method. The produced nanoparticles were small in size (85 and 125 nm) and colloidally stable against time in aqueous solution. Morphology evaluation showed their spherical shape with small polydispersity. Human osteoblast-like cells (MG63) were cultured in the presence of PHBHV nanoparticles, and growth kinetics were compared to those grown on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene (non-TCPS) pre-coated with nanoparticles was assessed and compared to attachment on TCPS. These findings reveal the potential of PHBHV nanoparticles for cell adhesion and growth, without requiring a matrix ligand to support cells, to be used as scaffolds, in tissue engineering applications.

Keywords: tissue engineering, PHBHV, stem cells, cellular attachment

Procedia PDF Downloads 208
5629 Response of Barley Quality Traits, Yield and Antioxidant Enzymes to Water-Stress and Chemical Inducers

Authors: Emad Hafez, Mahmoud Seleiman

Abstract:

Two field experiments were carried out in order to investigate the effect of chemical inducers [benzothiadiazole 0.9 mM L-1, oxalic acid 1.0 mM L-1, salicylic acid 0.2 mM L-1] on physiological and technological traits as well as on yields and antioxidant enzyme activities of barley grown under abiotic stress (i.e. water surplus and deficit conditions). Results showed that relative water content, leaf area, chlorophyll and yield as well as technological properties of barley were improved with chemical inducers application under water surplus and water-stress conditions. Antioxidant enzymes activity (i.e. catalase and peroxidase) were significantly increased in barley grown under water-stress and treated with chemical inducers. Yield and related parameters of barley presented also significant decrease under water-stress treatment, while chemical inducers application enhanced the yield-related traits. Starch and protein contents were higher in plants treated with salicylic acid than in untreated plants when water-stress was applied. In conclusion, results show that chemical inducers application have a positive interaction and synergetic influence and should be suggested to improve plant growth, yield and technological properties of water stressed barley. Salicylic acid application was better than oxalic acid and benzothiadiazole in terms of plant growth and yield improvement.

Keywords: antioxidant enzymes, drought stress, Hordeum vulgare L., quality, yield

Procedia PDF Downloads 300
5628 Synthesis and Characterisation of Bio-Based Acetals Derived from Eucalyptus Oil

Authors: Kirstin Burger, Paul Watts, Nicole Vorster

Abstract:

Green chemistry focuses on synthesis which has a low negative impact on the environment. This research focuses on synthesizing novel compounds from an all-natural Eucalyptus citriodora oil. Eight novel plasticizer compounds are synthesized and optimized using flow chemistry technology. A precursor to one novel compound can be synthesized from the lauric acid present in coconut oil. Key parameters, such as catalyst screening and loading, reaction time, temperature, residence time using flow chemistry techniques is investigated. The compounds are characterised using GC-MS, FT-IR, 1H and 13C-NMR techniques, X-ray crystallography. The efficiency of the compounds is compared to two commercial plasticizers, i.e. Dibutyl phthalate and Eastman 168. Several PVC-plasticized film formulations are produced using the bio-based novel compounds. Tensile strength, stress at fracture and percentage elongation are tested. The property of having increasing plasticizer percentage in the film formulations is investigated, ranging from 3, 6, 9 and 12%. The diastereoisomers of each compound are separated and formulated into PVC films, and differences in tensile strength are measured. Leaching tests, flexibility, and change in glass transition temperatures for PVC-plasticized films is recorded. Research objective includes using these novel compounds as a green bio-plasticizer alternative in plastic products for infants. The inhibitory effect of the compounds on six pathogens effecting infants are studied, namely; Escherichia coli, Staphylococcus aureus, Shigella sonnei, Pseudomonas putida, Salmonella choleraesuis and Klebsiella oxytoca.

Keywords: bio-based compounds, plasticizer, tensile strength, microbiological inhibition , synthesis

Procedia PDF Downloads 184
5627 Synthesis of Dispersion-Compensating Triangular Lattice Index-Guiding Photonic Crystal Fibers Using the Directed Tabu Search Method

Authors: F. Karim

Abstract:

In this paper, triangular lattice index-guiding photonic crystal fibers (PCFs) are synthesized to compensate the chromatic dispersion of a single mode fiber (SMF-28) for an 80 km optical link operating at 1.55 µm, by using the directed tabu search algorithm. Hole-to-hole distance, circular air-hole diameter, solid-core diameter, ring number and PCF length parameters are optimized for this purpose. Three Synthesized PCFs with different physical parameters are compared in terms of their objective functions values, residual dispersions and compensation ratios.

Keywords: triangular lattice index-guiding photonic crystal fiber, dispersion compensation, directed tabu search, synthesis

Procedia PDF Downloads 429
5626 Arc Plasma Application for Solid Waste Processing

Authors: Vladimir Messerle, Alfred Mosse, Alexandr Ustimenko, Oleg Lavrichshev

Abstract:

Hygiene and sanitary study of typical medical-biological waste made in Kazakhstan, Russia, Belarus and other countries show that their risk to the environment is much higher than that of most chemical wastes. For example, toxicity of solid waste (SW) containing cytotoxic drugs and antibiotics is comparable to toxicity of radioactive waste of high and medium level activity. This report presents the results of the thermodynamic analysis of thermal processing of SW and experiments at the developed plasma unit for SW processing. Thermodynamic calculations showed that the maximum yield of the synthesis gas at plasma gasification of SW in air and steam mediums is achieved at a temperature of 1600K. At the air plasma gasification of SW high-calorific synthesis gas with a concentration of 82.4% (СO – 31.7%, H2 – 50.7%) can be obtained, and at the steam plasma gasification – with a concentration of 94.5% (СO – 33.6%, H2 – 60.9%). Specific heat of combustion of the synthesis gas produced by air gasification amounts to 14267 kJ/kg, while by steam gasification - 19414 kJ/kg. At the optimal temperature (1600 K), the specific power consumption for air gasification of SW constitutes 1.92 kWh/kg, while for steam gasification - 2.44 kWh/kg. Experimental study was carried out in a plasma reactor. This is device of periodic action. The arc plasma torch of 70 kW electric power is used for SW processing. Consumption of SW was 30 kg/h. Flow of plasma-forming air was 12 kg/h. Under the influence of air plasma flame weight average temperature in the chamber reaches 1800 K. Gaseous products are taken out of the reactor into the flue gas cooling unit, and the condensed products accumulate in the slag formation zone. The cooled gaseous products enter the gas purification unit, after which via gas sampling system is supplied to the analyzer. Ventilation system provides a negative pressure in the reactor up to 10 mm of water column. Condensed products of SW processing are removed from the reactor after its stopping. By the results of experiments on SW plasma gasification the reactor operating conditions were determined, the exhaust gas analysis was performed and the residual carbon content in the slag was determined. Gas analysis showed the following composition of the gas at the exit of gas purification unit, (vol.%): СO – 26.5, H2 – 44.6, N2–28.9. The total concentration of the syngas was 71.1%, which agreed well with the thermodynamic calculations. The discrepancy between experiment and calculation by the yield of the target syngas did not exceed 16%. Specific power consumption for SW gasification in the plasma reactor according to the results of experiments amounted to 2.25 kWh/kg of working substance. No harmful impurities were found in both gas and condensed products of SW plasma gasification. Comparison of experimental results and calculations showed good agreement. Acknowledgement—This work was supported by Ministry of Education and Science of the Republic of Kazakhstan and Ministry of Education and Science of the Russian Federation (Agreement on grant No. 14.607.21.0118, project RFMEF160715X0118).

Keywords: coal, efficiency, ignition, numerical modeling, plasma-fuel system, plasma generator

Procedia PDF Downloads 249
5625 Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application

Authors: Eng Toon Saw, Kun Liang Ang, Wei He, Xuecheng Dong, Seeram Ramakrishna

Abstract:

Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry.

Keywords: ceramic membrane, NaA zeolite, pharmaceutical industry, solvent recovery

Procedia PDF Downloads 244
5624 Synthesis, Electrochemical and Theoretical Study of Corrosion Inhibition on Carbon Steel in 1M HCl Medium by 2,2'-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide)

Authors: Tanghourte Mohamed, Ouassou Nazih, El mesky Mohammed, Znini Mohamed, Mabrouk El Houssine

Abstract:

In the present study, a distinct organic inhibitor, namely 2,2'-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide) (PBRA), was synthesized and characterized using ¹H, ¹³C NMR, and IR spectroscopy. Subsequently, the inhibition effect of PBRA on the corrosion of carbon steel in 1 M HCl was studied using electrochemical measurements such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed that the inhibition efficiency increased with concentration, reaching 87% at 10-³M. Furthermore, PBRA remained effective at temperatures ranging from 298 to 328 K. The adsorption of the inhibitor onto carbon steel was well described by the Langmuir adsorption isotherm. Additionally, a correlation between the molecular structure and quantum chemistry indices was established using density functional theory (DFT).

Keywords: synthesis, corrosion, inhibition, piperazine, efficacy, isotherm, acetamide

Procedia PDF Downloads 2
5623 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst

Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong

Abstract:

Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.

Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide

Procedia PDF Downloads 149
5622 A Unified Model for Orotidine Monophosphate Synthesis: Target for Inhibition of Growth of Mycobacterium tuberculosis

Authors: N. Naga Subrahmanyeswara Rao, Parag Arvind Deshpande

Abstract:

Understanding nucleotide synthesis reaction of any organism is beneficial to know the growth of it as in Mycobacterium tuberculosis to design anti TB drug. One of the reactions of de novo pathway which takes place in all organisms was considered. The reaction takes places between phosphoribosyl pyrophosphate and orotate catalyzed by orotate phosphoribosyl transferase and divalent metal ion gives orotdine monophosphate, a nucleotide. All the reaction steps of three experimentally proposed mechanisms for this reaction were considered to develop kinetic rate expression. The model was validated using the data for four organisms. This model could successfully describe the kinetics for the reported data. The developed model can serve as a reliable model to describe the kinetics in new organisms without the need of mechanistic determination. So an organism-independent model was developed.

Keywords: mechanism, nucleotide, organism, tuberculosis

Procedia PDF Downloads 333
5621 Effect of Laser Input Energy on the Laser Joining of Polyethylene Terephthalate to Titanium

Authors: Y. J. Chen, T. M. Yue, Z. N. Guo

Abstract:

This paper reports the effects of laser energy on the characteristics of bubbles generated in the weld zone and the formation of new chemical bonds at the Polyethylene Terephthalate (PET)/Ti joint interface in laser joining of PET to Ti. The samples were produced by using different laser energies ranging from 1.5 J – 6 J in steps of 1.5 J, while all other joining parameters remained unchanged. The types of chemical bonding at the joint interface were analysed by the x-ray photoelectron spectroscopy (XPS) depth-profiling method. The results show that the characteristics of the bubbles and the thickness of the chemically bonded interface, which contains the laser generated bonds of Ti–C and Ti–O, increase markedly with increasing laser energy input. The tensile failure load of the joint depends on the combined effect of the amount and distribution of the bubbles formed and the chemical bonding intensity of the joint interface.

Keywords: laser direct joining, Ti/PET interface, laser energy, XPS depth profiling, chemical bond, tensile failure load

Procedia PDF Downloads 209
5620 Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs

Authors: Priyansha Sharma, Sibani Mund, Sivakumar Vaidyanathan

Abstract:

Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication.

Keywords: PL, phosphor, quantum yield, white LED

Procedia PDF Downloads 73
5619 Synthesis and Characterization of Highly Oriented Bismuth Oxyiodide Thin Films for the Photocatalytical Degradation of Pharmaceuticals Compounds in Water

Authors: Juan C. Duran-Alvarez, Daniel Mejia, Rodolfo Zanella

Abstract:

Heterogeneous photocatalysis is a promising method to achieve the complete degradation and mineralization of organic pollutants in water via their exhaustive oxidation. In order to take this advanced oxidation process towards sustainability, it is necessary to reduce the energy consumption, referred as the light sources and the post-treatment operations. For this, the synthesis of new nanostructures of low band gap semiconductors in the form of thin films is in continuous development. In this work, thin films of the low band gap semiconductor bismuth oxyiodide (BiOI) were synthesized via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. For this, Bi(NO3)3 and KI solutions were prepared, and glass supports were immersed in each solution under strict rate and time immersion conditions. Synthesis was performed at room temperature and a washing step was set prior to each immersion. Thin films with an average thickness below 100 nm were obtained upon a cycle of 30 immersions, as determined by AFM and profilometry measurements. Cubic BiOI nanocrystals with average size of 17 nm and a high orientation to the 001 plane were observed by XRD. In order to optimize the synthesis method, several Bi/I ratios were tested, namely 1/1, 1/5, 1/10, 1/20 and 1/50. The highest crystallinity of the BiOI films was observed when the 1/5 ratio was used in the synthesis. Non-stoichiometric conditions also resulted in the highest uniformity of the thin layers. PVP was used as an additive to improve the adherence of the BiOI thin films to the support. The addition of 0.1 mg/mL of PVP during the washing step resulted in the highest adherence of the thin films. In photocatalysis tests, degradation rate of the antibiotic ciprofloxacin as high as 75% was achieved using visible light (380 to 700 nm) irradiation for 5 h in batch tests. Mineralization of the antibiotic was also observed, although in a lower extent; ~ 30% of the total organic carbon was removed upon 5 h of visible light irradiation. Some ciprofloxacin by-products were identified throughout the reaction; and some of these molecules displayed residual antibiotic activity. In conclusion, it is possible to obtain highly oriented BiOI thin films under ambient conditions via the SILAR method. Non-stoichiometric conditions using PVP additive are necessary to increase the crystallinity and adherence of the films, which are photocatalytically active to remove recalcitrant organic pollutants under visible light irradiation.

Keywords: bismuth oxyhalides, photocatalysis, thin films, water treatment

Procedia PDF Downloads 117
5618 Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction

Authors: Anna Yagodnitsyna, Alexander Kovalev, Artur Bilsky

Abstract:

The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions.

Keywords: flow patterns, hydrodynamics, liquid-liquid flow, microchannel

Procedia PDF Downloads 394
5617 Design and Preliminary Evaluation of Benzoxazolone-Based Agents for Targeting Mitochondrial-Located Translocator Protein

Authors: Nidhi Chadha, A. K. Tiwari, Marilyn D. Milton, Anil K. Mishra

Abstract:

Translocator protein (18 kDa) TSPO is highly expressed during microglia activation in neuroinflammation. Although a number of PET ligands have been developed for the visualization of activated microglia, one of the advantageous approaches is to develop potential optical imaging (OI) probe. Our study involves computational screening, synthesis and evaluation of TSPO ligand through various imaging modalities namely PET/SPECT/Optical. The initial computational screening involves pharmacophore modeling from the library designing having oxo-benzooxazol-3-yl-N-phenyl-acetamide groups and synthesis for visualization of efficacy of these compounds as multimodal imaging probes. Structure modeling of monomer, Ala147Thr mutated, parallel and anti-parallel TSPO dimers was performed and docking analysis was performed for distinct binding sites. Computational analysis showed pattern of variable binding profile of known diagnostic ligands and NBMP via interactions with conserved residues along with TSPO’s natural polymorphism of Ala147→Thr, which showed alteration in the binding affinity due to considerable changes in tertiary structure. Preliminary in vitro binding studies shows binding affinity in the range of 1-5 nm and selectivity was also certified by blocking studies. In summary, this skeleton was found to be potential probe for TSPO imaging due to ease in synthesis, appropriate lipophilicity and reach to specific region of brain.

Keywords: TSPO, molecular modeling, imaging, docking

Procedia PDF Downloads 460
5616 Changes in the Properties of Composites Caused by Chemical Treatment of Hemp Hurds

Authors: N. Stevulova, I. Schwarzova

Abstract:

The possibility of using industrial hemp as a source of natural fibers for purpose of construction, mainly for the preparation of lightweight composites based on hemp hurds is described. In this article, an overview of measurement results of important technical parameters (compressive strength, density, thermal conductivity) of composites based on organic filler - chemically modified hemp hurds in three solutions (EDTA, NaOH and Ca(OH)2) and inorganic binder MgO-cement after 7, 28, 60, 90 and 180 days of hardening is given. The results of long-term water storage of 28 days hardened composites at room temperature were investigated. Changes in the properties of composites caused by chemical treatment of hemp material are discussed.

Keywords: hemp hurds, chemical modification, lightweight composites, testing material properties

Procedia PDF Downloads 346
5615 Polymersomes in Drug Delivery: A Comparative Review with Liposomes and Micelles

Authors: Salma E. Ahmed

Abstract:

Since the mid 50’s, enormous attention has been paid towards nanocarriers and their applications in drug and gene delivery. Among these vesicles, liposomes and micelles have been heavily investigated due to their many advantages over other types. Liposomes, for instance, are mostly distinguished by their ability to encapsulate hydrophobic, hydrophilic and amphiphilic drugs. Micelles, on the other hand, are self-assembled shells of lipids, amphiphilic or oppositely charged block copolymers that, once exposed to aqueous media, can entrap hydrophobic agents, and possess prolonged circulation in the bloodstream. Both carriers are considered compatible and biodegradable. Nevertheless, they have limited stabilities, chemical versatilities, and drug encapsulation efficiencies. In order to overcome these downsides, strategies for optimizing a novel drug delivery system that has the architecture of liposomes and polymeric characteristics of micelles have been evolved. Polymersomes are vehicles with fluidic cores and hydrophobic shells that are protected and isolated from the aqueous media by the hydrated hydrophilic brushes which give the carrier its distinctive polymeric bilayer shape. Similar to liposomes, this merit enables the carrier to encapsulate a wide range of agents, despite their affinities and solubilities in water. Adding to this, the high molecular weight of the amphiphiles that build the body of the polymersomes increases their colloidal and chemical stabilities and reduces the permeability of the polymeric membranes, which makes the vesicles more protective to the encapsulated drug. These carriers can also be modified in ways that make them responsive when targeted or triggered, by manipulating their composition and attaching moieties and conjugates to the body of the carriers. These appealing characteristics, in addition to the ease of synthesis, gave the polymersomes greater potentials in the area of drug delivery. Thus, their design and characterization, in comparison with liposomes and micelles, are briefly reviewed in this work.

Keywords: controlled release, liposomes, micelles, polymersomes, targeting

Procedia PDF Downloads 192
5614 Synthesis and Characterization of Recycled Isotactic Polypropylene Nanocomposites Containing Date Wood Fiber

Authors: Habib Shaban

Abstract:

Nanocomposites of isotactic polypropylene (iPP) and date wood fiber were prepared after modification of the host matrix by reactive extrusion grafting of maleic anhydride. Chemical and mechanical treatment of date wood flour (WF) was conducted to obtain nanocrystalline cellulose. Layered silicates (clay) were partially intercalated with date wood fiber, and the modified layered silicate was used as filler in the PP matrix via a melt-blending process. The tensile strength of composites prepared from wood fiber modified clay was greater than that of the iPP-clay and iPP-WF composites at a 6% filler concentration, whereas deterioration of mechanical properties was observed when clay and WF were used alone for reinforcement. The dispersion of the filler in the matrix significantly decreased after clay modification with cellulose at higher concentrations, as shown by X-ray diffraction (XRD) data.

Keywords: nanocomposites, isotactic polypropylene, date wood flour, intercalated, melt-blending

Procedia PDF Downloads 382
5613 Influence of Chemical Treatment on Elastic Properties of the Band Cotton Crepe 100%

Authors: Bachir Chemani, Rachid Halfaoui, Madani Maalem

Abstract:

The manufacturing technology of band cotton is very delicate and depends to choice of certain parameters such as torsion of warp yarn. The fabric elasticity is achieved without the use of any elastic material, chemical expansion, artificial or synthetic and it’s capable of creating pressures useful for therapeutic treatments.Before use, the band is subjected to treatments of specific preparation for obtaining certain elasticity, however, during its treatment, there are some regression parameters. The dependence of manufacturing parameters on the quality of the chemical treatment was confirmed. The aim of this work is to improve the properties of the fabric through the development of manufacturing technology appropriately. Finally for the treatment of the strip pancake 100% cotton, a treatment method is recommended.

Keywords: elastic, cotton, processing, torsion

Procedia PDF Downloads 386
5612 Quality Assessment of the Essential Oil from Eucalyptus globulus Labill of Blida (Algeria) Origin

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Eucalyptus essential oil is extracted from Eucalyptus globulus of the Myrtaceae family and is also known as Tasmanian blue gum or blue gum. Despite the reputation earned by aromatic and medicinal plants of Algeria. The objectives of this study were: (i) the extraction of the essential oil from the leaves of Eucalyptus globulus Labill., Myrtaceae grown in Algeria, and the quantification of the yield thereof, (ii) the identification and quantification of the compounds in the essential oil obtained, and (iii) the determination of physical and chemical properties of EGEO. The chemical constituents of Eucalyptus globulus essential oil (EGEO) of Blida origin has not previously been investigated. Thus, the present study has been conducted for the determination of chemical constituents and different physico-chemical properties of the EGEO. Chemical composition of the EGEO, grown in Algeria, was analysed by Gas Chromatography-Mass Spectrometry. The chemical components were identified on the basis of Retention Time and comparing with mass spectral database of standard compounds. Relative amounts of detected compounds were calculated on the basis of GC peak areas. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%), and β-myrcene (1.5%) being the main components. Other notable compounds identified in the oil were β-pinene, limonene, α-phellandrene, γ-terpinene, linalool, pinocarveol, terpinen-4-ol, and α-terpineol. The physical properties such as specific gravity, refractive index and optical rotation and the chemical properties such as saponification value, acid number and iodine number of the EGEO were examined. The oil extracted has been analyzed to have 1.4602-1.4623 refractive index value, 0.918-0.919 specific gravity (sp.gr.), +9 - +10 optical rotation that satisfy the standards stipulated by European Pharmacopeia. All the physical and chemical parameters were in the range indicated by the ISO standards. Our findings will help to access the quality of the Eucalyptus oil which is important in the production of high value essential oils that will help to improve the economic condition of the community as well as the nation.

Keywords: chemical composition, essential oil, eucalyptol, gas chromatography

Procedia PDF Downloads 327
5611 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 259
5610 The Simultaneous Application of Chemical and Biological Markers to Identify Reliable Indicators of Untreated Human Waste and Fecal Pollution in Urban Philadelphia Source Waters

Authors: Stafford Stewart, Hui Yu, Rominder Suri

Abstract:

This paper publishes the results of the first known study conducted in urban Philadelphia waterways that simultaneously utilized anthropogenic chemical and biological markers to identify suitable indicators of untreated human waste and fecal pollution. A total of 13 outfall samples, 30 surface water samples, and 2 groundwater samples were analyzed for fecal contamination and untreated human waste using a suite of 25 chemical markers and 5 bio-markers. Pearson rank correlation tests were conducted to establish associations between the abundances of bio-markers and the concentrations of chemical markers. Results show that 16S rRNA gene of human-associated Bacteroidales (BacH) was very strongly correlated (0.76 – 0.97, p < 0.05) with labile chemical markers acetaminophen, cotinine, estriol, and urobilin. Likewise, human-specific F- RNA coliphages (F-RNA-II) and labile chemical markers, urobilin, ibuprofen, cotinine and estriol, were significantly correlated (0.77 – 0.95, p < 0.05). Similarly, a strong positive correlation (0.67 – 0.91, p < 0.05) was evident between the abundances of bio-markers BacH and F-RNA-II, and the concentrations of the conservative markers, trimethoprim, meprobamate, diltiazem, triclocarban, metformin, sucralose, gemfibrozil, sulfamethoxazole, and carbamazepine. Human mitochondrial DNA (MitoH) correlated moderately with labile markers nicotine and salicylic acid as well as with conservative markers metformin and triclocarban (0.31 – 0.47, p<0.05). This study showed that by associating chemical and biological markers, a robust technique was developed for fingerprinting source-specific untreated waste and fecal contamination in source waters.

Keywords: anthropogenic markers, bacteroidales, fecal pollution, source waters, wastewater

Procedia PDF Downloads 10
5609 Polysulfide as Active ‘Stealth’ Polymers with Additional Anti-Inflammatory Activity

Authors: Farah El Mohtadi, Richard d'Arcy, Nicola Tirelli

Abstract:

Since 40 years, poly (ethylene glycol) (PEG) has been the gold standard in biomaterials and drug delivery, because of its combination of chemical and biological inertness. However, the possibility of its breakdown under oxidative conditions and the demonstrated development of anti-PEG antibodies highlight the necessity to develop carriers based on materials with increased stability in a challenging biological environment. Here, we describe the synthesis of polysulfide via anionic ring-opening polymerization. In vitro, the synthesized polymer was characterized by low toxicity and a level of complement activation (in human plasma) and macrophage uptake slightly lower than PEG and poly (2‐methyl-2‐oxazoline) (PMOX), of a similar size. Importantly, and differently from PEG, on activated macrophages, the synthesized polymer showed a strong and dose-dependent ROS scavenging activity, which resulted in the corresponding reduction of cytokine production. Therefore, the results from these studies show that polysulfide is highly biocompatible and are potential candidates to be used as an alternative to PEG for various applications in nanomedicine.

Keywords: PEG, low toxicity, ROS scavenging, biocompatible

Procedia PDF Downloads 126
5608 Green Synthesis of Nicotine Analogues via Cycloaddition Reactions

Authors: Agnieszka Fryźlewicz, Jowita Kras, Mikołaj Sadowski, Agnieszka Łapczuk-Krygier, Agnieszka Kącka-Zych Radomir Jasiński

Abstract:

Nicotines are a group of compounds containing conjugated pyridine and pyrrolidine molecular segments. They are widely applied in medicine, pharmacy, and agriculture. Namely as researched treatment of Alzheimer, depression, Parkinson's, Tourette syndrome, general nervous and mental disorders. Furthermore, nicotine itself is used as a stimulant, animal repellent and was widely applied as an insecticide. In our work, we obtained nicotine analogues with possible applications in agriculture. The synthesis employed [3+2] cycloaddition (32CA) reactions, occurring between pirydyl-functionalised nitrones and conjugated nitroalkenes, that allowed us to fully regio- and stereoselectively obtain product. Moreover, cycloaddition reaction realizes rapidly in mild conditions with the full atomic economy, thus fitting into “green chemistry” trends.

Keywords: nicotine, isoxazolidine, 1-3-dipolar cycloaddition, green chemistry, biological and pharmacological activity

Procedia PDF Downloads 86
5607 Undercooling of Refractory High-Entropy Alloy

Authors: Liang Hu

Abstract:

The innovation of refractory high-entropy alloy (RHEA) formed from refractory metals W, Ta, Mo, Nb, Hf, V, and Zr was firstly implemented in 2010 to obtain better strength at high temperature than conventional HEAs based on Al, Co, Cr, Cu, Fe and Ni. Due to the refractory characteristic and high chemical activity at elevated temperature, electrostatic levitation technique has been utilized to fulfill the rapid solidification of RHEA. Several RHEAs consisting W, Ta, Mo, Nb, Zr have been selected to perform the undercooling and rapid solidification by ESL. They are substantially undercooled by up to 0.2TL. The evolution of as-solidified microstructure and component redistribution with undercooling have been investigated by SEM, EBSD, and EPMA analysis. According to the EPMA results of composing elements at different undercooling levels, the chemical distribution relevant to undercooling was also analyzed.

Keywords: chemical distribution, high-entropy alloy, rapid solidification, undercooling

Procedia PDF Downloads 127
5606 Fungicidal Action of the Mycogenic Silver Nanoparticles Against Aspergillus niger Inciting Collar Rot Disease in Groundnut (Arachis hypogaea L.)

Authors: R. Sarada Jayalakshmi Devi B. Bhaskar, S. Khayum Ahammed, T. N. V. K. V. Prasad

Abstract:

Use of bioagents and biofungicides is safe to manage the plant diseases and to avoid human health hazards which improves food security. Myconanotechnology is the study of nanoparticles synthesis using fungi and their applications. The present work reports on preparation, characterization and antifungal activity of biogenic silver nanoparticles produced by the fungus Trichoderma sp. which was collected from groundnut rhizosphere. The culture filtrate of Trichoderma sp. was used for the reduction of silver ions (Ag+) in AgNO3 solution to the silver (Ag0) nanoparticles. The different ages (4 days, 6 days, 8 days, 12 days, and 15 days) of culture filtrates were screened for the synthesis of silver nanoparticles. Synthesized silver nanoparticles were characterized using UV-Vis spectrophotometer, particle size and zeta potential analyzer, Fourier Transform Infrared Spectrophotometer (FTIR) and Transmission Electron Microscopy. Among all the treatments the silver nitrate solution treated with six days aged culture filtrate of Trichoderma sp. showed the UV absorption peak at 440 nm with maximum intensity (0.59) after 24 hrs incubation. The TEM micrographs showed the spherical shaped silver nanoparticles with an average size of 30 nm. The antifungal activity of silver nanoparticles against Aspergillus niger causing collar rot disease in groundnut and aspergillosis in humans showed the highest per cent inhibition at 100 ppm concentration (74.8%). The results points to the usage of these mycogenic AgNPs in agriculture to control plant diseases.

Keywords: groundnut rhizosphere, Trichoderma sp., silver nanoparticles synthesis, antifungal activity

Procedia PDF Downloads 496
5605 Synthesis and Properties of Oxidized Corn Starch Based Wood Adhesive

Authors: Salise Oktay, Nilgun Kizilcan, Basak Bengu

Abstract:

At present, formaldehyde-based adhesives such as urea-formaldehyde (UF), melamine-formaldehyde (MF), melamine – urea-formaldehyde (MUF), etc. are mostly used in wood-based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde-based wood adhesives are produced from non- renewable resources and also formaldehyde is classified as a probable human carcinogen (Group B1) by the U.S. Environmental Protection Agency (EPA). Therefore, there has been a growing interest in the development of environment-friendly, economically competitive, bio-based wood adhesives to meet wood-based panel industry requirements. In this study, like a formaldehyde-free adhesive, oxidized starch – urea wood adhesives was synthesized. In this scope, firstly, acid hydrolysis of corn starch was conducted and then acid thinned corn starch was oxidized by using hydrogen peroxide and CuSO₄ as an oxidizer and catalyst, respectively. Secondly, the polycondensation reaction between oxidized starch and urea conducted. Finally, nano – TiO₂ was added to the reaction system to strengthen the adhesive network. Solid content, viscosity, and gel time analyses of the prepared adhesive were performed to evaluate the adhesive processability. FTIR, DSC, TGA, SEM characterization techniques were used to investigate chemical structures, thermal, and morphological properties of the adhesive, respectively. Rheological analysis of the adhesive was also performed. In order to evaluate the quality of oxidized corn starch – urea adhesives, particleboards were produced in laboratory scale and mechanical and physical properties of the boards were investigated such as an internal bond, modulus of rupture, modulus of elasticity, formaldehyde emission, etc. The obtained results revealed that oxidized starch – urea adhesives were synthesized successfully and it can be a good potential candidate to use the wood-based panel industry with some developments.

Keywords: nano-TiO₂, corn starch, formaldehyde emission, wood adhesives

Procedia PDF Downloads 149
5604 Engineering Escherichia coli for Production of Short Chain Fatty Acid by Exploiting Fatty Acid Metabolic Pathway

Authors: Kamran Jawed, Anu Jose Mattam, Zia Fatma, Saima Wajid, Malik Z. Abdin, Syed Shams Yazdani

Abstract:

Worldwide demand of natural and sustainable fuels and chemicals have encouraged researchers to develop microbial platform for synthesis of short chain fatty acids as they are useful precursors to replace petroleum-based fuels and chemicals. In this study, we evaluated the role of fatty acid synthesis and β-oxidation cycle of Escherichia coli to produce butyric acid, a 4-carbon short chain fatty acid, with the help of three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron. We found that E. coli strain transformed with gene for TesBT and grown in presence of 8 g/L glucose produced maximum butyric acid titer at 1.46 g/L, followed by that of TesBF at 0.85 g/L and TesAT at 0.12 g/L, indicating that these thioesterases were efficiently converting short chain fatty acyl-ACP intermediate of fatty acid synthesis pathway into the corresponding acid. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. Deletion of genes for fatty acyl-CoA synthetase and acyl-CoA dehydrogenase, which are involved in initiating the fatty acid degradation cycle, and overexpression of FadR, which is a dual transcriptional regulator and exerts negative control over fatty acid degradation pathway, reduced up to 30% of butyric acid titer. This observation suggested that β-oxidation pathway is working synergistically with fatty acid synthesis pathway in production of butyric acid. Moreover, accelerating the fatty acid elongation cycle by overexpressing acetyl-CoA carboxyltransferase (Acc) and 3-hydroxy-acyl-ACP dehydratase (FabZ) or by deleting FabR, the transcription suppressor of elongation, did not improve the butyric acid titer, rather favored the long chain fatty acid production. Finally, a balance between cell growth and butyric acid production was achieved with the use of phosphorous limited growth medium and 14.3 g/L butyric acid, and 17.5 g/L total free fatty acids (FFAs) titer was achieved during fed-batch cultivation. We have engineered an E. coli strain which utilizes the intermediate of both fatty acid synthesis and degradation pathway, i.e. butyryl-ACP and -CoA, to produce butyric acid from glucose. The strategy used in this study resulted in highest reported titers of butyric acid and FFAs in engineered E. coli.

Keywords: butenoic acid, butyric acid, Escherichia coli, fed-batch fermentation, short chain fatty acids, thioesterase

Procedia PDF Downloads 368