Search results for: EURO VI fuel consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4786

Search results for: EURO VI fuel consumption

4246 Development of a Suitable Model for Energy Storage in Residential Buildings in Ahvaz Using Energy Plus Software

Authors: Farideh Azimi, Sam Vahedi Tafreshi

Abstract:

This research tries to study the residential buildings in Ahvaz, the common materials used, and the impact of passive methods of energy storage (as one of the most effective ways to reduce energy consumption in residential complexes) in order to achieve patterns for construction of residential buildings in Ahvaz conditions to reduce energy consumption. In this research, after studying Ahvaz conditions, the components of an existing building were simulated in Energy Plus software, and the climatic data of Ahvaz station was introduced to software. Then to achieve the most optimal conditions of energy consumption in Ahvaz conditions, each of the residential building elements was optimized. The results of simulation showed that using inactive materials and design including double glass, outside wall insulation, inverted roof, etc. in the buildings can reduce energy consumption in the hot and dry climate of Ahvaz. Among the parameters investigated, the inverted roof was the most effective energy saving pattern. According to the results of simulation of the entire building with the most optimal parameters, energy consumption can be saved by a mean of 12.51% in buildings of Ahvaz, and the obtained pattern can also be used in similar climates.

Keywords: residential buildings, thermal comfort, energy storage, Energy Plus software, Ahvaz

Procedia PDF Downloads 358
4245 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment

Authors: Leila Torkaman, Nasser Ghassembaglou

Abstract:

Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified. finally needed methods to optimize energy consumption and cooler's classification are provided.

Keywords: cooler, EER, energy label, optimization

Procedia PDF Downloads 342
4244 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring

Procedia PDF Downloads 200
4243 Environmental Protection by Optimum Utilization of Car Air Conditioners

Authors: Sanchita Abrol, Kunal Rana, Ankit Dhir, S. K. Gupta

Abstract:

According to N.R.E.L.’s findings, 700 crore gallons of petrol is used annually to run the air conditioners of passenger vehicles (nearly 6% of total fuel consumption in the USA). Beyond fuel use, the Environmental Protection Agency reported that refrigerant leaks from auto air conditioning units add an additional 5 crore metric tons of carbon emissions to the atmosphere each year. The objective of our project is to deal with this vital issue by carefully modifying the interiors of a car thereby increasing its mileage and the efficiency of its engine. This would consequently result in a decrease in tail emission and generated pollution along with improved car performance. An automatic mechanism, deployed between the front and the rear seats, consisting of transparent thermal insulating sheet/curtain, would roll down as per the requirement of the driver in order to optimize the volume for effective air conditioning, when travelling alone or with a person. The reduction in effective volume will yield favourable results. Even on a mild sunny day, the temperature inside a parked car can quickly spike to life-threatening levels. For a stationary parked car, insulation would be provided beneath its metal body so as to reduce the rate of heat transfer and increase the transmissivity. As a result, the car would not require a large amount of air conditioning for maintaining lower temperature, which would provide us similar benefits. Authors established the feasibility studies, system engineering and primarily theoretical and experimental results confirming the idea and motivation to fabricate and test the actual product.

Keywords: automation, car, cooling insulating curtains, heat optimization, insulation, reduction in tail emission, mileage

Procedia PDF Downloads 276
4242 Higher Consumption of White Rice Increase the Risk of Metabolic Syndrome in Adults with Abdominal Obesity

Authors: Zahra Bahadoran, Parvin Mirmiran, Fereidoun Azizi

Abstract:

Background: Higher consumption of white rice has been suggested as a risk factor for development of metabolic abnormalities. In this study we investigated the association between consumption of white rice and the 3-year occurrence of metabolic syndrome (MetS) in adults with and without abdominal obesity. Methods: This longitudinal study was conducted within the framework of the Tehran Lipid and Glucose Study on 1476 adults, aged 19-70 years. Dietary intakes were measured, using a 168-food items validated semi-quantitative food frequency questionnaire at baseline. Biochemical and anthropometric measurements were evaluated at both baseline (2006-2008) and after 3-year follow-up (2009-2011). MetS and its components were defined according to the diagnostic criteria proposed by NCEP ATP III, and the new cutoff points of waist circumference for Iranian adults. Multiple logistic regression models were used to estimate the occurrence of the MetS in each quartile of white rice consumption. Results: The mean age of participants was 37.8±12.3 y, and mean BMI was 26.0±4.5 kg/m2 at baseline. The prevalence of MetS in subjects with abdominal obesity was significantly higher (40.9 vs. 16.2%, P<0.01). There was no significant difference in white rice consumption between the two groups. Mean daily intake of white rice was 93±59, 209±58, 262±60 and 432±224 g/d, in the first to fourth quartiles of white rice, respectively. Stratified analysis by categories of waist circumference showed that higher consumption of white rice was more strongly related to the risk of metabolic syndrome in participants who had abdominal obesity (OR: 2.34, 95% CI:1.14-4.41 vs. OR:0.99, 95% CI:0.60-1.65) Conclusion: We demonstrated that higher consumption of white rice may be a risk for development of metabolic syndrome in adults with abdominal obesity.

Keywords: white rice, abdominal obesity, metabolic syndrome, food science, triglycerides

Procedia PDF Downloads 444
4241 Kinetics Analysis of Lignocellulose Hydrolysis and Glucose Consumption Using Aspergillus niger in Solid State

Authors: Akida Mulyaningtyas, Wahyudi Budi Sediawan

Abstract:

One decisive stage in bioethanol production from plant biomass is the hydrolysis of lignocellulosic materials into simple sugars such as glucose. The produced glucose is then fermented into ethanol. This stage is popularly done in biological method by using cellulase that is produced by certain fungi. As it is known, glucose is the main source of nutrition for most microorganisms. Therefore, cutting cellulose into glucose is actually an attempt of microorganism to provide nutrition for itself. So far, this phenomenon has received less attention while it is necessary to identify the quantity of sugar consumed by the microorganism. In this study, we examined the phenomenon of sugar consumption by microorganism on lignocellulosic hydrolysis. We used oil palm empty fruit bunch (OPEFB) as the source of lignocellulose and Aspergillus niger as cellulase-producing fungus. In Indonesia, OPEFB is plantation waste that is difficult to decompose in nature and causes environmental problems. First, OPEFB was pretreated with 1% of NaOH at 170 oC to destroy lignin that hindered A.niger from accessing cellulose. The hydrolysis was performed by growing A.niger on pretreated OPEFB in solid state to minimize the possibility of contamination. The produced glucose was measured every 24 hours for 9 days. We analyzed the kinetics of both reactions, i.e., hydrolysis and glucose consumption, simultaneously. The constants for both reactions were assumed to follow the Monod equation. The results showed that the reaction constant of glucose consumption (μC) was higher than of cellulose hydrolysis (μH), i.e., 11.8 g/L and 0.62 g/L for glucose consumption and hydrolysis respectively. However, in general, the reaction rate of hydrolysis is greater than of glucose consumption since the cellulose concentration as substrate in hydrolysis is much higher than glucose as substrate in the consumption reaction.

Keywords: Aspergillus niger, bioethanol, hydrolysis, kinetics

Procedia PDF Downloads 167
4240 Energy Efficient Resource Allocation and Scheduling in Cloud Computing Platform

Authors: Shuen-Tai Wang, Ying-Chuan Chen, Yu-Ching Lin

Abstract:

There has been renewal of interest in the relation between Green IT and cloud computing in recent years. Cloud computing has to be a highly elastic environment which provides stable services to users. The growing use of cloud computing facilities has caused marked energy consumption, putting negative pressure on electricity cost of computing center or data center. Each year more and more network devices, storages and computers are purchased and put to use, but it is not just the number of computers that is driving energy consumption upward. We could foresee that the power consumption of cloud computing facilities will double, triple, or even more in the next decade. This paper aims at resource allocation and scheduling technologies that are short of or have not well developed yet to reduce energy utilization in cloud computing platform. In particular, our approach relies on recalling services dynamically onto appropriate amount of the machines according to user’s requirement and temporarily shutting down the machines after finish in order to conserve energy. We present initial work on integration of resource and power management system that focuses on reducing power consumption such that they suffice for meeting the minimizing quality of service required by the cloud computing platform.

Keywords: cloud computing, energy utilization, power consumption, resource allocation

Procedia PDF Downloads 338
4239 Developing Well-Being Indicators and Measurement Methods as Illustrated by Projects Aimed at Preventing Obesity in Children

Authors: E. Grochowska-Niedworok, K. Brukało, M. Hadasik, M. Kardas

Abstract:

Consumption of vegetables by school children and adolescents is essential for their normal growth, development and health, but a significant minority of the world's population consumes the right amount of these products. The aim of the study was to evaluate the preferences and frequency of consumption of vegetables by school children and adolescents. It has been assumed that effectively implemented nutrition education programs should have an impact on increasing the frequency of vegetable consumption among the recipients. The study covered 514 students of five schools in the Opole Voivodeship aged 9 years to 22 years. The research tool was an author's questionnaire, which consisted of closed questions on the frequency of vegetable consumption and the use of 10 ways to treat them. Preferences and frequencies are shown in percentages, while correlations were estimated on the basis of Cramer`s V and gamma coefficients. In each of the examined age groups, the relationship between sex and vegetable consumption (the Cramer`s V coefficient value was 0.06 to 0.38) was determined and the various methods of culinary processing were used (V Craméra was 0.08 to 0.34). For both sexes, the relationship between age and frequency of vegetable consumption was shown (gamma values ranged from ~ 0.00 to 0.39) and different cooking methods (gamma values were 0.01 to 0.22). The most important determinant of nutritional choices is the taste and availability of products. The fact that they have a positive effect on their health is only in third position. As has been shown, obesity prevention programs can not only address nutrition education but also teach about new flavors and increase the availability of healthy foods. In addition, the frequency of vegetable consumption can be a good indicator reflecting the healthy behaviors of children and adolescents.

Keywords: children and adolescents, frequency, welfare rate, vegetables

Procedia PDF Downloads 202
4238 ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: oxygen reduction reaction, batteries, fuel cells, electrrocatalyst

Procedia PDF Downloads 113
4237 Synthesis and Characterization of SiO2/PVA/ SPEEK Composite Membrane for Proton Exchange Membrane Fuel Cell

Authors: M. Yusuf Ansari, Asad Abbas

Abstract:

Proton exchange membrane (PEM) fuel cell is a very efficient and promising energy conversion device. Although Nafion® is considered as benchmark materials for membrane used in PEM fuel cell, it has limitations that restrict its uses. Alternative materials for the membrane is always a challenging field for researchers. Sulfonated poly(ether ether ketone) (SPEEK) is one of the promising material for membrane due to its chemical and mechanical stability and lower cost. In this work, SPEEK is synthesized, and property booster such as silica nanoparticles and polyvinyl alcohol (PVA) are also added to analyse changes in properties such as water uptake, IEC, and conductivity. It has been found that adding PVA support high water uptake and proton conductivity but at large amount of PVA reduces the proton conductivity due to very high water uptake. Adding silica enhances water uptake and proton conductivity.

Keywords: PEM Membrane, sulfonated poly (ether ether ketone) (SPEEK), silica fumes (SiO2), polyvinyl alcohol (PVA)

Procedia PDF Downloads 281
4236 The Role of Natural Gas in Reducing Carbon Emissions

Authors: Abdulrahman Nami Almutairi

Abstract:

In the face of escalating climate change concerns, the concept of smart cities emerges as a promising approach to mitigate carbon emissions and move towards carbon neutrality. This paper provides a comprehensive review of the role of Natural Gas in achieving carbon neutrality. Natural gas has often been seen as a transitional fuel in the context of reducing carbon emissions. Its main role stems from being cleaner than coal and oil when burned for electricity generation and industrial processes. The urgent need to address this global issue has prompted a global shift towards cleaner energy sources and sustainable practices. In this endeavor, natural gas has emerged as a pivotal player, hailed for its potential to mitigate carbon emissions, and facilitate the transition to a low-carbon economy. With its lower carbon intensity compared to conventional fossil fuels, natural gas presents itself as a promising alternative for meeting energy demands while reducing environmental impact. As the world stands at a critical juncture in the fight against climate change, exploring the potential of natural gas as a transitional fuel offers insights into pathways towards a more sustainable and resilient future. By critically evaluating its opportunities and challenges, we can harness the potential of natural gas as a transitional fuel while advancing towards a cleaner, more resilient energy system. Through collaborative efforts and informed decision-making, we can pave the way for a future where energy is not only abundant but also environmentally sustainable and socially equitable.

Keywords: natural gas, clean fuel, carbon emissions, global warming, environmental protection

Procedia PDF Downloads 42
4235 The Enlightenment of the Ventilation System in Chinese Traditional Residence to Architecture Design

Authors: Wu Xingchun, Chen Xi

Abstract:

Nowadays, China's building energy consumption constitutes 25% of the total energy consumption, half of which was caused by air conditioning in both summer and winter. The ventilation system in Chinese traditional residence, which is totally passive and environmentally friendly, works effectively to create comfortable indoor environment. The research on the ventilation system in Chinese traditional residence can provide advancements to architecture design and energy savings to the society. Through field investigation, case analysis, strategy proposing and other methods, it comes out that the location and layout, the structure system and the design of atrium are the most important elements for a good ventilation system. Taking every factor into consideration, techniques are deployed extensively such as the organization of draught, the design of the thermal pressure ventilation system and the application of modern materials. With the enlightenment of the ventilation system in Chinese traditional residence, we can take effective measures to achieve low energy consumption and sustainable architecture.

Keywords: ventilation system, chinese traditional residence, energy consumption, sustainable architecture

Procedia PDF Downloads 705
4234 The Effect of Energy Consumption and Losses on the Nigerian Manufacturing Sector: Evidence from the ARDL Approach

Authors: Okezie A. Ihugba

Abstract:

The bounds testing ARDL (2, 2, 2, 2, 0) technique to cointegration was used in this study to investigate the effect of energy consumption and energy loss on Nigeria's manufacturing sector from 1981 to 2020. The model was created to determine the relationship between these three variables while also accounting for interactions with control variables such as inflation and commercial bank loans to the manufacturing sector. When the dependent variables are energy consumption and energy loss, the bounds tests show that the variables of interest are bound together in the long run. Because electricity consumption is a critical factor in determining manufacturing value-added in Nigeria, some intriguing observations were made. According to the findings, the relationship between LELC and LMVA is statistically significant. According to the findings, electricity consumption reduces manufacturing value-added. The target variable (energy loss) is statistically significant and has a positive sign. In Nigeria, a 1% reduction in energy loss increases manufacturing value-added by 36% in the first lag and 35% in the second. According to the study, the government should speed up the ongoing renovation of existing power plants across the country, as well as the construction of new gas-fired power plants. This will address a number of issues, including overpricing of electricity as a result of grid failure.

Keywords: L60, Q43, H81, C52, E31, ARDL, cointegration, Nigeria's manufacturing

Procedia PDF Downloads 176
4233 Estimation of Gaseous Pollutants at Kalyanpur, Dhaka City

Authors: Farhana Tarannum

Abstract:

Ambient (outdoor) air pollution is now recognized as an important problem, both nationally and worldwide. The concentrations of gaseous pollutants (SOx, NOx, CO and O3) have been determined from samples collected at Kallyanpur along Shamoli corridor in Dhaka city. Pollutants were determined in a sample collected at ground level and a roof of a 7-storied building. These pollutants are emitted largely from stationary sources like fossil fuel fired power plants, industrial plants, and manufacturing facilities as well as mobile sources. The incomplete combustion of fuel, wood and the Sulphur containing fuel used in the vehicles are one of the main causes of CO and SOx respectively in our natural environment. When the temperature of combustion in high enough and some of that nitrogen reacts with oxygen in the air, various nitrogen oxides (NOx) are then formed. The VOCs react with NOx in the presence of sunlight to form O3. UV Visible spectrophotometric method has been used for the determination of SOx, NOx and O3. The sensor type device was used for the estimation of CO. It was found that the air pollutants (CO, SOx, NOx and O3) of a sample collected at the roof of a building were lower compared to the ground level; it indicated that ground level people are mostly affected by the gaseous pollutants.

Keywords: gaseous pollutants, UV-visible spectrophotometry, ambient air quality, Dhaka city

Procedia PDF Downloads 345
4232 Time Series Modelling for Forecasting Wheat Production and Consumption of South Africa in Time of War

Authors: Yiseyon Hosu, Joseph Akande

Abstract:

Wheat is one of the most important staple food grains of human for centuries and is largely consumed in South Africa. It has a special place in the South African economy because of its significance in food security, trade, and industry. This paper modelled and forecast the production and consumption of wheat in South Africa in the time covid-19 and the ongoing Russia-Ukraine war by using annual time series data from 1940–2021 based on the ARIMA models. Both the averaging forecast and selected models forecast indicate that there is the possibility of an increase with respect to production. The minimum and maximum growth in production is projected to be between 3million and 10 million tons, respectively. However, the model also forecast a possibility of depression with respect to consumption in South Africa. Although Covid-19 and the war between Ukraine and Russia, two major producers and exporters of global wheat, are having an effect on the volatility of the prices currently, the wheat production in South African is expected to increase and meat the consumption demand and provided an opportunity for increase export with respect to domestic consumption. The forecasting of production and consumption behaviours of major crops play an important role towards food and nutrition security, these findings can assist policymakers and will provide them with insights into the production and pricing policy of wheat in South Africa.

Keywords: ARIMA, food security, price volatility, staple food, South Africa

Procedia PDF Downloads 100
4231 Effect of Multi-Walled Carbon Nanotubes on Fuel Cell Membrane Performance

Authors: Rabindranath Jana, Biswajit Maity, Keka Rana

Abstract:

The most promising clean energy source is the fuel cell, since it does not generate toxic gases and other hazardous compounds. Again the direct methanol fuel cell (DMFC) is more user-friendly as it is easy to be miniaturized and suited as energy source for automobiles as well as domestic applications and portable devices. And unlike the hydrogen used for some fuel cells, methanol is a liquid that is easy to store and transport in conventional tanks. The most important part of a fuel cell is its membrane. Till now, an overall efficiency for a methanol fuel cell is reported to be about 20 ~ 25%. The lower efficiency of the cell may be due to the critical factors, e.g. slow reaction kinetics at the anode and methanol crossover. The oxidation of methanol is composed of a series of successive reactions creating formaldehyde and formic acid as intermediates that contribute to slow reaction rates and decreased cell voltage. Currently, the investigation of new anode catalysts to improve oxidation reaction rates is an active area of research as it applies to the methanol fuel cell. Surprisingly, there are very limited reports on nanostructured membranes, which are rather simple to manufacture with different tuneable compositions and are expected to allow only the proton permeation but not the methanol due to their molecular sizing effects and affinity to the membrane surface. We have developed a nanostructured fuel cell membrane from polydimethyl siloxane rubber (PDMS), ethylene methyl co-acrylate (EMA) and multi-walled carbon nanotubes (MWNTs). The effect of incorporating different proportions of f-MWNTs in polymer membrane has been studied. The introduction of f-MWNTs in polymer matrix modified the polymer structure, and therefore the properties of the device. The proton conductivity, measured by an AC impedance technique using open-frame and two-electrode cell and methanol permeability of the membranes was found to be dependent on the f-MWNTs loading. The proton conductivity of the membranes increases with increase in concentration of f-MWNTs concentration due to increased content of conductive materials. Measured methanol permeabilities at 60oC were found to be dependant on loading of f-MWNTs. The methanol permeability decreased from 1.5 x 10-6 cm²/s for pure film to 0.8 x 10-7 cm²/s for a membrane containing 0.5wt % f-MWNTs. This is due to increasing proportion of f-MWNTs, the matrix becomes more compact. From DSC melting curves it is clear that the polymer matrix with f-MWNTs is thermally stable. FT-IR studies show good interaction between EMA and f-MWNTs. XRD analysis shows good crystalline behavior of the prepared membranes. Significant cost savings can be achieved when using the blended films which contain less expensive polymers.

Keywords: fuel cell membrane, polydimethyl siloxane rubber, carbon nanotubes, proton conductivity, methanol permeability

Procedia PDF Downloads 411
4230 A Consumption-Based Hybrid Life Cycle Assessment of Carbon Footprints in California: High Footprints in Small Urban Households

Authors: Jukka Heinonen

Abstract:

Higher density reduces distances, private car dependency and thus reduces greenhouse gas emissions (GHGs). As a result, increased density has been given a central role among urban development targets. However, it is not just travel behavior that changes along with density. Rather, the consumption patterns, or overall lifestyles, change along with changing urban structure, particularly with changing housing types and consumption opportunities. Furthermore, elevated consumption of services, more frequent flying and less intra-household sharing have been shown to potentially outweigh the gains from reduced driving in more dense urban settlements. In this study, the geography of carbon footprints (CFs) in California is analyzed paying close attention to the household size differences and the resulting economies-of-scale advantages and disadvantages. A hybrid life cycle assessment (LCA) framework is employed together with consumer expenditure data to assess the CFs. According to the study, small urban households have the highest CFs in California. Their transport related emissions are significantly lower than those of the residents of less urbanized areas, but higher emissions from other consumption categories, together with the low degree of sharing of goods, overweigh the gains. Two functional units, per capita and per household, are used to analyze the CFs and to demonstrate the importance of household size. The lifestyle impacts visible through the consumption data are also discussed. The study suggests that there are still significant gaps in our understanding of the premises of low-carbon human settlements.

Keywords: carbon footprint, life cycle assessment, lifestyle, household size, consumption, economies-of-scale

Procedia PDF Downloads 353
4229 Isolation and Characterization of an Ethanol Resistant Bacterium from Sap of Saccharum officinarum for Efficient Fermentation

Authors: Rukshika S Hewawasam, Sisira K. Weliwegamage, Sanath Rajapakse, Subramanium Sotheeswaran

Abstract:

Bio fuel is one of the emerging industries around the world due to arise of crisis in petroleum fuel. Fermentation is a cost effective and eco-friendly process in production of bio-fuel. So inventions in microbes, substrates, technologies in fermentation cause new modifications in fermentation. One major problem in microbial ethanol fermentation is the low resistance of conventional microorganisms to the high ethanol concentrations, which ultimately lead to decrease in the efficiency of the process. In the present investigation, an ethanol resistant bacterium was isolated from sap of Saccharum officinarum (sugar cane). The optimal cultural conditions such as pH, temperature, incubation period, and microbiological characteristics, morphological characteristics, biochemical characteristics, ethanol tolerance, sugar tolerance, growth curve assay were investigated. Isolated microorganism was tolerated to 18% (V/V) of ethanol concentration in the medium and 40% (V/V) glucose concentration in the medium. Biochemical characteristics have revealed as Gram negative, non-motile, negative for Indole test ,Methyl Red test, Voges- Proskauer`s test, Citrate Utilization test, and Urease test. Positive results for Oxidase test was shown by isolated bacterium. Sucrose, Glucose, Fructose, Maltose, Dextrose, Arabinose, Raffinose, Lactose, and Sachcharose can be utilized by this particular bacterium. It is a significant feature in effective fermentation. The fermentation process was carried out in glucose medium under optimum conditions; pH 4, temperature 30˚C, and incubated for 72 hours. Maximum ethanol production was recorded as 12.0±0.6% (V/V). Methanol was not detected in the final product of the fermentation process. This bacterium is especially useful in bio-fuel production due to high ethanol tolerance of this microorganism; it can be used to enhance the fermentation process over conventional microorganisms. Investigations are currently conducted on establishing the identity of the bacterium

Keywords: bacterium, bio-fuel, ethanol tolerance, fermentation

Procedia PDF Downloads 339
4228 Determining the Policy Space of the Partido Socialista Obrero Español Government in Managing Spain's Economic and Financial Crisis

Authors: A. Pascual Ramsay

Abstract:

Accounts of the management of the economic and euro crisis in Spain have been dominated by an emphasis on external constraints. However, this approach leaves unanswered important questions about the role of domestic political factors. Using systematic qualitative primary research and employing elite interviewing and process tracing, this paper aims to fill this gap for the period of the Partido Socialista Obrero Español (PSOE) administration. The paper shows that domestic politics played a crucial role in the management of the crisis, most importantly by determining the shape of the measures undertaken. In its three distinct stages – downplaying/inaction, reaction/stimulus, and austerity/reform – the PSOE's response was certainly constrained by external factors, most notably EMU membership and the actions of sovereign-bond investors, the ECB and Germany. Yet while these external constraints forced the government to act, domestic political factors fundamentally shaped the content of key measures: the fiscal stimulus, the labour, financial and pension reforms, the refusal to accept a bailout or the reform of the Constitution. Seven factors were particularly influential: i) electoral and political cost, ii) party and partisanship, iii) organised interests, iv) domestic institutions, v) ideological preferences, vi) ineffective decision-making, and vii) judgement and personal characteristics of decision-makers. In conclusion, domestic politics played an important role in the management of the crisis, a role that has been underestimated by dominant approaches focusing on external constraints and weak domestic policy autonomy. The findings provide empirical evidence to support research agendas that identify significant state discretion in the face of international economic integration and an important role for domestic political factors such as institutions, material interests, partisanship and ideology in shaping economic outcomes.

Keywords: economic crisis, Euro, PSOE, Spain

Procedia PDF Downloads 120
4227 Indium Oxide/Scandium Doping Yttria-Stabilized Zirconia Composite Films as Electrolytes for Solid Oxide Fuel Cells

Authors: Yong-Jie Lin, Yi-Feng Lin

Abstract:

In this study, scandium-doped yttria-stabilized zirconia (ScYSZ) and In2O3 nanoparticles (NPs) with cubic crystalline structures were successfully prepared using a facile hydrothermal process. ScYSZ films were prepared by the pressing of ScYSZ NPs and were further used for the electrolyte of solid oxide fuel cells (SOFCs). To increase the ionic conductivity of the ScYSZ electrolyte, different amounts of In2O3 NPs [0 wt% (X(In2O3)=0), 0.21 wt% (X(In2O3)=0.001) and 1.13 wt% (X(In2O3)=0.005)] were doped in the ScYSZ films to increase their oxygen vacancy. The result shows In2O3 NP/ScYSZ films with 1.13 wt% (X(In2O3 )=0.005) In2O3 NPs doping are with largest ionic conductivity of 0.057Ω-1 cm-1 at 900oC, which is 1.6 and 1.8 times higher than YSZ and In2O3 NP/ScYSZ films with 0.21 wt% (X(In2O3)=0.001) In2O3 NPs doping, respectively.

Keywords: indium oxide/scandium doping Yttria-stabilized zirconia, solid oxide fuel cells, scandium-doped yttria-stabilized zirconia, indium oxide

Procedia PDF Downloads 462
4226 Synthesis of La0.8Sr0.05Ca0.15Fe0.8Co0.2O3-δ -Ce0.9Gd0.1O1.95 Composite Cathode Material for Solid Oxide Fuel Cell with Lanthanum and Cerium Recycled from Wasted Glass Polishing Powder

Authors: Jun-Lun Jiang, Bing-Sheng Yu

Abstract:

Processing of flat-panel displays generates huge amount of wasted glass polishing powder, with high concentration of cerium and other elements such as lanthanum. According to the current statistics, consumption of polishing powder was approximately ten thousand tons per year in the world. Nevertheless, wasted polishing powder was usually buried or burned. If the lanthanum and cerium compounds in the wasted polishing powder could be recycled, that will greatly reduce enterprise cost and implement waste circulation. Cathodes of SOFCs are the principal consisting of rare earth elements such as lanthanum and cerium. In this study, we recycled the lanthanum and cerium from wasted glass polishing powder by acid-solution method, and synthesized La0.8Sr0.05Ca0.15Fe0.8Co0.8O3-δ and Gd0.1Ce0.9O2 (LSCCF-GDC) composite cathode material for SOFCs by glycinenitrate combustion (GNP) method. The results show that the recovery rates of lanthanum and cerium could accomplish up to 80% and 100% under 10N nitric acid solution within one hour. Comparing with the XRD data of the commercial LSCCF-GDC powder and the LSCCF-GDC product synthesized with chemicals, we find that the LSCCF-GDC was successfully synthesized with the recycled La & Ce solution by GNP method. The effect of adding ammonia to the product was also discussed, the grain size is finer and recovery rate of the product is higher without the addition of ammonia to the solution.

Keywords: glass polishing powder, acid solution, recycling, composite cathodes of solid oxide fuel, cell (SOFC), perovskite, glycine-nitrate combustion(GNP) method

Procedia PDF Downloads 271
4225 The Influence of Chinese Philosophic-Religious Traditions on Chinese Consumption Behaviour: Findings from the Taoist Case Study

Authors: Haiping Zhu

Abstract:

The purpose of this work-in-progress paper is to explore how the Chinese philosophic-religious tradition of Taoism impacts on the consumption behaviour of contemporary Chinese consumers. Although much cultural research has been conducted on Chinese consumption behaviours, most studies have approached the subject from Western perspectives. Examination of the limited literature indicates a gap in the knowledge of the relationship of traditional Chinese Taoism philosophy and Chinese consumption behaviour. To bridge this gap, this study examines Chinese consumption behaviour at a Taoist-related Chinese religious festival - the DuanWu festival - in order to seek some understanding of how the Taoism philosophic-religious tradition influences Chinese consumption behaviour from the point of view of the individuals involved. It focuses attention on their expression of Taoism cultural values, purchasing experience and subsequent consumption behaviours. This study undertook multiple methods for Taoist case study data collection: accompanied shopping with Taoists before DuanWu Festival; participant observations during DuanWu Festival; and in-depth interviews in order to explore Taoists consumption behaviours at the end of the Festival. Specifically, the finding from the Taoist case study corroborates and details the influence of the Taoism doctrine: man–nature orientation, Fenshui, ecological effect, and ecological knowledge, on their attitudes toward green purchasing behaviour. Findings from this Taoist case study - one of a series of three Chinese philosophic religious tradition case studies - contribute to the deeper understanding of contemporary Chinese consumers from a non-Western viewpoint and offer initial insights for global marketers to differentiate consumer needs and develop effective marketing strategies.

Keywords: consumer behaviour, culture values, green purchase behaviour, Taoism

Procedia PDF Downloads 252
4224 A Study on the Performance Improvement of Zeolite Catalyst for Endothermic Reaction

Authors: Min Chang Shin, Byung Hun Jeong, Jeong Sik Han, Jung Hoon Park

Abstract:

In modern times, as flight speeds have increased due to improvements in aircraft and missile engine performance, thermal loads have also increased. Because of the friction heat of air flow with high speed on the surface of the vehicle, it is not easy to cool the superheat of the vehicle by the simple air cooling method. For this reason, a cooling method through endothermic heat is attracting attention by using a fuel that causes an endothermic reaction in a high-speed vehicle. There are two main ways of cooling the fuel through the endothermic reaction. The first is physical heat absorption. When the temperature rises, there is a sensible heat that accompanies it. The second is the heat of reaction corresponding to the chemical heat absorption, which absorbs heat during the fuel decomposes. Generally, since the decomposition reaction of the fuel proceeds at a high temperature, it does not achieve a great efficiency in cooling the high-speed flight body. However, when the catalyst is used, decomposition proceeds at a low temperature thereby increasing the cooling efficiency. However, when the catalyst is used as a powder, the catalyst enters the engine and damages the engine or the catalyst can deteriorate the performance due to the sintering. On the other hand, when used in the form of pellets, catalyst loss can be prevented. However, since the specific surface of pellet is small, the efficiency of the catalyst is low. And it can interfere with the flow of fuel, resulting in pressure loss and problems with fuel injection. In this study, we tried to maximize the performance of the catalyst by preparing a hollow fiber type pellet for zeolite ZSM-5, which has a higher amount of heat absorption, than other conventional pellets. The hollow fiber type pellet was prepared by phase inversion method. The hollow fiber type pellet has a finger-like pore and sponge-like pore. So it has a higher specific surface area than conventional pellets. The crystal structure of the prepared ZSM-5 catalyst was confirmed by XRD, and the characteristics of the catalyst were analyzed by TPD/TPR device. This study was conducted as part of the Basic Research Project (Pure-17-20) of Defense Acquisition Program Administration.

Keywords: catalyst, endothermic reaction, high-speed vehicle cooling, zeolite, ZSM-5

Procedia PDF Downloads 307
4223 Synthesis and Characterization of Sulfonated Aromatic Hydrocarbon Polymers Containing Trifluoromethylphenyl Side Chain for Proton Exchange Membrane Fuel Cell

Authors: Yi-Chiang Huang, Hsu-Feng Lee, Yu-Chao Tseng, Wen-Yao Huang

Abstract:

Proton exchange membranes as a key component in fuel cells have been widely studying over the past few decades. As proton exchange, membranes should have some main characteristics, such as good mechanical properties, low oxidative stability and high proton conductivity. In this work, trifluoromethyl groups had been introduced on polymer backbone and phenyl side chain which can provide densely located sulfonic acid group substitution and also promotes solubility, thermal and oxidative stability. Herein, a series of novel sulfonated aromatic hydrocarbon polyelectrolytes was synthesized by polycondensation of 4,4''''-difluoro-3,3''''- bis(trifluoromethyl)-2'',3''-bis(3-(trifluoromethyl)phenyl)-1,1':4',1'':4'',1''':4''',1''''-quinquephenyl with 2'',3''',5'',6''-tetraphenyl-[1,1':4',1'': 4'',1''':4''',1''''-quinquephenyl]-4,4''''-diol and post-sulfonated was through chlorosulfonic acid to given sulfonated polymers (SFC3-X) possessing ion exchange capacities ranging from 1.93, 1.91 and 2.53 mmol/g. ¹H NMR and FT-IR spectroscopy were applied to confirm the structure and composition of sulfonated polymers. The membranes exhibited considerably dimension stability (10-27.8% in length change; 24-56.5% in thickness change) and excellent oxidative stability (weight remain higher than 97%). The mechanical properties of membranes demonstrated good tensile strength on account of the high rigidity multi-phenylated backbone. Young's modulus were ranged 0.65-0.77GPa which is much larger than that of Nafion 211 (0.10GPa). Proton conductivities of membranes ranged from 130 to 240 mS/cm at 80 °C under fully humidified which were comparable or higher than that of Nafion 211 (150 mS/cm). The morphology of membranes was investigated by transmission electron microscopy which demonstrated a clear hydrophilic/hydrophobic phase separation with spherical ionic clusters in the size range of 5-20 nm. The SFC3-1.97 single fuel cell performance demonstrates the maximum power density at 1.08W/cm², and Nafion 211 was 1.24W/cm² as a reference in this work. The result indicated that SFC3-X are good candidates for proton exchange membranes in fuel cell applications. Fuel cell of other membranes is under testing.

Keywords: fuel cells, polyelectrolyte, proton exchange membrane, sulfonated polymers

Procedia PDF Downloads 453
4222 Environmental Evaluation of Alternative/Renewable Fuels Technology

Authors: Muhammad Hadi Ibrahim

Abstract:

The benefits of alternative/renewable fuels in general and a study of the environmental impacts of biofuels in particular have been reviewed in this paper. It is a known fact that, energy generation using fossil fuel produces many important pollutants including; nitrogen oxides, hydrocarbons, soot, dust, smoke and other particulate harmful matter. It’s believed that if carbon dioxide levels continue to increase drastically, the planet will become warmer and will most likely result in a variety of negative impacts including; sea-level rise, extreme and unpredictable weather events and an increased frequency of draughts in inland agricultural zones. Biofuels such as alcohols, biogas, etc. appear to be more viable alternatives, especially for use as fuels in diesel engines. The substitution of fossil fuel through increased utilization of biofuels produced in a sustainable manner, can contribute immensely towards a cleaner environment, reduction in greenhouse gas emissions and mitigation of climate change. Stakeholders in the energy sector can be sensitized by the findings of the research study and to consider the possible adverse effects in developing technologies for the production and combustion of biofuels.

Keywords: emission, energy, renewable/alternative fuel, environment, pollution

Procedia PDF Downloads 204
4221 Oxidation and Reduction Kinetics of Ni-Based Oxygen Carrier for Chemical Looping Combustion

Authors: J. H. Park, R. H. Hwang, K. B. Yi

Abstract:

Carbon Capture and Storage (CCS) is one of the important technology to reduce the CO₂ emission from large stationary sources such as a power plant. Among the carbon technologies for power plants, chemical looping combustion (CLC) has attracted much attention due to a higher thermal efficiency and a lower cost of electricity. A CLC process is consists of a fuel reactor and an air reactor which are interconnected fluidized bed reactor. In the fuel reactor, an oxygen carrier (OC) is reduced by fuel gas such as CH₄, H₂, CO. And the OC is send to air reactor and oxidized by air or O₂ gas. The oxidation and reduction reaction of OC occurs between the two reactors repeatedly. In the CLC system, high concentration of CO₂ can be easily obtained by steam condensation only from the fuel reactor. It is very important to understand the oxidation and reduction characteristics of oxygen carrier in the CLC system to determine the solids circulation rate between the air and fuel reactors, and the amount of solid bed materials. In this study, we have conducted the experiment and interpreted oxidation and reduction reaction characteristics via observing weight change of Ni-based oxygen carrier using the TGA with varying as concentration and temperature. Characterizations of the oxygen carrier were carried out with BET, SEM. The reaction rate increased with increasing the temperature and increasing the inlet gas concentration. We also compared experimental results and adapted basic reaction kinetic model (JMA model). JAM model is one of the nucleation and nuclei growth models, and this model can explain the delay time at the early part of reaction. As a result, the model data and experimental data agree over the arranged conversion and time with overall variance (R²) greater than 98%. Also, we calculated activation energy, pre-exponential factor, and reaction order through the Arrhenius plot and compared with previous Ni-based oxygen carriers.

Keywords: chemical looping combustion, kinetic, nickel-based, oxygen carrier, spray drying method

Procedia PDF Downloads 207
4220 Establishing Combustion Behaviour for Refuse Derived Fuel Firing at Kiln Inlet through Computational Fluid Dynamics at a Cement Plant in India

Authors: Prateek Sharma, Venkata Ramachandrarao Maddali, Kapil Kukreja, B. N. Mohapatra

Abstract:

Waste management is one of the pressing issues of India. Several initiatives by the Indian Government, including the recent one “Swachhata hi Seva” campaign launched by Prime Minister on 15th August 2018, can be one of the game changers to waste disposal. Under this initiative, the government, cement industry and other stakeholders are working hand in hand to dispose of single-use plastics in cement plants in rotary kilns. This is an exemplary effort and a move that establishes the Indian Cement industry as one of the key players in a circular economy. One of the cement plants in Southern India has been mandated by the state government to co-process shredded plastic and refuse-derived fuel (RDF) available in nearby regions as an alternative fuel in their cement plant. The plant has set a target of 25 % thermal substitution rate (TSR) by RDF in the next five years. Most of the cement plants in India and abroad have achieved high TSR through pre calciner firing. But the cement plant doesn’t have the precalciner and has to achieve this daunting task of 25 % TSR by firing through the main kiln burner. Since RDF is a heterogeneous waste with the change in fuel quality, it is difficult to achieve this task; hence plant has to resort to firing some portion of RDF/plastics at kiln inlet. But kiln inlet has reducing conditions as observed during measurements) under baseline condition. The combustion behavior of RDF of different sizes at different firing locations in riser was studied with the help of a computational fluid dynamics tool. It has been concluded that RDF above 50 mm size results in incomplete combustion leading to CO formation. Moreover, best firing location appears to be in the bottom portion of the kiln riser.

Keywords: kiln inlet, plastics, refuse derived fuel, thermal substitution rate

Procedia PDF Downloads 126
4219 Designing Elevations by Photocatalysis of Precast Concrete Materials, in Reducing Energy Consumption of Buildings: Case Study of Tabriz

Authors: Mahsa Faramarzi Asli, Mina Sarabi

Abstract:

The important issues that are addressed in most advanced industrial countries in recent decades, discussion of minimizing heat losses through the buildings. And the most influential parameters in the calculation of building energy consumption, is heat exchange, which takes place between the interior and outer space. One of the solutions to reduce heat loss is using materials with low thermal conductivity. The purpose of this article, is the effect of using some frontages with nano-concrete photo catalytic precast materials for reducing energy consumption in buildings. For this purpose, estimating the energy dissipation through the facade built with nano-concrete photo catalytic precast materials on a sample building in Tabriz city by BCS 19 software ( topic 19 simulation) is done and the results demonstrate reduce heat loss through the facade nano- concrete.

Keywords: nano materials, optimize energy consumption, themal, stability

Procedia PDF Downloads 562
4218 Aerodynamic Analysis of Multiple Winglets for Aircrafts

Authors: S. Pooja Pragati, B. Sudarsan, S. Raj Kumar

Abstract:

This paper provides a practical design of a new concept of massive Induced Drag reductions of stream vise staggered multiple winglets. It is designed to provide an optimum performance of a winglet from conventional designs. In preparing for a mechanical design, aspects such as shape, dimensions are analyzed to yield a huge amount of reduction in fuel consumption and increased performance. Owing to its simplicity of application and effectiveness we believe that it will enable us to consider its enhanced version for the grid effect of the staggered multiple winglets on the deflected mass flow of the wing system. The objective of the analysis were to compare the aerodynamic characteristics of two winglet configuration and to investigate the performance of two winglets shape simulated at selected cant angle of 0,45,60 degree.

Keywords: multiple winglets, induced drag, aerodynamics analysis, low speed aircrafts

Procedia PDF Downloads 479
4217 A Comparative Study of the Impact of Membership in International Climate Change Treaties and the Environmental Kuznets Curve (EKC) in Line with Sustainable Development Theories

Authors: Mojtaba Taheri, Saied Reza Ameli

Abstract:

In this research, we have calculated the effect of membership in international climate change treaties for 20 developed countries based on the human development index (HDI) and compared this effect with the process of pollutant reduction in the Environmental Kuznets Curve (EKC) theory. For this purpose, the data related to The real GDP per capita with 2010 constant prices is selected from the World Development Indicators (WDI) database. Ecological Footprint (ECOFP) is the amount of biologically productive land needed to meet human needs and absorb carbon dioxide emissions. It is measured in global hectares (gha), and the data retrieved from the Global Ecological Footprint (2021) database will be used, and we will proceed by examining step by step and performing several series of targeted statistical regressions. We will examine the effects of different control variables, including Energy Consumption Structure (ECS) will be counted as the share of fossil fuel consumption in total energy consumption and will be extracted from The United States Energy Information Administration (EIA) (2021) database. Energy Production (EP) refers to the total production of primary energy by all energy-producing enterprises in one country at a specific time. It is a comprehensive indicator that shows the capacity of energy production in the country, and the data for its 2021 version, like the Energy Consumption Structure, is obtained from (EIA). Financial development (FND) is defined as the ratio of private credit to GDP, and to some extent based on the stock market value, also as a ratio to GDP, and is taken from the (WDI) 2021 version. Trade Openness (TRD) is the sum of exports and imports of goods and services measured as a share of GDP, and we use the (WDI) data (2021) version. Urbanization (URB) is defined as the share of the urban population in the total population, and for this data, we used the (WDI) data source (2021) version. The descriptive statistics of all the investigated variables are presented in the results section. Related to the theories of sustainable development, Environmental Kuznets Curve (EKC) is more significant in the period of study. In this research, we use more than fourteen targeted statistical regressions to purify the net effects of each of the approaches and examine the results.

Keywords: climate change, globalization, environmental economics, sustainable development, international climate treaty

Procedia PDF Downloads 71