Search results for: fuel cell membrane
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5545

Search results for: fuel cell membrane

5545 Experimental Investigation of the Effect of Temperature on A PEM Fuel Cell Performance

Authors: Remzi Şahin, Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated. The efficiency of energy conversion in PEM fuel cells is dependent on the catalytic activities of the catalysts used in the cathode and anode of membrane electrode assemblies. Membrane is considered the heart of PEM fuel cells without which they cannot produce electricity. PEM fuel cell performance increased with coating carbon nanotube (CNT). CNT show a unique combination of stiffness, strength, and tenacity compared to other fiber materials which usually lack one or more of these properties. Two different experiments were performed and the membrane performance has been determined by repeating the two experiments that were done before coating. The purposes of these experiments are the observation of power change due to a temperature change in the same voltage value.

Keywords: carbon nanotube (CNT), proton exchange membrane (PEM), fuel cell, spin method

Procedia PDF Downloads 343
5544 Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC

Authors: Gürol Önal, Kevser Dinçer, Salih Yayla

Abstract:

In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC.

Keywords: fuel cell, Polymer Electrolyte Membrane (PEM), membrane, spin method

Procedia PDF Downloads 522
5543 Study on Pressurized Reforming System for the Application of Hydrogen Permeable Membrane Applying to Proton Exchange Membrane Fuel Cell

Authors: Kwangho Lee, Joongmyeon Bae

Abstract:

Fuel cells are spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen fuel for a fuel cell is obtained from a number of sources. Most of fuel cell for APU(Auxiliary power unit) system using diesel fuel as a hydrogen source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC(Proton exchange membrane fuel cell) requires a large volume and complex CO removal system for the lower the CO level to less than 10ppm. In addition, the PROX(Preferential Oxidation) reaction cooling load is needed because of the strong exothermic reaction. However, the hydrogen separation membrane that we propose can be eliminated many disadvantages, because the volume is small and permeates only pure hydrogen. In this study, we were conducted to the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen permeable membrane application.

Keywords: hydrogen, diesel, reforming, ATR, WGS, PROX, membrane, pressure

Procedia PDF Downloads 378
5542 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling

Authors: Ivan Tolj

Abstract:

Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.

Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management

Procedia PDF Downloads 235
5541 Real Time Monitoring and Control of Proton Exchange Membrane Fuel Cell in Cognitive Radio Environment

Authors: Prakash Thapa, Gye Choon Park, Sung Gi Kwon, Jin Lee

Abstract:

The generation of electric power from a proton exchange membrane (PEM) fuel cell is influenced by temperature, pressure, humidity, flow rate of reactant gaseous and partial flooding of membrane electrode assembly (MEA). Among these factors, temperature and cathode flooding are the most affecting parameters on the performance of fuel cell. This paper describes the detail design and effect of these parameters on PEM fuel cell. Performance of all parameters was monitored, analyzed and controlled by using 5KWatt PEM fuel cell. In the real-time data communication for remote monitoring and control of PEM fuel cell, a normalized least mean square algorithm in cognitive radio environment is used. By the use of this method, probability of energy signal detection will be maximum which solved the frequency shortage problem. So the monitoring system hanging out and slow speed problem will be solved. Also from the control unit, all parameters are controlled as per the system requirement. As a result, PEM fuel cell generates maximum electricity with better performance.

Keywords: proton exchange membrane (PEM) fuel cell, pressure, temperature and humidity sensor (PTH), efficiency curve, cognitive radio network (CRN)

Procedia PDF Downloads 425
5540 Performance Evaluation of a Fuel Cell Membrane Electrode Assembly Prepared from a Reinforced Proton Exchange Membrane

Authors: Yingjeng James Li, Yun Jyun Ou, Chih Chi Hsu, Chiao-Chih Hu

Abstract:

A fuel cell is a device that produces electric power by reacting fuel and oxidant electrochemically. There is no pollution produced from a fuel cell if hydrogen is employed as the fuel. Therefore, a fuel cell is considered as a zero emission device and is a source of green power. A membrane electrode assembly (MEA) is the key component of a fuel cell. It is, therefore, beneficial to develop MEAs with high performance. In this study, an MEA for proton exchange membrane fuel cell (PEMFC) was prepared from a 15-micron thick reinforced PEM. The active area of such MEA is 25 cm2. Carbon supported platinum (Pt/C) was employed as the catalyst for both anode and cathode. The platinum loading is 0.6 mg/cm2 based on the sum of anode and cathode. Commercially available carbon papers coated with a micro porous layer (MPL) serve as gas diffusion layers (GDLs). The original thickness of the GDL is 250 μm. It was compressed down to 163 μm when assembled into the single cell test fixture. Polarization curves were taken by using eight different test conditions. At our standard test condition (cell: 70 °C; anode: pure hydrogen, 100%RH, 1.2 stoic, ambient pressure; cathode: air, 100%RH, 3.0 stoic, ambient pressure), the cell current density is 1250 mA/cm2 at 0.6 V, and 2400 mA/cm2 at 0.4 V. At self-humidified condition and cell temperature of 55 °C, the cell current density is 1050 mA/cm2 at 0.6 V, and 2250 mA/cm2 at 0.4 V. Hydrogen crossover rate of the MEA is 0.0108 mL/min*cm2 according to linear sweep voltammetry experiments. According to the MEA’s Pt loading and the cyclic voltammetry experiments, the Pt electrochemical surface area is 60 m2/g. The ohmic part of the impedance spectroscopy results shows that the membrane resistance is about 60 mΩ*cm2 when the MEA is operated at 0.6 V.

Keywords: fuel cell, membrane electrode assembly, proton exchange membrane, reinforced

Procedia PDF Downloads 262
5539 Anion Exchange Nanocomposite Membrane Doped with ZnO-Nanoparticles for Direct Methanol Alkaline Fuel Cell

Authors: Phumlani Msomi, Patrick Nonjola, Patrick Ndungu, James Ramontja

Abstract:

A series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anion exchange membrane (AEM) were successfully fabricated and characterized for methanol alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. To confirm successful fabrication, FT-IR spectroscopy and nuclear magnetic resonance (¹H NMR and HMBC ¹⁵N NMR) were used. The membrane properties were enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a higher ion exchange capacity (IEC) of 3.72 mmol.g⁻¹and a 30-fold ion conductivity (IC) increase of the nanocomposite due to no (zero (0)) methanol permeability at 30 °C and increased water uptake. The QPPO/PSF/2% ZnO composite retained over 80 % of its initial IC when evaluated for alkaline stability at room temperature. The maximum power output reached for the membrane electrode assembly (MEA) constructed with QPPO/PSF/2%ZnO is 69 mW.cm⁻², which is about three times more than the parent QPPO membrane. The above results indicate that QPPO/PSF-ZnO is a good candidate as an anion exchange membrane for fuel cell application.

Keywords: anion exchange membrane, fuel cell, zinc oxide, nanocomposite

Procedia PDF Downloads 235
5538 Comparison of Performance of Proton Exchange Membrane Fuel Cell Membrane Electrode Assemblies Prepared from 10 and 15-Micron Proton Exchange Membranes

Authors: Yingjeng James Li, Chiao-Chih Hu

Abstract:

Membrane electrode assemblies (MEAs) for proton exchange membrane fuel cell (PEMFC) applications were prepared by using 10 and 15 um PEMs. Except for different membrane thicknesses, these MEAs were prepared by the same conditions. They were prepared by using catalyst coated membrane (CCM) process. The catalyst employed is 40% Pt/C, and the Pt loading is 0.5mg/cm² for the sum of anode and cathode. Active area of the MEAs employed in this study is 5cm*5cm=25cm². In polarization measurements, the flow rates were always set at 1.2 stoic for anode and 3.0 stoic for cathode. The outlets were in open-end mode. The flow filed is tri-serpentine design. The cell temperatures and the humidification conditions were varied for the purpose of MEA performance observations. It was found that the performance of these two types of MEAs is about the same at fully or partially humidified operation conditions; however, 10um MEA exhibits higher current density in dry or low humidified conditions. For example, at 70C cell, 100% RH, and 0.6V condition, both MEAs have similar current density which is 1320 and 1342mA/cm² for 15um and 10um product, respectively. However, when in operation without external humidification, 10um MEA can produce 1085mA/cm²; whereas 15um MEA produces only 720mA/cm².

Keywords: fuel cell, membrane electrode assembly, PEFC, PEMFC, proton exchange membrane

Procedia PDF Downloads 205
5537 Optimal Feedback Linearization Control of PEM Fuel Cell

Authors: E. Shahsavari, R. Ghasemi, A. Akramizadeh

Abstract:

This paper presents a new method to design nonlinear feedback linearization controller for polymer electrolyte membrane fuel cells (PEMFCs). A nonlinear controller is designed based on nonlinear model to prolong the stack life of PEM fuel cells. Since it is known that large deviations between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell, feedback linearization is applied to the PEM fuel cell system so that the deviation can be kept as small as possible during disturbances or load variations. To obtain an accurate feedback linearization controller, tuning the linear parameters are always important. So in proposed study NSGA_II method was used to tune the designed controller in aim to decrease the controller tracking error. The simulation result showed that the proposed method tuned the controller efficiently.

Keywords: nonlinear dynamic model, polymer electrolyte membrane fuel cells, feedback linearization, optimal control, NSGA_II

Procedia PDF Downloads 483
5536 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms

Authors: M. Dezvarei, S. Morovati

Abstract:

In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.

Keywords: clonal algorithm, proton exchange membrane fuel cell (PEMFC), particle swarm optimization (PSO), real-valued mutation (RVM)

Procedia PDF Downloads 307
5535 Air Conditioning Variation of 1kW Open-Cathode Proton Exchange Membrane (PEM) Fuel Cell

Authors: Mohammad Syahirin Aisha, Khairul Imran Sainan

Abstract:

The PEM fuel cell is a device that generate electric by electrochemical reaction between hydrogen fuel and oxygen in the fuel cell stack. PEM fuel cell consists of an anode (hydrogen supply), a cathode (oxygen supply) and an electrolyte that allow charges move between the two positions of the fuel cell. The only product being developed after the reaction is water (H2O) and heat as the waste which does not emit greenhouse gasses. The performance of fuel cell affected by numerous parameters. This study is restricted to cathode parameters that affect fuel cell performance. At the anode side, the reactant is not going through any changes. Experiments with variation in air velocity (3m/s, 6m/s and 9m/s), temperature (10oC, 20oC, 35oC) and relative humidity (50%, 60%, and 70%) have been carried out. The experiments results are presented in the form of fuel cell stack power output over time, which demonstrate the impacts of the various air condition on the execution of the PEM fuel cell. In this study, the experimental analysis shows that with variation of air conditions, it gives different fuel cell performance behavior. The maximum power output of the experiment was measured at an ambient temperature of 25oC with relative humidity and 9m/s velocity of air.

Keywords: air-breathing PEM fuel cell, cathode side, performance, variation in air condition

Procedia PDF Downloads 430
5534 Energy Management of Hybrid Energy Source Composed of a Fuel Cell and Supercapacitor for an Electric Vehicle

Authors: Mejri Achref

Abstract:

This paper proposes an energy management strategy for an electrical hybrid vehicle which is composed of a Proton Exchange Membrane (PEM) fuel cell and a supercapacitor storage device. In this paper, the mathematical model for the proposed power train, comprising the PEM Fuel Cell, supercapacitor, boost converter, inverter, and vehicular structure, was modeled in MATLAB/Simulink. The proposed algorithm is evaluated for the Highway Fuel Economy Test (HWFET) driving cycle. The obtained results demonstrate the effectiveness of the proposed energy management strategy in reduction of hydrogen consumption.

Keywords: proton exchange membrane fuel cell, hybrid vehicle, hydrogen consumption, energy management strategy

Procedia PDF Downloads 141
5533 Synthesis and Characterization of SiO2/PVA/ SPEEK Composite Membrane for Proton Exchange Membrane Fuel Cell

Authors: M. Yusuf Ansari, Asad Abbas

Abstract:

Proton exchange membrane (PEM) fuel cell is a very efficient and promising energy conversion device. Although Nafion® is considered as benchmark materials for membrane used in PEM fuel cell, it has limitations that restrict its uses. Alternative materials for the membrane is always a challenging field for researchers. Sulfonated poly(ether ether ketone) (SPEEK) is one of the promising material for membrane due to its chemical and mechanical stability and lower cost. In this work, SPEEK is synthesized, and property booster such as silica nanoparticles and polyvinyl alcohol (PVA) are also added to analyse changes in properties such as water uptake, IEC, and conductivity. It has been found that adding PVA support high water uptake and proton conductivity but at large amount of PVA reduces the proton conductivity due to very high water uptake. Adding silica enhances water uptake and proton conductivity.

Keywords: PEM Membrane, sulfonated poly (ether ether ketone) (SPEEK), silica fumes (SiO2), polyvinyl alcohol (PVA)

Procedia PDF Downloads 243
5532 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications

Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani

Abstract:

A proton exchange membrane has been developed for Direct Methanol Fuel Cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt. % compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was cross-linked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.

Keywords: composite membrane, electrospinning, fuel cell, nanofibers

Procedia PDF Downloads 229
5531 Study on the Impact of Power Fluctuation, Hydrogen Utilization, and Fuel Cell Stack Orientation on the Performance Sensitivity of PEM Fuel Cell

Authors: Majid Ali, Xinfang Jin, Victor Eniola, Henning Hoene

Abstract:

The performance of proton exchange membrane (PEM) fuel cells is sensitive to several factors, including power fluctuations, hydrogen utilization, and the quality orientation of the fuel cell stack. In this study, we investigate the impact of these factors on the performance of a PEM fuel cell. We start by analyzing the power fluctuations that are typical in renewable energy systems and their effects on the 50 Watt fuel cell's performance. Next, we examine the hydrogen utilization rate (0-1000 mL/min) and its impact on the cell's efficiency and durability. Finally, we investigate the quality orientation (three different positions) of the fuel cell stack, which can significantly affect the cell's lifetime and overall performance. The basis of our analysis is the utilization of experimental results, which have been further validated by comparing them with simulations and manufacturer results. Our results indicate that power fluctuations can cause significant variations in the fuel cell's voltage and current, leading to a reduction in its performance. Moreover, we show that increasing the hydrogen utilization rate beyond a certain threshold can lead to a decrease in the fuel cell's efficiency. Finally, our analysis demonstrates that the orientation of the fuel cell stack can affect its performance and lifetime due to non-uniform distribution of reactants and products. In summary, our study highlights the importance of considering power fluctuations, hydrogen utilization, and quality orientation in designing and optimizing PEM fuel cell systems. The findings of this study can be useful for researchers and engineers working on the development of fuel cell systems for various applications, including transportation, stationary power generation, and portable devices.

Keywords: fuel cell, proton exchange membrane, renewable energy, power fluctuation, experimental

Procedia PDF Downloads 86
5530 Nafion Nanofiber Mat in a Single Fuel Cell Test

Authors: Chijioke Okafor, Malik Maaza, Touhami Mokrani

Abstract:

Proton exchange membrane, PEM was developed and tested for potential application in fuel cell. Nafion was electrospun to nanofiber network with the aid of poly(ethylene oxide), PEO, as a carrier polymer. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV after compacting and annealing. The welded nanofiber mat was characterized for morphology, proton conductivity, and methanol permeability, then tested in a single cell test station. The results of the fabricated nanofiber membrane showed a proton conductivity of 0.1 S/cm at 25 oC and higher fiber volume fraction; methanol permeability of 3.6x10^-6 cm2/s and power density of 96.1 and 81.2 mW/cm2 for 5M and 1M methanol concentration respectively.

Keywords: fuel cell, nafion, nanofiber, permeability

Procedia PDF Downloads 445
5529 Improving the Performance of Proton Exchange Membrane Using Fuzzy Logic

Authors: Sadık Ata, Kevser Dincer

Abstract:

In this study, the performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input-output parameters were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6),High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance PEM fuel cell.

Keywords: proton exchange membrane (PEM), fuel cell, rule-based mamdani-type fuzzy (RMBTF) modelling, Yttria-stabilized zirconia (YSZ)

Procedia PDF Downloads 203
5528 Steady State and Accelerated Decay Rate Evaluations of Membrane Electrode Assembly of PEM Fuel Cells

Authors: Yingjeng James Li, Lung-Yu Sung, Huan-Jyun Ciou

Abstract:

Durability of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells was evaluated in both steady state and accelerated decay modes. Steady state mode was carried out at constant current of 800mA / cm2 for 2500 hours using air as cathode feed and pure hydrogen as anode feed. The degradation of the cell voltage was 0.015V after such 2500 hrs operation. The degradation rate was therefore calculated to be 6uV / hr. Accelerated mode was carried out by switching the voltage of the single cell between OCV and 0.2V. The durations held at OCV and 0.2V were 20 and 40 seconds, respectively, meaning one minute per cycle. No obvious change in performance of the MEA was observed after 10000 cycles of such operation.

Keywords: durability, lifetime, membrane electrode assembly, proton exchange membrane fuel cells

Procedia PDF Downloads 552
5527 Laser Welding Technique Effect for Proton Exchange Membrane Fuel Cell Application

Authors: Chih-Chia Lin, Ching-Ying Huang, Cheng-Hong Liu, Wen-Lin Wang

Abstract:

A complete fuel cell stack comprises several single cells with end plates, bipolar plates, gaskets and membrane electrode assembly (MEA) components. Electrons generated from cells are conducted through bipolar plates. The amount of cells' components increases as the stack voltage increases, complicating the fuel cell assembly process and mass production. Stack assembly error influence cell performance. PEM fuel cell stack importing laser welding technique could eliminate transverse deformation between bipolar plates to promote stress uniformity of cell components as bipolar plates and MEA. Simultaneously, bipolar plates were melted together using laser welding to decrease interface resistance. A series of experiments as through-plan and in-plan resistance measurement test was conducted to observe the laser welding effect. The result showed that the through-plane resistance with laser welding was a drop of 97.5-97.6% when the contact pressure was about 1MPa to 3 MPa, and the in-plane resistance was not significantly different for laser welding.

Keywords: PEM fuel cell, laser welding, through-plan, in-plan, resistance

Procedia PDF Downloads 468
5526 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review

Authors: Shubhangi R. Deshmukh, Anupam B. Soni

Abstract:

Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.

Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment

Procedia PDF Downloads 149
5525 Experimental Investigation of Proton Exchange Membrane Fuel Cells Operated with Nano Fiber and Nano Fiber/Nano Particle

Authors: Kevser Dincer, Basma Waisi, M. Ozan Ozdemir, Ugur Pasaogullari, Jeffrey McCutcheon

Abstract:

Nanofibers are defined as fibers with diameters less than 100 nanometers. They can be produced by interfacial polymerization, electrospinning and electrostatic spinning. In this study, behaviours of activated carbon nano fiber (ACNF), carbon nano-fiber (CNF), Polyacrylonitrile/carbon nanotube (PAN/CNT), Polyvinyl alcohol/nano silver (PVA/Ag) in PEM fuel cells are investigated experimentally. This material was used as gas diffusion layer (GDL) in PEM fuel cells. When the performances of these cells are compared to each other at 5x5 cm2 cell, it is found that the PVA/Ag exhibits the best performance among all. In this work, nano fiber and nano fiber/nano particles electrical conductivities have been studied to understand their effects on PEM fuel cell performance. According to the experimental results, the maximum electrical conductivity performance of the fuel cell with nanofiber was found to be at PVA/Ag. The electrical conductivities of CNF, ACNF, PAN/CNT are lower for PEM. The resistance of cell with PVA/Ag is lower than the resistance of cell with PAN/CNT, ACNF, CNF.

Keywords: proton exchange membrane fuel cells, electrospinning, carbon nano fiber, activate carbon nano-fiber, PVA fiber, PAN fiber, carbon nanotube, nano particle nanocomposites

Procedia PDF Downloads 351
5524 Rule-Based Mamdani Type Fuzzy Modeling of Performances of Anode Side of Proton Exchange Membrane Fuel Cell Spin-Coated with Yttria-Stabilized Zirconia

Authors: Sadık Ata, Kevser Dincer

Abstract:

In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated and modelled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modelling technique. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using Yttria-stabilized zirconia (YSZ). Input parameters voltage density (V/cm2), and current density (A/cm2), temperature (°C), time (s); output parameter power density (W/cm2) were described by RBMTF if-then rules. Numerical parameters of input and output variables were fuzzificated as linguistic variables: Very Very Low (L1), Very Low (L2), Low (L3), Negative Medium (L4), Medium (L5), Positive Medium (L6), High (L7), Very High (L8) and Very Very High (L9) linguistic classes. The comparison between experimental data and RBMTF is done by using statistical methods like absolute fraction of variance (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used for the analysis of performance of PEM fuel cell.

Keywords: proton exchange membrane (PEM), fuel cell, rule-based Mamdani-type fuzzy (RMBTF) modeling, yttria-stabilized zirconia (YSZ)

Procedia PDF Downloads 327
5523 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application

Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang

Abstract:

The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.

Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process

Procedia PDF Downloads 170
5522 Recent Development of Materials for Proton Exchange Membrane Fuel Cell (PEMFC)

Authors: Mohammed Jourdani, Hamid Mounir, Abdellatif El Marjani

Abstract:

Proton exchange membrane fuel cells (PEMFCs) have been developed as a promising power source for transportation and stationary applications, and power devices for computers and mobile telephones. This paper discusses and summarizes the latest developments of materials and remaining challenges of PEMFC. The different contributions to the material of all components and the efficiencies are analyzed. Many technical advances are introduced to increase the PEMFC fuel cell efficiency and life time for transportation, stationary and portable utilization. By the last years the total cost of this system is decreasing. However, the remaining challenges that need to be overcome mean that it will be several years before full commercialization can take place.

Keywords: PEMFC fuel cell, materials, recent development, efficiency, life time, commercialization possibility

Procedia PDF Downloads 269
5521 Investigation of Water Transport Dynamics in Polymer Electrolyte Membrane Fuel Cells Based on a Gas Diffusion Media Layers

Authors: Saad S. Alrwashdeh, Henning Markötter, Handri Ammari, Jan Haußmann, Tobias Arlt, Joachim Scholta, Ingo Manke

Abstract:

In this investigation, synchrotron X-ray imaging is used to study water transport inside polymer electrolyte membrane fuel cells. Two measurement techniques are used, namely in-situ radiography and quasi-in-situ tomography combining together in order to reveal the relationship between the structures of the microporous layers (MPLs) and the gas diffusion layers (GDLs), the operation temperature and the water flow. The developed cell is equipped with a thick GDL and a high back pressure MPL. It is found that these modifications strongly influence the overall water transport in the whole adjacent GDM.

Keywords: polymer electrolyte membrane fuel cell, microporous layer, water transport, radiography, tomography

Procedia PDF Downloads 143
5520 Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain

Authors: Suhadiyana Hanapi, Alhassan Salami Tijani, W. A. N Wan Mohamed

Abstract:

In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption.

Keywords: prototype fuel cell electric vehicles, energy efficient, control/driving technique, fuel economy

Procedia PDF Downloads 403
5519 Experimental and Characterization Studies on Micro Direct Methanol Fuel Cell

Authors: S. Muthuraja Soundrapandian, C.K. Subramaniam

Abstract:

A micro Direct Methanol Fuel Cell (DMFC) of 1 cm2 active area with selective sensor materials to sense methanol for redox, has been developed. Among different Pt alloys, Pt-Sn/C was able to produce high current density and repeatability. Membrane Elecctrode Assembly (MEA) of anode catalyst Pt-Sn/C was prepared with nafion as active membrane and Pt black as cathode catalyst. The sensor’s maximum ability to detect the trace levels of methanol in ppm has been analyzed. A compact sensor set up has also been made and the characterization studies were carried out. The acceptable value of current density was derived by the cell and the results are able to fulfill the needs of DMFC technology for the practical applications.

Keywords: DMFC, sensor, MEA, Pt-Sn

Procedia PDF Downloads 98
5518 Experimental Study on Performance of a Planar Membrane Humidifier for a Proton Exchange Membrane Fuel Cell Stack

Authors: Chen-Yu Chen, Wei-Mon Yan, Chi-Nan Lai, Jian-Hao Su

Abstract:

The proton exchange membrane fuel cell (PEMFC) becomes more important as an alternative energy source recently. Maintaining proper water content in the membrane is one of the key requirements for optimizing the PEMFC performance. The planar membrane humidifier has the advantages of simple structure, low cost, low-pressure drop, light weight, reliable performance and good gas separability. Thus, it is a common external humidifier for PEMFCs. In this work, a planar membrane humidifier for kW-scale PEMFCs is developed successfully. The heat and mass transfer of humidifier is discussed, and its performance is analyzed in term of dew point approach temperature (DPAT), water vapor transfer rate (WVTR) and water recovery ratio (WRR). The DPAT of the humidifier with the counter flow approach reaches about 6°C under inlet dry air of 50°C and 60% RH and inlet humid air of 70°C and 100% RH. The rate of pressure loss of the humidifier is 5.0×10² Pa/min at the torque of 7 N-m, which reaches the standard of commercial planar membrane humidifiers. From the tests, it is found that increasing the air flow rate increases the WVTR. However, the DPAT and the WRR are not improved by increasing the WVTR as the air flow rate is higher than the optimal value. In addition, increasing the inlet temperature or the humidity of dry air decreases the WVTR and the WRR. Nevertheless, the DPAT is improved at elevated inlet temperatures or humidities of dry air. Furthermore, the performance of the humidifier with the counter flow approach is better than that with the parallel flow approach. The DPAT difference between the two flow approaches reaches up to 8 °C.

Keywords: heat and mass transfer, humidifier performance, PEM fuel cell, planar membrane humidifier

Procedia PDF Downloads 272
5517 Quaternized PPO/PSF Anion Exchange Membranes Doped with ZnO-Nanoparticles for Fuel Cell Application

Authors: P. F. Msomi, P. T. Nonjola, P. G. Ndungu, J. Ramontja

Abstract:

In view of the projected global energy demand and increasing levels of greenhouse gases and pollutants issues have inspired an intense search for alternative new energy technologies, which will provide clean, low cost and environmentally friendly solutions to meet the end user requirements. Alkaline anion exchange membrane fuel cells (AAEMFC) have been recognized as ideal candidates for the generation of such clean energy for future stationary and mobile applications due to their many advantages. The key component of the AAEMFC is the anion exchange membrane (AEM). In this report, a series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anionic exchange membranes (AEM) were successfully fabricated and characterized for alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. The characteristic properties of the QPPO/PSF and QPPO/PSF-ZnO blend membrane were investigated with X-ray diffraction (XRD), thermogravimetric analysis (TGA) scanning electron microscope (SEM) and contact angle (CA). To confirm successful quaternisation, FT-IR spectroscopy and proton nuclear magnetic resonance (1H NMR) were used. Other properties such as ion exchange capacity (IEC), water uptake, contact angle and ion conductivity (IC) were also undertaken to check if the prepared nanocomposite materials are suitable for fuel cell application. The membrane intrinsic properties were found to be enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a highest IEC of 3.72 mmol/g and a 30-fold IC increase of the nanocomposite due to its lower methanol permeability. The above results indicate that QPPO/PSF-ZnO is a good candidate for AAEMFC application.

Keywords: anion exchange membrane, fuel cell, zinc oxide nanoparticle, nanocomposite

Procedia PDF Downloads 381
5516 Synthesis and Characterizations of Sulfonated Poly (Ether Ether Ketone) Speek Nanofiber Membrane

Authors: N. Hasbullah, K. A. Sekak

Abstract:

The sulfonated poly (ether ether ketone) SPEEK nanofiber membrane were successfully electrospun for Polymer Electrolyte Membrane (PEM) in Proton Exchange Membrane Fuel Cell (PEMFC) and their nanosized properties were investigated. The poly (ether ether ketone) PEEK victrex® grade 90p was sulfonated with concentrated sulfuric acid (95-98% w/w) at room temperature for 60 hours sulfonation times. The degree sulfonation of SPEEK are 70% was determined by H1 NMR and the functional groups of the SPEEK were characterize using FTIR. Then, the SPEEK nanofiber membrane were prepared via electrospinning method using DMAC as a solvent. The SPEEK sample were successfully electrospun using predetermine set up. FESEM show the electrospun fiber mat surface and confirmed the nanostructure membrane cell.

Keywords: polymer electrolyte membrane (PEM), sulfonated poly (ether ether ketone) (SPEEK), degree sulfonation, Electrospinning, Nanofibers

Procedia PDF Downloads 271