Search results for: a modified estimation equation
443 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves
Authors: Shengnan Chen, Shuhua Wang
Abstract:
Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves
Procedia PDF Downloads 285442 Faculty Use of Geospatial Tools for Deep Learning in Science and Engineering Courses
Authors: Laura Rodriguez Amaya
Abstract:
Advances in science, technology, engineering, and mathematics (STEM) are viewed as important to countries’ national economies and their capacities to be competitive in the global economy. However, many countries experience low numbers of students entering these disciplines. To strengthen the professional STEM pipelines, it is important that students are retained in these disciplines at universities. Scholars agree that to retain students in universities’ STEM degrees, it is necessary that STEM course content shows the relevance of these academic fields to their daily lives. By increasing students’ understanding on the importance of these degrees and careers, students’ motivation to remain in these academic programs can also increase. An effective way to make STEM content relevant to students’ lives is the use of geospatial technologies and geovisualization in the classroom. The Geospatial Revolution, and the science and technology associated with it, has provided scientists and engineers with an incredible amount of data about Earth and Earth systems. This data can be used in the classroom to support instruction and make content relevant to all students. The purpose of this study was to find out the prevalence use of geospatial technologies and geovisualization as teaching practices in a USA university. The Teaching Practices Inventory survey, which is a modified version of the Carl Wieman Science Education Initiative Teaching Practices Inventory, was selected for the study. Faculty in the STEM disciplines that participated in a summer learning institute at a 4-year university in the USA constituted the population selected for the study. One of the summer learning institute’s main purpose was to have an impact on the teaching of STEM courses, particularly the teaching of gateway courses taken by many STEM majors. The sample population for the study is 97.5 of the total number of summer learning institute participants. Basic descriptive statistics through the Statistical Package for the Social Sciences (SPSS) were performed to find out: 1) The percentage of faculty using geospatial technologies and geovisualization; 2) Did the faculty associated department impact their use of geospatial tools?; and 3) Did the number of years in a teaching capacity impact their use of geospatial tools? Findings indicate that only 10 percent of respondents had used geospatial technologies, and 18 percent had used geospatial visualization. In addition, the use of geovisualization among faculty of different disciplines was broader than the use of geospatial technologies. The use of geospatial technologies concentrated in the engineering departments. Data seems to indicate the lack of incorporation of geospatial tools in STEM education. The use of geospatial tools is an effective way to engage students in deep STEM learning. Future research should look at the effect on student learning and retention in science and engineering programs when geospatial tools are used.Keywords: engineering education, geospatial technology, geovisualization, STEM
Procedia PDF Downloads 253441 Determinants of Budget Performance in an Oil-Based Economy
Authors: Adeola Adenikinju, Olusanya E. Olubusoye, Lateef O. Akinpelu, Dilinna L. Nwobi
Abstract:
Since the enactment of the Fiscal Responsibility Act (2007), the Federal Government of Nigeria (FGN) has made public its fiscal budget and the subsequent implementation report. A critical review of these documents shows significant variations in the five macroeconomic variables which are inputs in each Presidential budget; oil Production target (mbpd), oil price ($), Foreign exchange rate(N/$), and Gross Domestic Product growth rate (%) and inflation rate (%). This results in underperformance of the Federal budget expected output in terms of non-oil and oil revenue aggregates. This paper evaluates first the existing variance between budgeted and actuals, then the relationship and causality between the determinants of Federal fiscal budget assumptions, and finally the determinants of FGN’s Gross Oil Revenue. The paper employed the use of descriptive statistics, the Autoregressive distributed lag (ARDL) model, and a Profit oil probabilistic model to achieve these objectives. This model permits for both the static and dynamic effect(s) of the independent variable(s) on the dependent variable, unlike a static model that accounts for static or fixed effect(s) only. It offers a technique for checking the existence of a long-run relationship between variables, unlike other tests of cointegration, such as the Engle-Granger and Johansen tests, which consider only non-stationary series that are integrated of the same order. Finally, even with small sample size, the ARDL model is known to generate a valid result, for it is the dependent variable and is the explanatory variable. The results showed that there is a long-run relationship between oil revenue as a proxy for budget performance and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a short-run relationship between oil revenue and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a long-run relationship between non-oil revenue and its determinants; inflation rate, GDP growth rate, and foreign exchange rate. The grangers’ causality test results show that there is a mono-directional causality between oil revenue and its determinants. The Federal budget assumptions only explain 68% of oil revenue and 62% of non-oil revenue. There is a mono-directional causality between non-oil revenue and its determinants. The Profit oil Model describes production sharing contracts, joint ventures, and modified carrying arrangements as the greatest contributors to FGN’s gross oil revenue. This provides empirical justification for the selected macroeconomic variables used in the Federal budget design and performance evaluation. The research recommends other variables, debt and money supply, be included in the Federal budget design to explain the Federal budget revenue performance further.Keywords: ARDL, budget performance, oil price, oil quantity, oil revenue
Procedia PDF Downloads 175440 Ecosystem Approach in Aquaculture: From Experimental Recirculating Multi-Trophic Aquaculture to Operational System in Marsh Ponds
Abstract:
Integrated multi-trophic aquaculture (IMTA) is used to reduce waste from aquaculture and increase productivity by co-cultured species. In this study, we designed a recirculating multi-trophic aquaculture system which requires low energy consumption, low water renewal and easy-care. European seabass (Dicentrarchus labrax) were raised with co-cultured sea urchin (Paracentrotus lividus), deteritivorous polychaete fed on settled particulate matter, mussels (Mytilus galloprovincialis) used to extract suspended matters, macroalgae (Ulva sp.) used to uptake dissolved nutrients and gastropod (Phorcus turbinatus) used to clean the series of 4 tanks from fouling. Experiment was performed in triplicate during one month in autumn under an experimental greenhouse at the Institute Océanographique Paul Ricard (IOPR). Thanks to the absence of a physical filter, any pomp was needed to pressure water and the water flow was carried out by a single air-lift followed by gravity flow.Total suspended solids (TSS), biochemical oxygen demand (BOD5), turbidity, phytoplankton estimation and dissolved nutrients (ammonium NH₄, nitrite NO₂⁻, nitrate NO₃⁻ and phosphorus PO₄³⁻) were measured weekly while dissolved oxygen and pH were continuously recorded. Dissolved nutrients stay under the detectable threshold during the experiment. BOD5 decreased between fish and macroalgae tanks. TSS highly increased after 2 weeks and then decreased at the end of the experiment. Those results show that bioremediation can be well used for aquaculture system to keep optimum growing conditions. Fish were the only feeding species by an external product (commercial fish pellet) in the system. The others species (extractive species) were fed from waste streams from the tank above or from Ulva produced by the system for the sea urchin. In this way, between the fish aquaculture only and the addition of the extractive species, the biomass productivity increase by 5.7. In other words, the food conversion ratio dropped from 1.08 with fish only to 0.189 including all species. This experimental recirculating multi-trophic aquaculture system was efficient enough to reduce waste and increase productivity. In a second time, this technology has been reproduced at a commercial scale. The IOPR in collaboration with Les 4 Marais company run for 6 month a recirculating IMTA in 8000 m² of water allocate between 4 marsh ponds. A similar air-lift and gravity recirculating system was design and only one feeding species of shrimp (Palaemon sp.) was growth for 3 extractive species. Thanks to this joint work at the laboratory and commercial scales we will be able to challenge IMTA system and discuss about this sustainable aquaculture technology.Keywords: bioremediation, integrated multi-trophic aquaculture (IMTA), laboratory and commercial scales, recirculating aquaculture, sustainable
Procedia PDF Downloads 152439 Attention States in the Sustained Attention to Response Task: Effects of Trial Duration, Mind-Wandering and Focus
Authors: Aisling Davies, Ciara Greene
Abstract:
Over the past decade the phenomenon of mind-wandering in cognitive tasks has attracted widespread scientific attention. Research indicates that mind-wandering occurrences can be detected through behavioural responses in the Sustained Attention to Response Task (SART) and several studies have attributed a specific pattern of responding around an error in this task to an observable effect of a mind-wandering state. SART behavioural responses are also widely accepted as indices of sustained attention and of general attention lapses. However, evidence suggests that these same patterns of responding may be attributable to other factors associated with more focused states and that it may also be possible to distinguish the two states within the same task. To use behavioural responses in the SART to study mind-wandering, it is essential to establish both the SART parameters that would increase the likelihood of errors due to mind-wandering, and exactly what type of responses are indicative of mind-wandering, neither of which have yet been determined. The aims of this study were to compare different versions of the SART to establish which task would induce the most mind-wandering episodes and to determine whether mind-wandering related errors can be distinguished from errors during periods of focus, by behavioural responses in the SART. To achieve these objectives, 25 Participants completed four modified versions of the SART that differed from the classic paradigm in several ways so to capture more instances of mind-wandering. The duration that trials were presented for was increased proportionately across each of the four versions of the task; Standard, Medium Slow, Slow, and Very Slow and participants intermittently responded to thought probes assessing their level of focus and degree of mind-wandering throughout. Error rates, reaction times and variability in reaction times decreased in proportion to the decrease in trial duration rate and the proportion of mind-wandering related errors increased, until the Very Slow condition where the extra decrease in duration no longer had an effect. Distinct reaction time patterns around an error, dependent on level of focus (high/low) and level of mind-wandering (high/low) were also observed indicating four separate attention states occurring within the SART. This study establishes the optimal duration of trial presentation for inducing mind-wandering in the SART, provides evidence supporting the idea that different attention states can be observed within the SART and highlights the importance of addressing other factors contributing to behavioural responses when studying mind-wandering during this task. A notable finding in relation to the standard SART, was that while more errors were observed in this version of the task, most of these errors were during periods of focus, raising significant questions about our current understanding of mind-wandering and associated failures of attention.Keywords: attention, mind-wandering, trial duration rate, Sustained Attention to Response Task (SART)
Procedia PDF Downloads 183438 An Integrated Framework for Wind-Wave Study in Lakes
Authors: Moien Mojabi, Aurelien Hospital, Daniel Potts, Chris Young, Albert Leung
Abstract:
The wave analysis is an integral part of the hydrotechnical assessment carried out during the permitting and design phases for coastal structures, such as marinas. This analysis aims in quantifying: i) the Suitability of the coastal structure design against Small Craft Harbour wave tranquility safety criterion; ii) Potential environmental impacts of the structure (e.g., effect on wave, flow, and sediment transport); iii) Mooring and dock design and iv) Requirements set by regulatory agency’s (e.g., WSA section 11 application). While a complex three-dimensional hydrodynamic modelling approach can be applied on large-scale projects, the need for an efficient and reliable wave analysis method suitable for smaller scale marina projects was identified. As a result, Tetra Tech has developed and applied an integrated analysis framework (hereafter TT approach), which takes the advantage of the state-of-the-art numerical models while preserving the level of simplicity that fits smaller scale projects. The present paper aims to describe the TT approach and highlight the key advantages of using this integrated framework in lake marina projects. The core of this methodology is made by integrating wind, water level, bathymetry, and structure geometry data. To respond to the needs of specific projects, several add-on modules have been added to the core of the TT approach. The main advantages of this method over the simplified analytical approaches are i) Accounting for the proper physics of the lake through the modelling of the entire lake (capturing real lake geometry) instead of a simplified fetch approach; ii) Providing a more realistic representation of the waves by modelling random waves instead of monochromatic waves; iii) Modelling wave-structure interaction (e.g. wave transmission/reflection application for floating structures and piles amongst others); iv) Accounting for wave interaction with the lakebed (e.g. bottom friction, refraction, and breaking); v) Providing the inputs for flow and sediment transport assessment at the project site; vi) Taking in consideration historical and geographical variations of the wind field; and vii) Independence of the scale of the reservoir under study. Overall, in comparison with simplified analytical approaches, this integrated framework provides a more realistic and reliable estimation of wave parameters (and its spatial distribution) in lake marinas, leading to a realistic hydrotechnical assessment accessible to any project size, from the development of a new marina to marina expansion and pile replacement. Tetra Tech has successfully utilized this approach since many years in the Okanagan area.Keywords: wave modelling, wind-wave, extreme value analysis, marina
Procedia PDF Downloads 84437 Gas-Phase Nondestructive and Environmentally Friendly Covalent Functionalization of Graphene Oxide Paper with Amines
Authors: Natalia Alzate-Carvajal, Diego A. Acevedo-Guzman, Victor Meza-Laguna, Mario H. Farias, Luis A. Perez-Rey, Edgar Abarca-Morales, Victor A. Garcia-Ramirez, Vladimir A. Basiuk, Elena V. Basiuk
Abstract:
Direct covalent functionalization of prefabricated free-standing graphene oxide paper (GOP) is considered as the only approach suitable for systematic tuning of thermal, mechanical and electronic characteristics of this important class of carbon nanomaterials. At the same time, the traditional liquid-phase functionalization protocols can compromise physical integrity of the paper-like material up to its total disintegration. To avoid such undesirable effects, we explored the possibility of employing an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with two representative aliphatic amines, 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD), as well as with two aromatic amines, 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN). The functionalization was performed under moderate heating at 150-180 °C in vacuum. Under such conditions, it proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-functionalized GOP mats was carried out by using Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (XPS), thermogravimetric (TGA) and differential thermal analysis, scanning electron and atomic force microscopy (SEM and AFM, respectively). Besides that, we compared the stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP mats before and after amine functionalization. The highest content of organic species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN samples. The covalent functionalization increased mechanical and thermal stability of GOP, as well as its electrical conductivity. The magnitude of each effect depends on the particular chemical structure of amine employed, which allows for tuning a given GOP property. Morphological characterization by using SEM showed that, compared to pristine graphene oxide paper, amine-modified GOP mats become relatively ordered layered assemblies, in which individual GO sheets are organized in a near-parallel pattern. Financial support from the National Autonomous University of Mexico (grants DGAPA-IN101118 and IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. The authors also thank David A. Domínguez (CNyN of UNAM) for XPS measurements and Dr. Edgar Alvarez-Zauco (Faculty of Science of UNAM) for the opportunity to use TGA equipment.Keywords: amines, covalent functionalization, gas-phase, graphene oxide paper
Procedia PDF Downloads 182436 A Versatile Data Processing Package for Ground-Based Synthetic Aperture Radar Deformation Monitoring
Authors: Zheng Wang, Zhenhong Li, Jon Mills
Abstract:
Ground-based synthetic aperture radar (GBSAR) represents a powerful remote sensing tool for deformation monitoring towards various geohazards, e.g. landslides, mudflows, avalanches, infrastructure failures, and the subsidence of residential areas. Unlike spaceborne SAR with a fixed revisit period, GBSAR data can be acquired with an adjustable temporal resolution through either continuous or discontinuous operation. However, challenges arise from processing high temporal-resolution continuous GBSAR data, including the extreme cost of computational random-access-memory (RAM), the delay of displacement maps, and the loss of temporal evolution. Moreover, repositioning errors between discontinuous campaigns impede the accurate measurement of surface displacements. Therefore, a versatile package with two complete chains is developed in this study in order to process both continuous and discontinuous GBSAR data and address the aforementioned issues. The first chain is based on a small-baseline subset concept and it processes continuous GBSAR images unit by unit. Images within a window form a basic unit. By taking this strategy, the RAM requirement is reduced to only one unit of images and the chain can theoretically process an infinite number of images. The evolution of surface displacements can be detected as it keeps temporarily-coherent pixels which are present only in some certain units but not in the whole observation period. The chain supports real-time processing of the continuous data and the delay of creating displacement maps can be shortened without waiting for the entire dataset. The other chain aims to measure deformation between discontinuous campaigns. Temporal averaging is carried out on a stack of images in a single campaign in order to improve the signal-to-noise ratio of discontinuous data and minimise the loss of coherence. The temporal-averaged images are then processed by a particular interferometry procedure integrated with advanced interferometric SAR algorithms such as robust coherence estimation, non-local filtering, and selection of partially-coherent pixels. Experiments are conducted using both synthetic and real-world GBSAR data. Displacement time series at the level of a few sub-millimetres are achieved in several applications (e.g. a coastal cliff, a sand dune, a bridge, and a residential area), indicating the feasibility of the developed GBSAR data processing package for deformation monitoring of a wide range of scientific and practical applications.Keywords: ground-based synthetic aperture radar, interferometry, small baseline subset algorithm, deformation monitoring
Procedia PDF Downloads 163435 Regional Disparities in Microfinance Distribution: Evidence from Indian States
Authors: Sunil Sangwan, Narayan Chandra Nayak
Abstract:
Over the last few decades, Indian banking system has achieved remarkable growth in its credit volume. However, one of the most disturbing facts about this growth is the uneven distribution of financial services across regions. Having witnessed limited success from all the earlier efforts towards financial inclusion targeting the rural poor and the underprivileged, provision of microfinance, of late, has emerged as a supplementary mechanism. There are two prominent modes of microfinance distribution in India namely Bank-SHG linkage (SBLP) and private Microfinance Institutions (MFIs). Ironically, such efforts also seem to have failed to achieve the desired targets as the microfinance services have witnessed skewed distribution across the states of the country. This study attempts to make a comparative analysis of the geographical skew of the SBLP and MFI in India and examine the factors influencing their regional distribution. The results indicate that microfinance services are largely concentrated in the southern region, accounting for about 50% of all microfinance clients and 49% of all microfinance loan portfolios. This is distantly followed by an eastern region where client outreach is close to 25% only. The north-eastern, northern, central, and western regions lag far behind in microfinance sectors, accounting for only 4%, 4%, 10%, and 7 % client outreach respectively. The penetration of SHGs is equally skewed, with the southern region accounting for 46% of client outreach and 70% of loan portfolios followed by an eastern region with 21% of client outreach and 13% of the loan portfolio. Contrarily, north-eastern, northern, central, western and eastern regions account for 5%, 5%, 10%, and 13% of client outreach and 3%, 3%, 7%, and 4% of loan portfolios respectively. The study examines the impact of literacy rate, rural poverty, population density, primary sector share, non-farm activities, loan default behavior and bank penetration on the microfinance penetration. The study is limited to 17 major states of the country over the period 2008-2014. The results of the GMM estimation indicate the significant positive impact of literacy rate, non-farm activities and population density on microfinance penetration across the states, while the rise in loan default seems to deter it. Rural poverty shows the significant negative impact on the spread of SBLP, while it has a positive impact on MFI penetration, hence indicating the policy of exclusion being adhered to by the formal financial system especially towards the poor. However, MFIs seem to be working as substitute mechanisms to banks to fill the gap. The findings of the study are a pointer towards enhancing financial literacy, non-farm activities, rural bank penetration and containing loan default for achieving greater microfinance prevalence.Keywords: bank penetration, literacy rate, microfinance, primary sector share, rural non-farm activities, rural poverty
Procedia PDF Downloads 232434 An Energy Integration Study While Utilizing Heat of Flue Gas: Sponge Iron Process
Authors: Venkata Ramanaiah, Shabina Khanam
Abstract:
Enormous potential for saving energy is available in coal-based sponge iron plants as these are associated with the high percentage of energy wastage per unit sponge iron production. An energy integration option is proposed, in the present paper, to a coal based sponge iron plant of 100 tonnes per day production capacity, being operated in India using SL/RN (Stelco-Lurgi/Republic Steel-National Lead) process. It consists of the rotary kiln, rotary cooler, dust settling chamber, after burning chamber, evaporating cooler, electrostatic precipitator (ESP), wet scrapper and chimney as important equipment. Principles of process integration are used in the proposed option. It accounts for preheating kiln inlet streams like kiln feed and slinger coal up to 170ᴼC using waste gas exiting ESP. Further, kiln outlet stream is cooled from 1020ᴼC to 110ᴼC using kiln air. The working areas in the plant where energy is being lost and can be conserved are identified. Detailed material and energy balances are carried out around the sponge iron plant, and a modified model is developed, to find coal requirement of proposed option, based on hot utility, heat of reactions, kiln feed and air preheating, radiation losses, dolomite decomposition, the heat required to vaporize the coal volatiles, etc. As coal is used as utility and process stream, an iterative approach is used in solution methodology to compute coal consumption. Further, water consumption, operating cost, capital investment, waste gas generation, profit, and payback period of the modification are computed. Along with these, operational aspects of the proposed design are also discussed. To recover and integrate waste heat available in the plant, three gas-solid heat exchangers and four insulated ducts with one FD fan for each are installed additionally. Thus, the proposed option requires total capital investment of $0.84 million. Preheating of kiln feed, slinger coal and kiln air streams reduce coal consumption by 24.63% which in turn reduces waste gas generation by 25.2% in comparison to the existing process. Moreover, 96% reduction in water is also observed, which is the added advantage of the modification. Consequently, total profit is found as $2.06 million/year with payback period of 4.97 months only. The energy efficient factor (EEF), which is the % of the maximum energy that can be saved through design, is found to be 56.7%. Results of the proposed option are also compared with literature and found in good agreement.Keywords: coal consumption, energy conservation, process integration, sponge iron plant
Procedia PDF Downloads 144433 Thermoregulatory Responses of Holstein Cows Exposed to Intense Heat Stress
Authors: Rodrigo De A. Ferrazza, Henry D. M. Garcia, Viviana H. V. Aristizabal, Camilla De S. Nogueira, Cecilia J. Verissimo, Jose Roberto Sartori, Roberto Sartori, Joao Carlos P. Ferreira
Abstract:
Environmental factors adversely influence sustainability in livestock production system. Dairy herds are the most affected by heat stress among livestock industries. This clearly implies in development of new strategies for mitigating heat, which should be based on physiological and metabolic adaptations of the animal. In this study, we incorporated the effect of climate variables and heat exposure time on the thermoregulatory responses in order to clarify the adaptive mechanisms for bovine heat dissipation under intense thermal stress induced experimentally in climate chamber. Non-lactating Holstein cows were contemporaneously and randomly assigned to thermoneutral (TN; n=12) or heat stress (HS; n=12) treatments during 16 days. Vaginal temperature (VT) was measured every 15 min with a microprocessor-controlled data logger (HOBO®, Onset Computer Corporation, Bourne, MA, USA) attached to a modified vaginal controlled internal drug release insert (Sincrogest®, Ourofino, Brazil). Rectal temperature (RT), respiratory rate (RR) and heart rate (HR) were measured twice a day (0700 and 1500h) and dry matter intake (DMI) was estimated daily. The ambient temperature and air relative humidity were 25.9±0.2°C and 73.0±0.8%, respectively for TN, and 36.3± 0.3°C and 60.9±0.9%, respectively for HS. Respiratory rate of HS cows increased immediately after exposure to heat and was higher (76.02±1.70bpm; P<0.001) than TN (39.70±0.71bpm), followed by rising of RT (39.87°C±0.07 for HS versus 38.56±0.03°C for TN; P<0.001) and VT (39.82±0.10°C for HS versus 38.26±0.03°C for TN; P<0.001). A diurnal pattern was detected, with higher (P<0.01) afternoon temperatures than morning and this effect was aggravated for HS cows. There was decrease (P<0.05) of HR for HS cows (62.13±0.99bpm) compared to TN (66.23±0.79bpm), but the magnitude of the differences was not the same over time. From the third day, there was a decrease of DMI for HS in attempt to maintain homeothermy, while TN cows increased DMI (8.27kg±0.33kg d-1 for HS versus 14.03±0.29kg d-1 for TN; P<0.001). By regression analysis, RT and RR better reflected the response of cows to changes in the Temperature Humidity Index and the effect of climate variables from the previous day to influence the physiological parameters and DMI was more important than the current day, with ambient temperature the most important factor. Comparison between acute (0 to 3 days) and chronic (13 to 16 days) exposure to heat stress showed decreasing of the slope of the regression equations for RR and DMI, suggesting an adaptive adjustment, however with no change for RT. In conclusion, intense heat stress exerted strong influence on the thermoregulatory mechanisms, but the acclimation process was only partial.Keywords: acclimation, bovine, climate chamber, hyperthermia, thermoregulation
Procedia PDF Downloads 218432 Efficacy and Safety of Computerized Cognitive Training Combined with SSRIs for Treating Cognitive Impairment Among Patients with Late-Life Depression: A 12-Week, Randomized Controlled Study
Authors: Xiao Wang, Qinge Zhang
Abstract:
Background: This randomized, open-label study examined the therapeutic effects of computerized cognitive training (CCT) combined with selective serotonin reuptake inhibitors (SSRIs) on cognitive impairment among patients with late-life depression (LLD). Method: Study data were collected from May 5, 2021, to April 21, 2023. Outpatients who met diagnostic criteria for major depressive disorder according to the fifth revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria (i.e., a total score on the 17-item Hamilton Depression Rating Scale (HAMD-17) ≥ 18 and a total score on the Montreal Cognitive Assessment scale (MOCA) <26) were randomly assigned to receive up to 12 weeks of CCT and SSRIs treatment (n=57) or SSRIs and Control treatment (n=61). The primary outcome was the change in Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) scores from baseline to week 12 between the two groups. The secondary outcomes included changes in the HAMD-17 score, Hamilton Anxiety Scale (HAMA) score and Neuropsychiatric Inventory (NPI) score. Mixed model repeated measures (MMRM) analysis was performed on modified intention-to-treat (mITT) and completer populations. Results: The full analysis set (FAS) included 118 patients (CCT and SSRIs group, n=57; SSRIs and Control group, n =61). Over the 12-week study period, the reduction in the ADAS-cog total score was significant (P < 0.001) in both groups, while MMRM analysis revealed a significantly greater reduction in cognitive function (ADAS-cog total scores) from baseline to posttreatment in the CCT and SSRIs group than in the SSRI and Control group [(F (1,115) =13.65, least-squares mean difference [95% CI]: −2.77 [−3.73, −1.81], p<0.001)]. There were significantly greater improvements in depression symptoms (measured by the HAMD-17) in the CCT and SSRIs group than in the control group [MMRM, estimated mean difference (SE) between groups −3.59 [−5.02, −2.15], p < 0.001]. The least-squares mean changes in the HAMA scores and NPI scores between baseline and week 8 were greater in the CCT and SSRIs group than in the control group (all P < 0.05). There was no significant difference between groups on response rates and remission rates by using the last-observation-carried-forward (LOCF) method (all P > 0.05). The most frequent adverse events (AEs) in both groups were dry mouth, somnolence, and constipation. There was no significant difference in the incidence of adverse events between the two groups. Conclusions: CCT combined with SSRIs was efficacious and well tolerated in LLD patients with cognitive impairment.Keywords: late-life depression, cognitive function, computerized cognitive training, SSRIs
Procedia PDF Downloads 55431 Neural Synchronization - The Brain’s Transfer of Sensory Data
Authors: David Edgar
Abstract:
To understand how the brain’s subconscious and conscious functions, we must conquer the physics of Unity, which leads to duality’s algorithm. Where the subconscious (bottom-up) and conscious (top-down) processes function together to produce and consume intelligence, we use terms like ‘time is relative,’ but we really do understand the meaning. In the brain, there are different processes and, therefore, different observers. These different processes experience time at different rates. A sensory system such as the eyes cycles measurement around 33 milliseconds, the conscious process of the frontal lobe cycles at 300 milliseconds, and the subconscious process of the thalamus cycle at 5 milliseconds. Three different observers experience time differently. To bridge observers, the thalamus, which is the fastest of the processes, maintains a synchronous state and entangles the different components of the brain’s physical process. The entanglements form a synchronous cohesion between the brain components allowing them to share the same state and execute in the same measurement cycle. The thalamus uses the shared state to control the firing sequence of the brain’s linear subconscious process. Sharing state also allows the brain to cheat on the amount of sensory data that must be exchanged between components. Only unpredictable motion is transferred through the synchronous state because predictable motion already exists in the shared framework. The brain’s synchronous subconscious process is entirely based on energy conservation, where prediction regulates energy usage. So, the eyes every 33 milliseconds dump their sensory data into the thalamus every day. The thalamus is going to perform a motion measurement to identify the unpredictable motion in the sensory data. Here is the trick. The thalamus conducts its measurement based on the original observation time of the sensory system (33 ms), not its own process time (5 ms). This creates a data payload of synchronous motion that preserves the original sensory observation. Basically, a frozen moment in time (Flat 4D). The single moment in time can then be processed through the single state maintained by the synchronous process. Other processes, such as consciousness (300 ms), can interface with the synchronous state to generate awareness of that moment. Now, synchronous data traveling through a separate faster synchronous process creates a theoretical time tunnel where observation time is tunneled through the synchronous process and is reproduced on the other side in the original time-relativity. The synchronous process eliminates time dilation by simply removing itself from the equation so that its own process time does not alter the experience. To the original observer, the measurement appears to be instantaneous, but in the thalamus, a linear subconscious process generating sensory perception and thought production is being executed. It is all just occurring in the time available because other observation times are slower than thalamic measurement time. For life to exist in the physical universe requires a linear measurement process, it just hides by operating at a faster time relativity. What’s interesting is time dilation is not the problem; it’s the solution. Einstein said there was no universal time.Keywords: neural synchronization, natural intelligence, 99.95% IoT data transmission savings, artificial subconscious intelligence (ASI)
Procedia PDF Downloads 127430 Comparative Vector Susceptibility for Dengue Virus and Their Co-Infection in A. aegypti and A. albopictus
Authors: Monika Soni, Chandra Bhattacharya, Siraj Ahmed Ahmed, Prafulla Dutta
Abstract:
Dengue is now a globally important arboviral disease. Extensive vector surveillance has already established A.aegypti as a primary vector, but A.albopictus is now accelerating the situation through gradual adaptation to human surroundings. Global destabilization and gradual climatic shift with rising in temperature have significantly expanded the geographic range of these species These versatile vectors also host Chikungunya, Zika, and yellow fever virus. Biggest challenge faced by endemic countries now is upsurge in co-infection reported with multiple serotypes and virus co-circulation. To foster vector control interventions and mitigate disease burden, there is surge for knowledge on vector susceptibility and viral tolerance in response to multiple infections. To address our understanding on transmission dynamics and reproductive fitness, both the vectors were exposed to single and dual combinations of all four dengue serotypes by artificial feeding and followed up to third generation. Artificial feeding observed significant difference in feeding rate for both the species where A.albopictus was poor artificial feeder (35-50%) compared to A.aegypti (95-97%) Robust sequential screening of viral antigen in mosquitoes was followed by Dengue NS1 ELISA, RT-PCR and Quantitative PCR. To observe viral dissemination in different mosquito tissues Indirect immunofluorescence assay was performed. Result showed that both the vectors were infected initially with all dengue(1-4)serotypes and its co-infection (D1 and D2, D1 and D3, D1 and D4, D2 and D4) combinations. In case of DENV-2 there was significant difference in the peak titer observed at 16th day post infection. But when exposed to dual infections A.aegypti supported all combinations of virus where A.albopictus only continued single infections in successive days. There was a significant negative effect on the fecundity and fertility of both the vectors compared to control (PANOVA < 0.001). In case of dengue 2 infected mosquito, fecundity in parent generation was significantly higher (PBonferroni < 0.001) for A.albopicus compare to A.aegypti but there was a complete loss of fecundity from second to third generation for A.albopictus. It was observed that A.aegypti becomes infected with multiple serotypes frequently even at low viral titres compared to A.albopictus. Possible reason for this could be the presence of wolbachia infection in A.albopictus or mosquito innate immune response, small RNA interference etc. Based on the observations it could be anticipated that transovarial transmission may not be an important phenomenon for clinical disease outcome, due to the absence of viral positivity by third generation. Also, Dengue NS1 ELISA can be used for preliminary viral detection in mosquitoes as more than 90% of the samples were found positive compared to RT-PCR and viral load estimation.Keywords: co-infection, dengue, reproductive fitness, viral quantification
Procedia PDF Downloads 203429 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 138428 Effect of Vitrification on Embryos Euploidy Obtained from Thawed Oocytes
Authors: Natalia Buderatskaya, Igor Ilyin, Julia Gontar, Sergey Lavrynenko, Olga Parnitskaya, Ekaterina Ilyina, Eduard Kapustin, Yana Lakhno
Abstract:
Introduction: It is known that cryopreservation of oocytes has peculiar features due to the complex structure of the oocyte. One of the most important features is that mature oocytes contain meiotic division spindle which is very sensitive even to the slightest variation in temperature. Thus, the main objective of this study is to analyse the resulting euploid embryos obtained from thawed oocytes in comparison with the data of preimplantation genetic screening (PGS) in fresh embryo cycles. Material and Methods: The study was conducted at 'Medical Centre IGR' from January to July 2016. Data were analysed for 908 donor oocytes obtained in 67 cycles of assisted reproductive technologies (ART), of which 693 oocytes were used in the 51 'fresh' cycles (group A), and 215 oocytes - 16 ART programs with vitrification female gametes (group B). The average age of donors in the groups match 27.3±2.9 and 27.8±6.6 years. Stimulation of superovulation was conducted the standard way. Vitrification was performed in 1-2 hours after transvaginal puncture and thawing of oocytes were carried out in accordance with the standard protocol of Cryotech (Japan). Manipulation ICSI was performed 4-5 hours after transvaginal follicle puncture for fresh oocytes, or after defrosting - for vitrified female gametes. For the PGS, an embryonic biopsy was done on the third or on the fifth day after fertilization. Diagnostic procedures were performed using fluorescence in situ hybridization with the study of such chromosomes as 13, 16, 18, 21, 22, X, Y. Only morphologically quality blastocysts were used for the transfer, the estimation of which corresponded to the Gardner criteria. The statistical hypotheses were done using the criteria t, x^2 at a significance levels p<0.05, p<0.01, p<0.001. Results: The mean number of mature oocytes per cycle in group A was 13.58±6.65 and in group B - 13.44±6.68 oocytes for patient. The survival of oocytes after thawing totaled 95.3% (n=205), which indicates a highly effective quality of performed vitrification. The proportion of zygotes in the group A corresponded to 91.1%(n=631), in the group B – 80.5%(n=165), which shows statistically significant difference between the groups (p<0.001) and explained by non-viable oocytes elimination after vitrification. This is confirmed by the fact that on the fifth day of embryos development a statistically significant difference in the number of blastocysts was absent (p>0.05), and constituted respectively 61.6%(n=389) and 63.0%(n=104) in the groups. For the PGS performing 250 embryos analyzed in the group A and 72 embryos - in the group B. The results showed that euploidy in the studied chromosomes were 40.0%(n=100) embryos in the group A and 41.7% (n=30) - in the group B, which shows no statistical significant difference (p>0.05). The indicators of clinical pregnancies in the groups amounted to 64.7% (22 pregnancies per 34 embryo transfers) and 61.5% (8 pregnancies per 13 embryo transfers) respectively, and also had no significant difference between the groups (p>0.05). Conclusions: The results showed that the vitrification does not affect the resulting euploid embryos in assisted reproductive technologies and are not reflected in their morphological characteristics in ART programs.Keywords: euploid embryos, preimplantation genetic screening, thawing oocytes, vitrification
Procedia PDF Downloads 334427 The Association of Work Stress with Job Satisfaction and Occupational Burnout in Nurse Anesthetists
Authors: I. Ling Tsai, Shu Fen Wu, Chen-Fuh Lam, Chia Yu Chen, Shu Jiuan Chen, Yen Lin Liu
Abstract:
Purpose: Following the conduction of the National Health Insurance (NHI) system in Taiwan since 1995, the demand for anesthesia services continues to increase in the operating rooms and other medical units. It has been well recognized that increased work stress not only affects the clinical performance of the medical staff, long-term work load may also result in occupational burnout. Our study aimed to determine the influence of working environment, work stress and job satisfaction on the occupational burnout in nurse anesthetists. The ultimate goal of this research project is to develop a strategy in establishing a friendly, less stressful workplace for the nurse anesthetists to enhance their job satisfaction, thereby reducing occupational burnout and increasing the career life for nurse anesthetists. Methods: This was a cross-sectional, descriptive study performed in a metropolitan teaching hospital in southern Taiwan between May 2017 to July 2017. A structured self-administered questionnaire, modified from the Practice Environment Scale of the Nursing Work Index (PES-NWI), Occupational Stress Indicator 2 (OSI-2) and Maslach Burnout Inventory (MBI) manual was collected from the nurse anesthetists. The relationships between two numeric datasets were analyzed by the Pearson correlation test (SPSS 20.0). Results: A total of 66 completed questionnaires were collected from 75 nurses (response rate 88%). The average scores for the working environment, job satisfaction, and work stress were 69.6%, 61.5%, and 63.9%, respectively. The three perspectives used to assess the occupational burnout, namely emotional exhaustion, depersonalization and sense of personal accomplishment were 26.3, 13.0 and 24.5, suggesting the presence of moderate to high degrees of burnout in our nurse anesthetists. The presence of occupational burnout was closely correlated with the unsatisfactory working environment (r=-0.385, P=0.001) and reduced job satisfaction (r=-0.430, P=0.000). Junior nurse anesthetists (<1-year clinical experience) reported having higher satisfaction in working environment than the seniors (5 to 10-year clinical experience) (P=0.02). Although the average scores for work stress, job satisfaction, and occupational burnout were lower in junior nurses, the differences were not statistically different. The linear regression model, the working environment was the independent factor that predicted occupational burnout in nurse anesthetists up to 19.8%. Conclusions: High occupational burnout is more likely to develop in senior nurse anesthetists who experienced the dissatisfied working environment, work stress and lower job satisfaction. In addition to the regulation of clinical duties, the increased workload in the supervision of the junior nurse anesthetists may result in emotional stress and burnout in senior nurse anesthetists. Therefore, appropriate adjustment of clinical and teaching loading in the senior nurse anesthetists could be helpful to improve the occupational burnout and enhance the retention rate.Keywords: nurse anesthetists, working environment, work stress, job satisfaction, occupational burnout
Procedia PDF Downloads 278426 Currently Use Pesticides: Fate, Availability, and Effects in Soils
Authors: Lucie Bielská, Lucia Škulcová, Martina Hvězdová, Jakub Hofman, Zdeněk Šimek
Abstract:
The currently used pesticides represent a broad group of chemicals with various physicochemical and environmental properties which input has reached 2×106 tons/year and is expected to even increases. From that amount, only 1% directly interacts with the target organism while the rest represents a potential risk to the environment and human health. Despite being authorized and approved for field applications, the effects of pesticides in the environment can differ from the model scenarios due to the various pesticide-soil interactions and resulting modified fate and behavior. As such, a direct monitoring of pesticide residues and evaluation of their impact on soil biota, aquatic environment, food contamination, and human health should be performed to prevent environmental and economic damages. The present project focuses on fluvisols as they are intensively used in the agriculture but face to several environmental stressors. Fluvisols develop in the vicinity of rivers by the periodic settling of alluvial sediments and periodic interruptions to pedogenesis by flooding. As a result, fluvisols exhibit very high yields per area unit, are intensively used and loaded by pesticides. Regarding the floods, their regular contacts with surface water arise from serious concerns about the surface water contamination. In order to monitor pesticide residues and assess their environmental and biological impact within this project, 70 fluvisols were sampled over the Czech Republic and analyzed for the total and bioaccessible amounts of 40 various pesticides. For that purpose, methodologies for the pesticide extraction and analysis with liquid chromatography-mass spectrometry technique were developed and optimized. To assess the biological risks, both the earthworm bioaccumulation tests and various types of passive sampling techniques (XAD resin, Chemcatcher, and silicon rubber) were optimized and applied. These data on chemical analysis and bioavailability were combined with the results of soil analysis, including the measurement of basic physicochemical soil properties as well detailed characterization of soil organic matter with the advanced method of diffuse reflectance infrared spectrometry. The results provide unique data on the residual levels of pesticides in the Czech Republic and on the factors responsible for increased pesticide residue levels that should be included in the modeling of pesticide fate and effects.Keywords: currently used pesticides, fluvisoils, bioavailability, Quechers, liquid-chromatography-mass spectrometry, soil properties, DRIFT analysis, pesticides
Procedia PDF Downloads 464425 Threading Professionalism Through Occupational Therapy Curriculum: A Framework and Resources
Authors: Ashley Hobson, Ashley Efaw
Abstract:
Professionalism is an essential skill for clinicians, particularly for Occupational Therapy Providers (OTPs). The World Federation of Occupational Therapy (WFOT) Guiding Principles for Ethical Occupational Therapy and American Occupational Therapy Association (AOTA) Code of Ethics establishes expectations for professionalism among OTPs, emphasizing its importance in the field. However, the teaching and assessment of professionalism vary across OTP programs. The flexibility provided by the country standards allows programs to determine their own approaches to meeting these standards, resulting in inconsistency. Educators in both academic and fieldwork settings face challenges in objectively assessing and providing feedback on student professionalism. Although they observe instances of unprofessional behavior, there is no standardized assessment measure to evaluate professionalism in OTP students. While most students are committed to learning and applying professionalism skills, they enter OTP programs with varying levels of proficiency in this area. Consequently, they lack a uniform understanding of professionalism and lack an objective means to self-assess their current skills and identify areas for growth. It is crucial to explicitly teach professionalism, have students to self-assess their professionalism skills, and have OTP educators assess student professionalism. This approach is necessary for fostering students' professionalism journeys. Traditionally, there has been no objective way for students to self-assess their professionalism or for educators to provide objective assessments and feedback. To establish a uniform approach to professionalism, the authors incorporated professionalism content into our curriculum. Utilizing an operational definition of professionalism, the authors integrated professionalism into didactic, fieldwork, and capstone courses. The complexity of the content and the professionalism skills expected of students increase each year to ensure students graduate with the skills to practice in accordance with the WFOT Guiding Principles for Ethical Occupational Therapy Practice and AOTA Code of Ethics. Two professionalism assessments were developed based on the expectations outlined in the both documents. The Professionalism Self-Assessment allows students to evaluate their professionalism, reflect on their performance, and set goals. The Professionalism Assessment for Educators is a modified version of the same tool designed for educators. The purpose of this workshop is to provide educators with a framework and tools for assessing student professionalism. The authors discuss how to integrate professionalism content into OTP curriculum and utilize professionalism assessments to provide constructive feedback and equitable learning opportunities for OTP students in academic, fieldwork, and capstone settings. By adopting these strategies, educators can enhance the development of professionalism among OTP students, ensuring they are well-prepared to meet the demands of the profession.Keywords: professionalism, assessments, student learning, student preparedness, ethical practice
Procedia PDF Downloads 43424 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend
Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang
Abstract:
Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical, and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and non-toxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75, and 0:100), and fiber content (i.e. in the range of 1-25 % wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using the native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness, and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.Keywords: polylactic acid, thermoplastic starch, Jute fiber, composite, blend
Procedia PDF Downloads 424423 Investigating the English Speech Processing System of EFL Japanese Older Children
Authors: Hiromi Kawai
Abstract:
This study investigates the nature of EFL older children’s L2 perceptive and productive abilities using classroom data, in order to find a pedagogical solution to the teaching of L2 sounds at an early stage of learning in a formal school setting. It is still inconclusive whether older children with only EFL formal school instruction at the initial stage of L2 learning are able to attain native-like perception and production in English within the very limited amount of exposure to the target language available. Based on the notion of the lack of study of EFL Japanese children’s acquisition of English segments, the researcher uses a model of L1 speech processing which was developed for investigating L1 English children’s speech and literacy difficulties using a psycholinguistic framework. The model is composed of input channel, output channel, and lexical representation, and examines how a child receives information from spoken or written language, remembers and stores it within the lexical representations and how the child selects and produces spoken or written words. Concerning language universality and language specificity in the language acquisitional process, the aim of finding any sound errors in L1 English children seemed to conform to the author’s intention to find abilities of English sounds in older Japanese children at the novice level of English in an EFL setting. 104 students in Grade 5 (between the ages of 10 and 11 years old) of an elementary school in Tokyo participated in this study. Four tests to measure their perceptive ability and three oral repetition tests to measure their productive ability were conducted with/without reference to lexical representation. All the test items were analyzed to calculate item facility (IF) indices, and correlational analyses and Structural Equation Modeling (SEM) were conducted to examine the relationship between the receptive ability and the productive ability. IF analysis showed that (1) the participants were better at perceiving a segment than producing a segment, (2) they had difficulty in auditory discrimination of paired consonants when one of them does not exist in the Japanese inventory, (3) they had difficulty in both perceiving and producing English vowels, and (4) their L1 loan word knowledge had an influence on their ability to perceive and produce L2 sounds. The result of the Multiple Regression Modeling showed that the two production tests could predict the participants’ auditory ability of real words in English. The result of SEM showed that the hypothesis that perceptive ability affects productive ability was supported. Based on these findings, the author discusses the possible explicit method of teaching English segments to EFL older children in a formal school setting.Keywords: EFL older children, english segments, perception, production, speech processing system
Procedia PDF Downloads 244422 Self-Sensing Concrete Nanocomposites for Smart Structures
Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi
Abstract:
In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.Keywords: carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring
Procedia PDF Downloads 229421 Correlation Between Different Radiological Findings and Histopathological diagnosis of Breast Diseases: Retrospective Review Conducted Over Sixth Years in King Fahad University Hospital in Eastern Province, Saudi Arabia
Authors: Sadeem Aljamaan, Reem Hariri, Rahaf Alghamdi, Batool Alotaibi, Batool Alsenan, Lama Althunayyan, Areej Alnemer
Abstract:
The aim of this study is to correlate between radiological findings and histopathological results in regard to the breast imaging-reporting and data system scores, size of breast masses, molecular subtypes and suspicious radiological features, as well as to assess the concordance rate in histological grade between core biopsy and surgical excision among breast cancer patients, followed by analyzing the change of concordance rate in relation to neoadjuvant chemotherapy in a Saudi population. A retrospective review was conducted over 6-year period (2017-2022) on all breast core biopsies of women preceded by radiological investigation. Chi-squared test (χ2) was performed on qualitative data, the Mann-Whitney test for quantitative non-parametric variables, and the Kappa test for grade agreement. A total of 641 cases were included. Ultrasound, mammography, and magnetic resonance imaging demonstrated diagnostic accuracies of 85%, 77.9% and 86.9%; respectively. magnetic resonance imaging manifested the highest sensitivity (72.2%), and the lowest was for ultrasound (61%). Concordance in tumor size with final excisions was best in magnetic resonance imaging, while mammography demonstrated a higher tendency of overestimation (41.9%), and ultrasound showed the highest underestimation (67.7%). The association between basal-like molecular subtypes and the breast imaging-reporting and data system score 5 classifications was statistically significant only for magnetic resonance imaging (p=0.04). Luminal subtypes demonstrated a significantly higher percentage of speculation in mammography. Breast imaging-reporting and data system score 4 manifested a substantial number of benign pathologies in all the 3 modalities. A fair concordance rate (k= 0.212 & 0.379) was demonstrated between excision and the preceding core biopsy grading with and without neoadjuvant therapy, respectively. The results demonstrated a down-grading in cases post-neoadjuvant therapy. In cases who did not receive neoadjuvant therapy, underestimation of tumor grade in biopsy was evident. In summary, magnetic resonance imaging had the highest sensitivity, specificity, positive predictive value and accuracy of both diagnosis and estimation of tumor size. Mammography demonstrated better sensitivity than ultrasound and had the highest negative predictive value, but ultrasound had better specificity, positive predictive value and accuracy. Therefore, the combination of different modalities is advantageous. The concordance rate of core biopsy grading with excision was not impacted by neoadjuvant therapy.Keywords: breast cancer, mammography, MRI, neoadjuvant, pathology, US
Procedia PDF Downloads 82420 Role of Psychological Capital in Organizational and Personal Outcomes: An Exploratory Study of Medical Professionals in Pakistan
Authors: Shazia Almas, Jaffar Iqbal, Nazia Almas
Abstract:
In most of the South Asian countries like Pakistan medical profession is one the most valued and respectful professions yet being a medical professional requires an enormous amount of responsibilities and work overload at the same time which possibly can be in contrast with family role of a doctor. Job and family are two primary spheres of a person's life no matter whatever the profession one adopts and the type of family one is running. There is a bi-directional relationship between job and family. The type and nature of work, time schedules, working shifts in medical profession are very demanding in the countries like Pakistan where number of patients is far more higher than the number of doctors available. The work life also have significant impact on family life and vice versa. Because of the sensitivity and interdependency of these relations, today’s overarching and competing demands remain dissatisfactory. The main objective of the current research is to investigate how interpersonal relationships affect work and work affects interpersonal relationships of medical professionals. In line with identifying these facts, the current study aimed to examine the predictive role of psychological capital (self-efficacy, hope, optimism, and resilience), in organizational outcome (job satisfaction) and personal outcome (family satisfaction) amongst male and medical professionals. A total of 350 participants from public and private sector hospitals of Pakistan were recruited through simple random and stratified sampling techniques, with age ranges from 26-50 years. The questionnaire including established and certified self-report measures of Psychological Capital Questionnaire, Job Satisfaction, and Family Satisfaction were adopted to collect the data. The reliability and validity of mentioned instruments were established through Cronbach’s alpha and factor analyses (exploratory and confirmatory) respectively using Structural Equation Modeling (SEM) by AMOS. The proposed hypotheses were tested using Pearson’s Correlation and Regression analyses for predicting effect whereas, t-Test was deployed to verify the difference between male and female health professionals. The results revealed that self-efficacy and optimism predicted job satisfaction while, self-efficacy, hope, and resilience predicted family satisfaction. Moreover, the results depicted significant gender differences in job satisfaction where females were higher on job satisfaction as compared to male medical professionals but no significant differences were observed in levels of family satisfaction between both genders. The study has implications for social, organizational and work policy designers. The study also paves for more researches with positive psychological approach to promote work-family harmony.Keywords: family satisfaction, job satisfaction, medical professionals, psychological capital
Procedia PDF Downloads 251419 Compression-Extrusion Test to Assess Texture of Thickened Liquids for Dysphagia
Authors: Jesus Salmeron, Carmen De Vega, Maria Soledad Vicente, Mireia Olabarria, Olaia Martinez
Abstract:
Dysphagia or difficulty in swallowing affects mostly elder people: 56-78% of the institutionalized and 44% of the hospitalized. Liquid food thickening is a necessary measure in this situation because it reduces the risk of penetration-aspiration. Until now, and as proposed by the American Dietetic Association in 2002, possible consistencies have been categorized in three groups attending to their viscosity: nectar (50-350 mPa•s), honey (350-1750 mPa•s) and pudding (>1750 mPa•s). The adequate viscosity level should be identified for every patient, according to her/his impairment. Nevertheless, a systematic review on dysphagia diet performed recently indicated that there is no evidence to suggest that there is any transition of clinical relevance between the three levels proposed. It was also stated that other physical properties of the bolus (slipperiness, density or cohesiveness, among others) could influence swallowing in affected patients and could contribute to the amount of remaining residue. Texture parameters need to be evaluated as possible alternative to viscosity. The aim of this study was to evaluate the instrumental extrusion-compression test as a possible tool to characterize changes along time in water thickened with various products and in the three theoretical consistencies. Six commercial thickeners were used: NM® (NM), Multi-thick® (M), Nutilis Powder® (Nut), Resource® (R), Thick&Easy® (TE) and Vegenat® (V). All of them with a modified starch base. Only one of them, Nut, also had a 6,4% of gum (guar, tara and xanthan). They were prepared as indicated in the instructions of each product and dispensing the correspondent amount for nectar, honey and pudding consistencies in 300 mL of tap water at 18ºC-20ºC. The mixture was stirred for about 30 s. Once it was homogeneously spread, it was dispensed in 30 mL plastic glasses; always to the same height. Each of these glasses was used as a measuring point. Viscosity was measured using a rotational viscometer (ST-2001, Selecta, Barcelona). Extrusion-compression test was performed using a TA.XT2i texture analyzer (Stable Micro Systems, UK) with a 25 mm diameter cylindrical probe (SMSP/25). Penetration distance was set at 10 mm and a speed of 3 mm/s. Measurements were made at 1, 5, 10, 20, 30, 40, 50 and 60 minutes from the moment samples were mixed. From the force (g)–time (s) curves obtained in the instrumental assays, maximum force peak (F) was chosen a reference parameter. Viscosity (mPa•s) and F (g) showed to be highly correlated and had similar development along time, following time-dependent quadratic models. It was possible to predict viscosity using F as an independent variable, as they were linearly correlated. In conclusion, compression-extrusion test could be an alternative and a useful tool to assess physical characteristics of thickened liquids.Keywords: compression-extrusion test, dysphagia, texture analyzer, thickener
Procedia PDF Downloads 369418 Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance
Authors: M. H. Arslan, U. K. Sahin, H. Acikgoz-Tufan, I. Gocek, I. Erdem
Abstract:
Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.Keywords: behavior against washing machine parameters, performance evaluation of textiles, statistical analysis, commercial and test textiles
Procedia PDF Downloads 362417 Cognitive Performance and Everyday Functionality in Healthy Greek Seniors
Authors: George Pavlidis, Ana Vivas
Abstract:
The demographic change into an aging population has stimulated the examination of seniors’ mental health and ability to live independently. The corresponding literature depicts the relation between cognitive decline and everyday functionality with aging, focusing largely in individuals that are reaching or have bridged the threshold of various forms of neuropathology and disability. In this context, recent meta-analysis depicts a moderate relation between cognitive performance and everyday functionality in AD sufferers. However, there has not been an analogous effort for the examination of this relation in the healthy spectrum of aging (i.e, in samples that are not challenged from a neurodegenerative disease). There is a consensus that the assessment tools designed to detect neuropathology with those that assess cognitive performance in healthy adults are distinct, thus their universal use in cognitively challenged and in healthy adults is not always valid. The same accounts for the assessment of everyday functionality. In addition, it is argued that everyday functionality should be examined with cultural adjusted assessment tools, since many vital everyday tasks are heterotypical among distinct cultures. Therefore, this study was set out to examine the relation between cognitive performance and everyday functionality a) in the healthy spectrum of aging and b) by adjusting the everyday functionality tools EPT and OTDL-R in the Greek cultural context. In Greece, 107 cognitively healthy seniors ( Mage = 62.24) completed a battery of neuropsychological tests and everyday functionality tests. Both were carefully chosen to be sensitive in fluctuations of performance in the healthy spectrum of cognitive performance and everyday functionality. The everyday functionality assessment tools were modified to reflect the local cultural context (i.e., EPT-G and OTDL-G). The results depicted that performance in all everyday functionality measures decline with age (.197 < r > .509). Statistically significant correlations emerged between cognitive performance and everyday functionality assessments that range from r =0.202 to r=0.510. A series of independent regression analysis including the scores of cognitive assessments has yield statistical significant models that explained 20.9 < AR2 > 32.4 of the variance in everyday functionality scored indexes. All everyday functionality measures were independently predicted by the TMT B-A index, and indicator of executive function. Stepwise regression analyses depicted that TMT B-A and age were statistically significant independent predictors of EPT-G and OTDL-G. It was concluded that everyday functionality is declining with age and that cognitive performance and everyday functional may be related in the healthy spectrum of aging. Age seems not to be the sole contributing factor in everyday functionality decline, rather executive control as well. Moreover, it was concluded that the EPT-G and OTDL-G are valuable tools to assess everyday functionality in Greek seniors that are not cognitively challenged, especially for research purposes. Future research should examine the contributing factors of a better cognitive vitality especially in executive control, as vital for the maintenance of independent living capacity with aging.Keywords: cognition, everyday functionality, aging, cognitive decline, healthy aging, Greece
Procedia PDF Downloads 525416 An Integrated Theoretical Framework on Mobile-Assisted Language Learning: User’s Acceptance Behavior
Authors: Gyoomi Kim, Jiyoung Bae
Abstract:
In the field of language education research, there are not many tries to empirically examine learners’ acceptance behavior and related factors of mobile-assisted language learning (MALL). This study is one of the few attempts to propose an integrated theoretical framework that explains MALL users’ acceptance behavior and potential factors. Constructs from technology acceptance model (TAM) and MALL research are tested in the integrated framework. Based on previous studies, a hypothetical model was developed. Four external variables related to the MALL user’s acceptance behavior were selected: subjective norm, content reliability, interactivity, self-regulation. The model was also composed of four other constructs: two latent variables, perceived ease of use and perceived usefulness, were considered as cognitive constructs; attitude toward MALL as an affective construct; behavioral intention to use MALL as a behavioral construct. The participants were 438 undergraduate students who enrolled in an intensive English program at one university in Korea. This particular program was held in January 2018 using the vacation period. The students were given eight hours of English classes each day from Monday to Friday for four weeks and asked to complete MALL courses for practice outside the classroom. Therefore, all participants experienced blended MALL environment. The instrument was a self-response questionnaire, and each construct was measured by five questions. Once the questionnaire was developed, it was distributed to the participants at the final ceremony of the intensive program in order to collect the data from a large number of the participants at a time. The data showed significant evidence to support the hypothetical model. The results confirmed through structural equation modeling analysis are as follows: First, four external variables such as subjective norm, content reliability, interactivity, and self-regulation significantly affected perceived ease of use. Second, subjective norm, content reliability, self-regulation, perceived ease of use significantly affected perceived usefulness. Third, perceived usefulness and perceived ease of use significantly affected attitude toward MALL. Fourth, attitude toward MALL and perceived usefulness significantly affected behavioral intention to use MALL. These results implied that the integrated framework from TAM and MALL could be useful when adopting MALL environment to university students or adult English learners. Key constructs except interactivity showed significant relationships with one another and had direct and indirect impacts on MALL user’s acceptance behavior. Therefore, the constructs and validated metrics is valuable for language researchers and educators who are interested in MALL.Keywords: blended MALL, learner factors/variables, mobile-assisted language learning, MALL, technology acceptance model, TAM, theoretical framework
Procedia PDF Downloads 240415 Modelling of Air-Cooled Adiabatic Membrane-Based Absorber for Absorption Chillers Using Low Temperature Solar Heat
Authors: M. Venegas, M. De Vega, N. García-Hernando
Abstract:
Absorption cooling chillers have received growing attention over the past few decades as they allow the use of low-grade heat to produce the cooling effect. The combination of this technology with solar thermal energy in the summer period can reduce the electricity consumption peak due to air-conditioning. One of the main components, the absorber, is designed for simultaneous heat and mass transfer. Usually, shell and tubes heat exchangers are used, which are large and heavy. Cooling water from a cooling tower is conventionally used to extract the heat released during the absorption and condensation processes. These are clear inconvenient for the generalization of the absorption technology use, limiting its benefits in the contribution to the reduction in CO2 emissions, particularly for the H2O-LiBr solution which can work with low heat temperature sources as provided by solar panels. In the present work a promising new technology is under study, consisting in the use of membrane contactors in adiabatic microchannel mass exchangers. The configuration here proposed consists in one or several modules (depending on the cooling capacity of the chiller) that contain two vapour channels, separated from the solution by adjacent microporous membranes. The solution is confined in rectangular microchannels. A plastic or synthetic wall separates the solution channels between them. The solution entering the absorber is previously subcooled using ambient air. In this way, the need for a cooling tower is avoided. A model of the configuration proposed is developed based on mass and energy balances and some correlations were selected to predict the heat and mass transfer coefficients. The concentration and temperatures along the channels cannot be explicitly determined from the set of equations obtained. For this reason, the equations were implemented in a computer code using Engineering Equation Solver software, EES™. With the aim of minimizing the absorber volume to reduce the size of absorption cooling chillers, the ratio between the cooling power of the chiller and the absorber volume (R) is calculated. Its variation is shown along the solution channels, allowing its optimization for selected operating conditions. For the case considered the solution channel length is recommended to be lower than 3 cm. Maximum values of R obtained in this work are higher than the ones found in optimized horizontal falling film absorbers using the same solution. Results obtained also show the variation of R and the chiller efficiency (COP) for different ambient temperatures and desorption temperatures typically obtained using flat plate solar collectors. The configuration proposed of adiabatic membrane-based absorber using ambient air to subcool the solution is a good technology to reduce the size of the absorption chillers, allowing the use of low temperature solar heat and avoiding the need for cooling towers.Keywords: adiabatic absorption, air-cooled, membrane, solar thermal energy
Procedia PDF Downloads 286414 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach
Authors: Zhuoran Li, Guan Qin
Abstract:
A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method
Procedia PDF Downloads 173