Search results for: neural stem cell
452 Simultaneous Electrochemical Detection of Chromium(III), Arsenic(III), and Mercury (II) In Water Using Anodic Stripping Voltammetry
Authors: V. Sai Geethika, Sai Snehitha Yadavalli, Swati Ghosh Acharyya
Abstract:
This study involves a single element and simultaneous electrochemical detection of heavy metal ions through square wave anodic stripping voltammetry. A glassy carbon electrode was used to detect and quantify heavy metals such as As(III), Hg(II), Cr(VI) ions in water. Under optimized conditions, peak separation was obtained by varying concentrations, scan rates, and temperatures. As (III), Hg (II), Cr (III) were simultaneously detected with GCE. Several analytical methods, such as inductively coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS), were used previously to detect heavy metal ions, which are authentic but are not good enough for online monitoring due to the bulkiness of the equipment. The study provides a good alternative that is simple, more efficient, and low-cost, involving a portable potentiostat. Heavy metals having different oxidation states can be detected by anodic stripping voltammetry. This method can be easily integrated with electronics. Square wave Anodic stripping voltammetry is used with a potential range of -2.5 V – 2.5 V for single ion detection by a three-electrode cell consisting of silver/silver chloride(Ag/AgCl) as reference and platinum (Pt) counter and glassy carbon (GCE) working electrodes. All three ions are optimized by varying the parameters like concentration, scan rate, pH, temperature, and all these optimized parameters were used for studying the effects of simultaneous detection. The procedure involves preparing an electrolyte using deionized water, cleaning the surface of GCE, depositing the ions by applying the redox potentials obtained from cyclic voltammetry (CV), and then detecting by applying oxidizing potential, i.e., stripping voltage. So this includes ASV techniques such as open-circuit voltage (OCV), chronoamperometry (CA), and square wave voltammetry (SWV). Firstly, the concentration of the ions varied from 50 ppb to 5000 ppb, and an optimum concentration was determined where the three ions were detected. A concentration of 400 ppb was used while varying the temperatures in the range of 25°C – 45°C. Optimum peak intensity was obtained at a temperature of 30°C with a low scan rate of 0.005 V-s⁻¹. All the parameters were optimized, and several effects have been noticed while three ions As(II), Cr(III), Hg(II) were detected alone and simultaneously.Keywords: Arsenic(III), Chromium(III), glassy carbon electrode, Mercury (II), square wave anodic stripping voltammetry
Procedia PDF Downloads 85451 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents
Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat
Abstract:
This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents
Procedia PDF Downloads 71450 Effects of Caprine Arthritis-Encephalitis Virus (CAEV) Infection on the Expression of Cathelicidin Genes in Goat Blood Leukocytes
Authors: Daria Reczynska, Justyna Jarczak, Michal Czopowicz, Danuta Sloniewska, Karina Horbanczuk, Wieslaw Jarmuz, Jaroslaw Kaba, Emilia Bagnicka
Abstract:
Since people, animals and plants are constantly exposed to pathogens they have developed very complex systems of defense. Among ca. 1000 antimicrobial peptides from different families so far identified, approximately 30 belonging to cathelicidin family can be found in mammals. Cathelicidins probably constitute the first line of defense because they can act at a physiological salt concentration which is present in healthy tissues. Moreover, the low salt concentration which is present in infected tissues inhibits their activity. In goat bactenecin 7.5 (BAC7.5), bactenecin 5 (BAC5), myeloid antimicrobial peptide 28 (MAP28), myeloid antimicrobial peptide 34 (MAP34 A and B), goat bactenecin3.4 (ChBac3.4) were identified. Caprine arthritis-encephalitis (CAE) caused by small ruminant lentivirus (SRLV) is economic problem. The main CAE symptoms are weight loss, arthritis, pneumonia and mastitis (significant elevation of the somatic cell count and deterioration of some technological parameters). The study was conducted on 24 dairy goats. The animals were divided into two groups: experimental (SRLV-infected) and control (non-infected). The blood samples were collected five times: on the 1st, 7th, 30th, 90th and 150thday of lactation. The levels of transcripts of BAC7.5, BAC5, MAP28 and MAP34 genes in blood leucocytes were measured using qPCR method. There were no differences in mRNA levels of studied genes between stages of lactation. The differences were observed in expressions of BAC5, MAP28 and MAP34 genes with lower levels in the experimental group. There was no difference in BAC7.5 expression between groups. The decreased levels of transcripts of cathelicidin genes in blood leucocytes of SRLV-infected goats may indicate the disturbances of homeostasis in organisms. It can be concluded that SRLV infection seems to inhibit expression of cathelicidin genes. The study was financed by a grant from the National Scientific Center No. UMO-2013/09/B/NZ/03514.Keywords: goat, CAEV, cathelicidins, blood leukocytes, gene expression
Procedia PDF Downloads 285449 Preparation of Papers - Developing a Leukemia Diagnostic System Based on Hybrid Deep Learning Architectures in Actual Clinical Environments
Authors: Skyler Kim
Abstract:
An early diagnosis of leukemia has always been a challenge to doctors and hematologists. On a worldwide basis, it was reported that there were approximately 350,000 new cases in 2012, and diagnosing leukemia was time-consuming and inefficient because of an endemic shortage of flow cytometry equipment in current clinical practice. As the number of medical diagnosis tools increased and a large volume of high-quality data was produced, there was an urgent need for more advanced data analysis methods. One of these methods was the AI approach. This approach has become a major trend in recent years, and several research groups have been working on developing these diagnostic models. However, designing and implementing a leukemia diagnostic system in real clinical environments based on a deep learning approach with larger sets remains complex. Leukemia is a major hematological malignancy that results in mortality and morbidity throughout different ages. We decided to select acute lymphocytic leukemia to develop our diagnostic system since acute lymphocytic leukemia is the most common type of leukemia, accounting for 74% of all children diagnosed with leukemia. The results from this development work can be applied to all other types of leukemia. To develop our model, the Kaggle dataset was used, which consists of 15135 total images, 8491 of these are images of abnormal cells, and 5398 images are normal. In this paper, we design and implement a leukemia diagnostic system in a real clinical environment based on deep learning approaches with larger sets. The proposed diagnostic system has the function of detecting and classifying leukemia. Different from other AI approaches, we explore hybrid architectures to improve the current performance. First, we developed two independent convolutional neural network models: VGG19 and ResNet50. Then, using both VGG19 and ResNet50, we developed a hybrid deep learning architecture employing transfer learning techniques to extract features from each input image. In our approach, fusing the features from specific abstraction layers can be deemed as auxiliary features and lead to further improvement of the classification accuracy. In this approach, features extracted from the lower levels are combined into higher dimension feature maps to help improve the discriminative capability of intermediate features and also overcome the problem of network gradient vanishing or exploding. By comparing VGG19 and ResNet50 and the proposed hybrid model, we concluded that the hybrid model had a significant advantage in accuracy. The detailed results of each model’s performance and their pros and cons will be presented in the conference.Keywords: acute lymphoblastic leukemia, hybrid model, leukemia diagnostic system, machine learning
Procedia PDF Downloads 187448 Utility of Thromboelastography Derived Maximum Amplitude and R-Time (MA-R) Ratio as a Predictor of Mortality in Trauma Patients
Authors: Arulselvi Subramanian, Albert Venencia, Sanjeev Bhoi
Abstract:
Coagulopathy of trauma is an early endogenous coagulation abnormality that occurs shortly resulting in high mortality. In emergency trauma situations, viscoelastic tests may be better in identifying the various phenotypes of coagulopathy and demonstrate the contribution of platelet function to coagulation. We aimed to determine thrombin generation and clot strength, by estimating a ratio of Maximum amplitude and R-time (MA-R ratio) for identifying trauma coagulopathy and predicting subsequent mortality. Methods: We conducted a prospective cohort analysis of acutely injured trauma patients of the adult age groups (18- 50 years), admitted within 24hrs of injury, for one year at a Level I trauma center and followed up on 3rd day and 5th day of injury. Patients with h/o coagulation abnormalities, liver disease, renal impairment, with h/o intake of drugs were excluded. Thromboelastography was done and a ratio was calculated by dividing the MA by the R-time (MA-R). Patients were further stratified into sub groups based on the calculated MA-R quartiles. First sampling was done within 24 hours of injury; follow up on 3rd and 5thday of injury. Mortality was the primary outcome. Results: 100 acutely injured patients [average, 36.6±14.3 years; 94% male; injury severity score 12.2(9-32)] were included in the study. Median (min-max) on admission MA-R ratio was 15.01(0.4-88.4) which declined 11.7(2.2-61.8) on day three and slightly rose on day 5 13.1(0.06-68). There were no significant differences between sub groups in regard to age, or gender. In the lowest MA-R ratios subgroup; MA-R1 (<8.90; n = 27), injury severity score was significantly elevated. MA-R2 (8.91-15.0; n = 23), MA-R3 (15.01-19.30; n = 24) and MA-R4 (>19.3; n = 26) had no difference between their admission laboratory investigations, however slight decline was observed in hemoglobin, red blood cell count and platelet counts compared to the other subgroups. Also significantly prolonged R time, shortened alpha angle and MA were seen in MA-R1. Elevated incidence of mortality also significantly correlated with on admission low MA-R ratios (p 0.003). Temporal changes in the MA-R ratio did not correlated with mortality. Conclusion: The MA-R ratio provides a snapshot of early clot function, focusing specifically on thrombin burst and clot strength. In our observation, patients with the lowest MA-R time ratio (MA-R1) had significantly increased mortality compared with all other groups (45.5% MA-R1 compared with <25% in MA-R2 to MA-R3, and 9.1% in MA-R4; p < 0.003). Maximum amplitude and R-time may prove highly useful to predict at-risk patients early, when other physiologic indicators are absent.Keywords: coagulopathy, trauma, thromboelastography, mortality
Procedia PDF Downloads 176447 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 141446 The Effects of Ellagic Acid on Rat Lungs Induced Tobacco Smoke
Authors: Nalan Kaya, Gonca Ozan, Elif Erdem, Neriman Colakoglu, Enver Ozan
Abstract:
The toxic effects of tobacco smoke exposure have been detected in numerous studies. Ellagic acid (EA), (2,3,7,8-tetrahydroxy [1]-benzopyranol [5,4,3-cde] benzopyran 5,10-dione), a natural phenolic lactone compound, is found in various plant species including pomegranate, grape, strawberries, blackberries and raspberries. Similar to the other effective antioxidants, EA can safely interact with the free radicals and reduces oxidative stress through the phenolic ring and hydroxyl components in its structure. The aim of the present study was to examine the protective effects of ellagic acid against oxidative damage on lung tissues of rats induced by tobacco smoke. Twenty-four male adult (8 weeks old) Spraque-Dawley rats were divided randomly into 4 equal groups: group I (Control), group II (Tobacco smoke), group III (Tobacco smoke + corn oil) and group IV (Tobacco smoke + ellagic acid). The rats in group II, III and IV, were exposed to tobacco smoke 1 hour twice a day for 12 weeks. In addition to tobacco smoke exposure, 12 mg/kg ellagic acid (dissolved in corn oil), was applied to the rats in group IV by oral gavage. Equal amount of corn oil used in solving ellagic acid was applied to the rats by oral gavage in group III. At the end of the experimental period, rats were decapitated. Lung tissues and blood samples were taken. The lung slides were stained by H&E and Masson’s Trichrome methods. Also, galactin-3 stain was applied. Biochemical analyzes were performed. Vascular congestion and inflammatory cell infiltration in pulmonary interstitium, thickness in interalveolar septum, cytoplasmic vacuolation in some macrophages and galactin-3 positive cells were observed in histological examination of tobacco smoke group. In addition to these findings, hemorrhage in pulmonary interstitium and bronchial lumen was detected in tobacco smoke + corn oil group. Reduced vascular congestion and hemorrhage in pulmoner interstitium and rarely thickness in interalveolar septum were shown in tobacco smoke + EA group. Compared to group-I, group-II GSH level was decreased and MDA level was increased significantly. Nevertheless group-IV GSH level was higher and MDA level was lower than group-II. The results indicate that ellagic acid could protect the lung tissue from the tobacco smoke harmful effects.Keywords: ellagic acid, lung, rat, tobacco smoke
Procedia PDF Downloads 217445 Room Temperature Sensitive Broadband Terahertz Photo Response Using Platinum Telluride Based Devices
Authors: Alka Jakhar, Harmanpreet Kaur Sandhu, Samaresh Das
Abstract:
The Terahertz (THz) technology-based devices are heightening at an alarming rate on account of the wide range of applications in imaging, security, communication, and spectroscopic field. The various available room operational THz detectors, including Golay cell, pyroelectric detector, field-effect transistors, and photoconductive antennas, have some limitations such as narrow-band response, slow response speed, transit time limits, and complex fabrication process. There is an urgent demand to explore new materials and device structures to accomplish efficient THz detection systems. Recently, TMDs including topological semimetals and topological insulators such as PtSe₂, MoTe₂, WSe₂, and PtTe₂ provide novel feasibility for photonic and optical devices. The peculiar properties of these materials, such as Dirac cone, fermions presence, nonlinear optical response, high conductivity, and ambient stability, make them worthy for the development of the THz devices. Here, the platinum telluride (PtTe₂) based devices have been demonstrated for THz detection in the frequency range of 0.1-1 THz. The PtTe₂ is synthesized by direct selenization of the sputtered platinum film on the high-resistivity silicon substrate by using the chemical vapor deposition (CVD) method. The Raman spectra, XRD, and XPS spectra confirm the formation of the thin PtTe₂ film. The PtTe₂ channel length is 5µm and it is connected with a bow-tie antenna for strong THz electric field confinement in the channel. The characterization of the devices has been carried out in a wide frequency range from 0.1-1 THz. The induced THz photocurrent is measured by using lock-in-amplifier after preamplifier. The maximum responsivity is achieved up to 1 A/W under self-biased mode. Further, this responsivity has been increased by applying biasing voltage. This photo response corresponds to low energy THz photons is mainly due to the photo galvanic effect in PtTe₂. The DC current is induced along the PtTe₂ channel, which is directly proportional to the amplitude of the incident THz electric field. Thus, these new topological semimetal materials provide new pathways for sensitive detection and sensing applications in the THz domain.Keywords: terahertz, detector, responsivity, topological-semimetals
Procedia PDF Downloads 161444 Tunable Crystallinity of Zinc Gallogermanate Nanoparticles via Organic Ligand-Assisted Biphasic Hydrothermal Synthesis
Authors: Sarai Guerrero, Lijia Liu
Abstract:
Zinc gallogermanate (ZGGO) is a persistent phosphor that can emit in the near infrared (NIR) range once dopped with Cr³⁺ enabling its use for in-vivo deep-tissue bio-imaging. Such a property also allows for its application in cancer diagnosis and therapy. Given this, work into developing a synthetic procedure that can be done using common laboratory instruments and equipment as well as understanding ZGGO overall, is in demand. However, the ZGGO nanoparticles must have a size compatible for cell intake to occur while still maintaining sufficient photoluminescence. The nanoparticle must also be made biocompatible by functionalizing the surface for hydrophilic solubility and for high particle uniformity in the final product. Additionally, most research is completed on doped ZGGO, leaving a gap in understanding the base form of ZGGO. It also leaves a gap in understanding how doping affects the synthesis of ZGGO. In this work, the first step of optimizing the particle size via the crystalline size of ZGGO was done with undoped ZGGO using the organic acid, oleic acid (OA) for organic ligand-assisted biphasic hydrothermal synthesis. The effects of this synthesis procedure on ZGGO’s crystallinity were evaluated using Powder X-Ray Diffraction (PXRD). OA was selected as the capping ligand as experiments have shown it beneficial in synthesizing sub-10 nm zinc gallate (ZGO) nanoparticles as well as palladium nanocrystals and magnetite (Fe₃O₄) nanoparticles. Later it is possible to substitute OA with a different ligand allowing for hydrophilic solubility. Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) was used to investigate the surface of the nanoparticle to investigate and verify that OA had capped the nanoparticle. PXRD results showed that using this procedure led to improved crystallinity, comparable to the high-purity reagents used on the ZGGO nanoparticles. There was also a change in the crystalline size of the ZGGO nanoparticles. ATR-FTIR showed that once capped ZGGO cannot be annealed as doing so will affect the OA. These results point to this new procedure positively affecting the crystallinity of ZGGO nanoparticles. There are also repeatable implying the procedure is a reliable source of highly crystalline ZGGO nanoparticles. With this completed, the next step will be working on substituting the OA with a hydrophilic ligand. As these ligands effect the solubility of the nanoparticle as well as the pH that the nanoparticles can dissolve in, further research is needed to verify which ligand is best suited for preparing ZGGO for bio-imaging.Keywords: biphasic hydrothermal synthesis, crystallinity, oleic acid, zinc gallogermanate
Procedia PDF Downloads 134443 The Neuropsychology of Obsessive Compulsion Disorder
Authors: Mia Bahar, Özlem Bozkurt
Abstract:
Obsessive-compulsive disorder (OCD) is a typical, persistent, and long-lasting mental health condition in which a person experiences uncontrollable, recurrent thoughts (or "obsessions") and/or activities (or "compulsions") that they feel compelled to engage in repeatedly. Obsessive-compulsive disorder is both underdiagnosed and undertreated. It frequently manifests in a variety of medical settings and is persistent, expensive, and burdensome. Obsessive-compulsive neurosis was long believed to be a condition that offered valuable insight into the inner workings of the unconscious mind. Obsessive-compulsive disorder is now recognized as a prime example of a neuropsychiatric condition susceptible to particular pharmacotherapeutic and psychotherapy therapies and mediated by pathology in particular neural circuits. An obsessive-compulsive disorder which is called OCD, usually has two components, one cognitive and the other behavioral, although either can occur alone. Obsessions are often repetitive and intrusive thoughts that invade consciousness. These obsessions are incredibly hard to control or dismiss. People who have OCD often engage in rituals to reduce anxiety associated with intrusive thoughts. Once the ritual is formed, the person may feel extreme relief and be free from anxiety until the thoughts of contamination intrude once again. These thoughts are strengthened through a manifestation of negative reinforcement because they allow the person to avoid anxiety and obscurity. These thoughts are described as autogenous, meaning they most likely come from nowhere. These unwelcome thoughts are related to actions which we can describe as Thought Action Fusion. The thought becomes equated with an action, such as if they refuse to perform the ritual, something bad might happen, and so people perform the ritual to escape the intrusive thought. In almost all cases of OCD, the person's life gets extremely disturbed by compulsions and obsessions. Studies show OCD is an estimated 1.1% prevalence, making it a challenging issue with high co-morbidities with other issues like depressive episodes, panic disorders, and specific phobias. The first to reveal brain anomalies in OCD were numerous CT investigations, although the results were inconsistent. A few studies have focused on the orbitofrontal cortex (OFC), anterior cingulate gyrus (AC), and thalamus, structures also implicated in the pathophysiology of OCD by functional neuroimaging studies, but few have found consistent results. However, some studies have found abnormalities in the basal ganglion. There have also been some discussions that OCD might be genetic. OCD has been linked to families in studies of family aggregation, and findings from twin studies show that this relationship is somewhat influenced by genetic variables. Some Research has shown that OCD is a heritable, polygenic condition that can result from de novo harmful mutations as well as common and unusual variants. Numerous studies have also presented solid evidence in favor of a significant additive genetic component to OCD risk, with distinct OCD symptom dimensions showing both common and individual genetic risks.Keywords: compulsions, obsessions, neuropsychiatric, genetic
Procedia PDF Downloads 65442 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning
Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi
Abstract:
Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.Keywords: agriculture, computer vision, data science, geospatial technology
Procedia PDF Downloads 138441 Using ANN in Emergency Reconstruction Projects Post Disaster
Authors: Rasha Waheeb, Bjorn Andersen, Rafa Shakir
Abstract:
Purpose The purpose of this study is to avoid delays that occur in emergency reconstruction projects especially in post disaster circumstances whether if they were natural or manmade due to their particular national and humanitarian importance. We presented a theoretical and practical concepts for projects management in the field of construction industry that deal with a range of global and local trails. This study aimed to identify the factors of effective delay in construction projects in Iraq that affect the time and the specific quality cost, and find the best solutions to address delays and solve the problem by setting parameters to restore balance in this study. 30 projects were selected in different areas of construction were selected as a sample for this study. Design/methodology/approach This study discusses the reconstruction strategies and delay in time and cost caused by different delay factors in some selected projects in Iraq (Baghdad as a case study).A case study approach was adopted, with thirty construction projects selected from the Baghdad region, of different types and sizes. Project participants from the case projects provided data about the projects through a data collection instrument distributed through a survey. Mixed approach and methods were applied in this study. Mathematical data analysis was used to construct models to predict delay in time and cost of projects before they started. The artificial neural networks analysis was selected as a mathematical approach. These models were mainly to help decision makers in construction project to find solutions to these delays before they cause any inefficiency in the project being implemented and to strike the obstacles thoroughly to develop this industry in Iraq. This approach was practiced using the data collected through survey and questionnaire data collection as information form. Findings The most important delay factors identified leading to schedule overruns were contractor failure, redesigning of designs/plans and change orders, security issues, selection of low-price bids, weather factors, and owner failures. Some of these are quite in line with findings from similar studies in other countries/regions, but some are unique to the Iraqi project sample, such as security issues and low-price bid selection. Originality/value we selected ANN’s analysis first because ANN’s was rarely used in project management , and never been used in Iraq to finding solutions for problems in construction industry. Also, this methodology can be used in complicated problems when there is no interpretation or solution for a problem. In some cases statistical analysis was conducted and in some cases the problem is not following a linear equation or there was a weak correlation, thus we suggested using the ANN’s because it is used for nonlinear problems to find the relationship between input and output data and that was really supportive.Keywords: construction projects, delay factors, emergency reconstruction, innovation ANN, post disasters, project management
Procedia PDF Downloads 167440 Palladium/Platinum Complexes of Tridentate 4-Acylpyrazolone Thiosemicarbazone with Antioxidant Properties
Authors: Omoruyi G. Idemudia, Alexander P. Sadimenko
Abstract:
The need for the development of new sustainable bioactive compounds with unique properties that can become potential replacement for commonly used medicinal drugs has continued to gain tremendous research concerns because of the problems of disease resistant to these medicinal drugs and their toxicity effects. NOS-donor heterocycles are particularly of interest as they have showed good pharmacological activities in the midst of their interesting chelating properties towards metal ions, an important characteristic for transition metal based drugs design. These new compounds have also gained application as dye sensitizers in solar cell panels for the generation of renewable solar energy, as greener water purification polymer for supply and management of clean water and as catalysts which are used to reduce the amount of pollutants from industrial reaction processes amongst others, because of their versatile properties. Di-ketone acylpyrazolones and their azomethine schiff bases have been employed as pharmaceuticals as well as analytical reagents, and their application as transition metal complexes have being well established. In this research work, a new 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one-thiosemicarbazone was synthesized from the reaction of 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one and thiosemicarbazide in methanol. The pure isolate of the thiosemicarbazone was further reacted with aqueous solutions of palladium and platinum salts to obtain their metal complexes, in an effort towards the discovery of transition metal based synthetic drugs. These compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one thiosemicarbazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group according to x-ray crystallography. The tridentate NOS ligand formed a tetrahedral geometry on coordinating with metal ions. Reported compounds showed varying antioxidant free radical scavenging activities against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 100, 200, 300, 400 and 500 µg/ml concentrations. The platinum complex have shown a very good antioxidant property against DPPH with an IC50 of 76.03 µg/ml compared with standard ascorbic acid (IC50 of 74.66 µg/ml) and as such have been identified as a potential anticancer candidate.Keywords: acylpyrazolone, free radical scavenging activities, tridentate ligand, x-ray crystallography
Procedia PDF Downloads 186439 Impact of Electric Vehicles on Energy Consumption and Environment
Authors: Amela Ajanovic, Reinhard Haas
Abstract:
Electric vehicles (EVs) are considered as an important means to cope with current environmental problems in transport. However, their high capital costs and limited driving ranges state major barriers to a broader market penetration. The core objective of this paper is to investigate the future market prospects of various types of EVs from an economic and ecological point of view. Our method of approach is based on the calculation of total cost of ownership of EVs in comparison to conventional cars and a life-cycle approach to assess the environmental benignity. The most crucial parameters in this context are km driven per year, depreciation time of the car and interest rate. The analysis of future prospects it is based on technological learning regarding investment costs of batteries. The major results are the major disadvantages of battery electric vehicles (BEVs) are the high capital costs, mainly due to the battery, and a low driving range in comparison to conventional vehicles. These problems could be reduced with plug-in hybrids (PHEV) and range extenders (REXs). However, these technologies have lower CO₂ emissions in the whole energy supply chain than conventional vehicles, but unlike BEV they are not zero-emission vehicles at the point of use. The number of km driven has a higher impact on total mobility costs than the learning rate. Hence, the use of EVs as taxis and in car-sharing leads to the best economic performance. The most popular EVs are currently full hybrid EVs. They have only slightly higher costs and similar operating ranges as conventional vehicles. But since they are dependent on fossil fuels, they can only be seen as energy efficiency measure. However, they can serve as a bridging technology, as long as BEVs and fuel cell vehicle do not gain high popularity, and together with PHEVs and REX contribute to faster technological learning and reduction in battery costs. Regarding the promotion of EVs, the best results could be reached with a combination of monetary and non-monetary incentives, as in Norway for example. The major conclusion is that to harvest the full environmental benefits of EVs a very important aspect is the introduction of CO₂-based fuel taxes. This should ensure that the electricity for EVs is generated from renewable energy sources; otherwise, total CO₂ emissions are likely higher than those of conventional cars.Keywords: costs, mobility, policy, sustainability,
Procedia PDF Downloads 226438 The Relationships between AntimüLlerian Hormone, Androgens and Ovarian Reserve in Non-Obese East Indian Women with and without Polycystic Ovary Syndrome
Authors: Dipanshu Sur, Ratnabali Chakravorty, Rimi Pal, Siddhartha Chatterjee, Joyshree Chaterjee, Amal Mallik
Abstract:
Background: Polycystic ovary syndrome (PCOS) is a common endocrine disease in reproductive women with a complex hormonal disturbance that affects the menstrual cycle and leads to metabolic consequences in later life. Hyperandrogenaemia is noticeable features of PCOS and influence the process of folliculogenesis in women. The levels of Antimüllerian Hormone (AMH) reflect the number of pre-antral follicles and thus are a marker of oocyte pool – germinal reserve of the ovary for reproduction. Besides its utilization in IVF (In-vitro fertilization), determination of AMH may serve as an additional marker in the diagnostics of PCOS, where increased AMH levels reflect the severity of the disease. The positive correlation of serum AMH with the number of antral follicles was found also in patients with PCOS. Objective: The objective of this study was to investigate the relationship between AMH androgens and whether AMH contributes to altered folliculogenesis in non-obese women with PCOS. Methods: We designed a prospective study which included a total of 65 IVF individuals. It enrolled 26 cases of PCOS based on 2003 Rotterdam criteria and 39 ovulatory normal- non PCOS, healthy, age-matched controls. AMH levels and ovarian morphology were assessed. The relationships between AMH and androgenaemia in patients with and without PCOS were studied. Results: Mean age of PCOS patients were slightly higher than controls (32±4 and 28±3 years, respectively). AMH generally increased with antral follicle count (AFC) [P=0.001], testosterone, and luteinising hormone, and decreased with age, and serum sex hormone binding globulin (SHBG). No significant relationships were found between circulating AMH levels and BMI between PCOS and non-PCOS patients. The calculation of AMH production per antral follicle (AMH/AF) showed that there was a significant difference in median AMH/AF between PCOS and non-PCOS (P =0.001). Both PCOS and non-PCOS groups showed a very similar increase in AMH with increases in AFC, but the PCOS patients had consistently higher AMH across all AFC levels. Conclusions: These observations indicate that there is a connection between AMH and androgens levels between PCOS and non-PCOS East Indian women. Excessive granulosa cell activity may be implicated in the abnormal follicular dynamic of the syndrome. They are higher in women with PCOS and, on the other hand, very low in women with an ovarian failure.Keywords: anti-Mullerian hormone, polycystic ovary syndrome, antral follicle count, androgens
Procedia PDF Downloads 215437 Optimization of Maintenance of PV Module Arrays Based on Asset Management Strategies: Case of Study
Authors: L. Alejandro Cárdenas, Fernando Herrera, David Nova, Juan Ballesteros
Abstract:
This paper presents a methodology to optimize the maintenance of grid-connected photovoltaic systems, considering the cleaning and module replacement periods based on an asset management strategy. The methodology is based on the analysis of the energy production of the PV plant, the energy feed-in tariff, and the cost of cleaning and replacement of the PV modules, with the overall revenue received being the optimization variable. The methodology is evaluated as a case study of a 5.6 kWp solar PV plant located on the Bogotá campus of the Universidad Nacional de Colombia. The asset management strategy implemented consists of assessing the PV modules through visual inspection, energy performance analysis, pollution, and degradation. Within the visual inspection of the plant, the general condition of the modules and the structure is assessed, identifying dust deposition, visible fractures, and water accumulation on the bottom. The energy performance analysis is performed with the energy production reported by the monitoring systems and compared with the values estimated in the simulation. The pollution analysis is performed using the soiling rate due to dust accumulation, which can be modelled by a black box with an exponential function dependent on historical pollution values. The pollution rate is calculated with data collected from the energy generated during two years in a photovoltaic plant on the campus of the National University of Colombia. Additionally, the alternative of assessing the temperature degradation of the PV modules is evaluated by estimating the cell temperature with parameters such as ambient temperature and wind speed. The medium-term energy decrease of the PV modules is assessed with the asset management strategy by calculating the health index to determine the replacement period of the modules due to degradation. This study proposes a tool for decision making related to the maintenance of photovoltaic systems. The above, projecting the increase in the installation of solar photovoltaic systems in power systems associated with the commitments made in the Paris Agreement for the reduction of CO2 emissions. In the Colombian context, it is estimated that by 2030, 12% of the installed power capacity will be solar PV.Keywords: asset management, PV module, optimization, maintenance
Procedia PDF Downloads 54436 Exhaled Breath Condensate in Lung Cancer: A Non-Invasive Sample for Easier Mutations Detection by Next Generation Sequencing
Authors: Omar Youssef, Aija Knuuttila, Paivi Piirilä, Virinder Sarhadi, Sakari Knuutila
Abstract:
Exhaled breath condensate (EBC) is a unique sample that allows studying different genetic changes in lung carcinoma through a non-invasive way. With the aid of next generation sequencing (NGS) technology, analysis of genetic mutations has been more efficient with increased sensitivity for detection of genetic variants. In order to investigate the possibility of applying this method for cancer diagnostics, mutations in EBC DNA from lung cancer patients and healthy individuals were studied by using NGS. The key aim is to assess the feasibility of using this approach to detect clinically important mutations in EBC. EBC was collected from 20 healthy individuals and 9 lung cancer patients (four lung adenocarcinomas, four 8 squamous cell carcinoma, and one case of mesothelioma). Mutations in hotpot regions of 22 genes were studied by using Ampliseq Colon and Lung cancer panel and sequenced on Ion PGM. Results demonstrated that all nine patients showed a total of 19 cosmic mutations in APC, BRAF, EGFR, ERBB4, FBXW7, FGFR1, KRAS, MAP2K1, NRAS, PIK3CA, PTEN, RET, SMAD4, and TP53. In controls, 15 individuals showed 35 cosmic mutations in BRAF, CTNNB1, DDR2, EGFR, ERBB2, FBXW7, FGFR3, KRAS, MET, NOTCH1, NRAS, PIK3CA, PTEN, SMAD4, and TP53. Additionally, 45 novel mutations not reported previously were also seen in patients’ samples, and 106 novel mutations were seen in controls’ specimens. KRAS exon 2 mutations G12D was identified in one control specimen with mutant allele fraction of 6.8%, while KRAS G13D mutation seen in one patient sample showed mutant allele fraction of 17%. These findings illustrate that hotspot mutations are present in DNA from EBC of both cancer patients and healthy controls. As some of the cosmic mutations were seen in controls too, no firm conclusion can be drawn on the clinical importance of cosmic mutations in patients. Mutations reported in controls could represent early neoplastic changes or normal homeostatic process of apoptosis occurring in lung tissue to get rid of mutant cells. At the same time, mutations detected in patients might represent a non-invasive easily accessible way for early cancer detection. Follow up of individuals with important cancer mutations is necessary to clarify the significance of these mutations in both healthy individuals and cancer patients.Keywords: exhaled breath condensate, lung cancer, mutations, next generation sequencing
Procedia PDF Downloads 176435 A Unified Approach for Digital Forensics Analysis
Authors: Ali Alshumrani, Nathan Clarke, Bogdan Ghite, Stavros Shiaeles
Abstract:
Digital forensics has become an essential tool in the investigation of cyber and computer-assisted crime. Arguably, given the prevalence of technology and the subsequent digital footprints that exist, it could have a significant role across almost all crimes. However, the variety of technology platforms (such as computers, mobiles, Closed-Circuit Television (CCTV), Internet of Things (IoT), databases, drones, cloud computing services), heterogeneity and volume of data, forensic tool capability, and the investigative cost make investigations both technically challenging and prohibitively expensive. Forensic tools also tend to be siloed into specific technologies, e.g., File System Forensic Analysis Tools (FS-FAT) and Network Forensic Analysis Tools (N-FAT), and a good deal of data sources has little to no specialist forensic tools. Increasingly it also becomes essential to compare and correlate evidence across data sources and to do so in an efficient and effective manner enabling an investigator to answer high-level questions of the data in a timely manner without having to trawl through data and perform the correlation manually. This paper proposes a Unified Forensic Analysis Tool (U-FAT), which aims to establish a common language for electronic information and permit multi-source forensic analysis. Core to this approach is the identification and development of forensic analyses that automate complex data correlations, enabling investigators to investigate cases more efficiently. The paper presents a systematic analysis of major crime categories and identifies what forensic analyses could be used. For example, in a child abduction, an investigation team might have evidence from a range of sources including computing devices (mobile phone, PC), CCTV (potentially a large number), ISP records, and mobile network cell tower data, in addition to third party databases such as the National Sex Offender registry and tax records, with the desire to auto-correlate and across sources and visualize in a cognitively effective manner. U-FAT provides a holistic, flexible, and extensible approach to providing digital forensics in technology, application, and data-agnostic manner, providing powerful and automated forensic analysis.Keywords: digital forensics, evidence correlation, heterogeneous data, forensics tool
Procedia PDF Downloads 197434 Microalgae Hydrothermal Liquefaction Process Optimization and Comprehension to Produce High Quality Biofuel
Authors: Lucie Matricon, Anne Roubaud, Geert Haarlemmer, Christophe Geantet
Abstract:
Introduction: This case discusses the management of two floor of mouth (FOM) Squamous Cell Carcinomas (SCC) not identified upon initial biopsy. Case Report: A 51 year-old male presented with right FOM erythroleukoplakia. Relevant medical history included alcoholic dependence syndrome and alcoholic liver disease. Relevant drug therapy encompassed acamprosate, folic acid, hydroxocobalamin and thiamine. The patient had a 55.5 pack-year smoking history and alcohol dependence from age 14, drinking 16 units/day. FOM incisional biopsy and histopathological analysis diagnosed Carcinoma in situ. Treatment involved wide local excision. Specimen analysis revealed two separate foci of pT1 moderately differentiated SCCs. Carcinoma staging scans revealed no pathological lymphadenopathy, no local invasion or metastasis. SCCs had been excised in completion with narrow margins. MDT discussion concluded that in view of the field changes it would be difficult to identify specific areas needing further excision, although techniques such as Lugol’s Iodine were considered. Further surgical resection, surgical neck management and sentinel lymph node biopsy was offered. The patient declined intervention, primary management involved close monitoring alongside alcohol and smoking cessation referral. Discussion: Narrow excisional margins can increase carcinoma recurrence risk. Biopsy failed to identify SCCs, despite sampling an area of clinical concern. For gross field change multiple incisional biopsies should be considered to increase chance of accurate diagnosis and appropriate treatment. Coupling of tobacco and alcohol has a synergistic effect, exponentially increasing the relative risk of oral carcinoma development. Tobacco and alcoholic control is fundamental in reducing treatment‑related side effects, recurrence risk, and second primary cancer development.Keywords: microalgae, biofuels, hydrothermal liquefaction, biomass
Procedia PDF Downloads 133433 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs
Authors: André Augusto Ceballos Melo
Abstract:
Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.Keywords: stable diffusion, neural interface, smart prosthetic, augmenting
Procedia PDF Downloads 102432 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study
Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio Domenico Grieco, Emanuela Guerriero
Abstract:
Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from Sanofi Aventis, a French pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.Keywords: constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries
Procedia PDF Downloads 620431 Energy-Efficient Storage of Methane Using Biosurfactant in the Form of Clathrate Hydrate
Authors: Abdolreza Farhadian, Anh Phan, Zahra Taheri Rizi, Elaheh Sadeh
Abstract:
The utilization of solidified gas technology based on hydrates exhibits considerable promise for carbon capture, storage, and natural gas transportation applications. The pivotal factor impeding the industrial implementation of hydrates lies in the need for efficient and non-foaming promoters. In this study, a biosurfactant with sulfonate, amide, and carboxyl groups (BS) was synthesized as a methane hydrate formation promoter, replicating the chemical characteristics of amino acids and sodium dodecyl sulfate (SDS). The synthesis of BS follows a simple, three-step process that is amenable to industrial scale production. The first two steps of the process are solvent-free, which helps reduce potential environmental impacts and makes scaling up more feasible. Additionally, the final step utilizes a water-isopropanol mixture, which is an easily accessible and cost-effective solvent system for large-scale production. High-pressure autoclave experiments demonstrated a significant enhancement in methane hydrate formation kinetics with low BS concentrations. 50 ppm of BS yielded a maximum water-to-hydrate conversion of 66.9%, equivalent to a storage capacity of 119.9 v/v in distilled water. With increasing BS concentration to 500 ppm, the conversion degree and storage capacity reached 97% and 162.6 v/v, respectively. Molecular dynamic simulation revealed that BS molecules acted as collectors for methane molecules, augmenting hydrate growth rate and increasing the number of hydrate cavities. Additionally, BS demonstrated a biodegradability exceeding 60% within 28 days. Toxicity assessments confirmed BS's biocompatibility, with cell viability above 70% for skin and lung cells at concentrations up to 160 and 80 µg/mL, respectively. BS showed significant potential as an environmentally friendly alternative to synthetic surfactants like SDS for methane storage. These findings suggest that the synthesis of effective, such as BS, holds promise for diverse applications, including seawater desalination, carbon capture, and gas storage. Acknowledgments This study was funded by Russian Science Foundation according to the research project № 24-73-10069.Keywords: solidified methane, gas storage, gas hydrates, green surfactant, gas hydrate promoter, computational simulation, sustainability
Procedia PDF Downloads 14430 Over Expression of Mapk8ip3 Patient Variants in Zebrafish to Establish a Spectrum of Phenotypes in a Rare-Neurodevelopmental Disorder
Authors: Kinnsley Travis, Camerron M. Crowder
Abstract:
Mapk8ip3 (Mitogen-Activated Protein Kinase 8 Interacting Protein 3) is a gene that codes for the JIP3 protein, which is a part of the JIP scaffolding protein family. This protein is involved in axonal vesicle transport, elongation and regeneration. Variants in the Mapk8ip3 gene are associated with a rare-genetic condition that results in a neurodevelopmental disorder that can cause a range of phenotypes including global developmental delay and intellectual disability. Currently, there are 18 known individuals diagnosed to have sequenced confirmed Mapk8ip3 genetic disorders. This project focuses on examining the impact of a subset of missense patient variants on the Jip3 protein function by overexpressing the mRNA of these variants in a zebrafish knockout model for Jip3. Plasmids containing cDNA with individual missense variants were reverse transcribed, purified, and injected into single-cell zebrafish embryos (Wild Type, Jip3 -/+, and Jip3 -/-). At 6-days post mRNA microinjection, morphological, behavioral, and microscopic phenotypes were examined in zebrafish larvae. Morphologically, we compared the size and shape of the zebrafish during their development over a 5-day period. Total locomotive activity was assessed using the Microtracker assay and patterns of movement over time were examined using the DanioVision assay. Lastly, we used confocal microscopy to examine sensory axons for swelling and shortened length, which are phenotypes observed in the loss-of-function knockout Jip3 zebrafish model. Using these assays during embryonic development, we determined the impact of various missense variants on Jip3 protein function, compared to knockout and wild-type zebrafish embryo models. Variants in the gene Mapk8ip3 cause rare-neurodevelopmental disorders due to an essential role in axonal vesicle transport, elongation and regeneration. A subset of missense variants was examined by overexpressing the mRNA of these variants in a Jip3 knock-out zebrafish. Morphological, behavioral, and microscopic phenotypes were examined in zebrafish larvae. Using these assays, the spectrum of disorders can be phenotypically determined and the impact of variant location can be compared to knockout and wild-type zebrafish embryo models.Keywords: rare disease, neurodevelopmental disorders, mrna overexpression, zebrafish research
Procedia PDF Downloads 116429 Children Asthma; The Role of Molecular Pathways and Novel Saliva Biomarkers Assay
Authors: Seyedahmad Hosseini, Mohammadjavad Sotoudeheian
Abstract:
Introduction: Allergic asthma is a heterogeneous immuno-inflammatory disease based on Th-2-mediated inflammation. Histopathologic abnormalities of the airways characteristic of asthma include epithelial damage and subepithelial collagen deposition. Objectives: Human bronchial epithelial cell genome expression of TNF‑α, IL‑6, ICAM‑1, VCAM‑1, nuclear factor (NF)‑κB signaling pathways up-regulate during inflammatory cascades. Moreover, immunofluorescence assays confirmed the nuclear translocation of NF‑κB p65 during inflammatory responses. An absolute LDH leakage assays suggestedLPS-inducedcells injury, and the associated mechanisms are co-incident events. LPS-induced phosphorylation of ERKand JNK causes inflammation in epithelial cells through inhibition of ERK and JNK activation and NF-κB signaling pathway. Furthermore, the inhibition of NF-κB mRNA expression and the nuclear translocation of NF-κB lead to anti-inflammatory events. Likewise, activation of SUMF2 which inhibits IL-13 and reduces Th2-cytokines, NF-κB, and IgE levels to ameliorate asthma. On the other hand, TNFα-induced mucus production reduced NF-κB activation through inhibition of the activation status of Rac1 and IκBα phosphorylation. In addition, bradykinin B2 receptor (B2R), which mediates airway remodeling, regulates through NF-κB. Bronchial B2R expression is constitutively elevated in allergic asthma. In addition, certain NF-κB -dependent chemokines function to recruit eosinophils in the airway. Besides, bromodomain containing 4 (BRD4) plays a significant role in mediating innate immune response in human small airway epithelial cells as well as transglutaminase 2 (TG2), which is detectable in saliva. So, the guanine nucleotide-binding regulatory protein α-subunit, Gα16, expresses a κB-driven luciferase reporter. This response was accompanied by phosphorylation of IκBα. Furthermore, expression of Gα16 in saliva markedly enhanced TNF-α-induced κB reporter activity. Methods: The applied method to form NF-κB activation is the electromobility shift assay (EMSA). Also, B2R-BRD4-TG2 complex detection by immunoassay method within saliva with EMSA of NF-κB activation may be a novel biomarker for asthma diagnosis and follow up. Conclusion: This concept introduces NF-κB signaling pathway as potential asthma biomarkers and promising targets for the development of new therapeutic strategies against asthma.Keywords: NF-κB, asthma, saliva, T-helper
Procedia PDF Downloads 97428 Electroactivity of Clostridium saccharoperbutylacetonicum 1-4N during Carbon Dioxide Reduction in a Bioelectrosynthesis System
Authors: Carlos A. Garcia-Mogollon, Juan C. Quintero-Diaz, Claudio Avignone-Rossa
Abstract:
Clostridium saccharoperbutylacetonicum 1-4N (Csb 1-4N) is an industrial reference strain for Acetone-Butanol-Ethanol (ABE) fermentation. Csb 1-4N is a solventogenic clostridium and H₂ producer with a metabolic profile that makes it a good candidate for Bioelectrosynthesis System (BES). The aim of this study was to evaluate the electroactivity of Csb 1-4N by cyclic voltammetry technique (CV). The Bioelectrosynthesis fermentation (BES) started in a Triptone-Yeast extract (TY) medium with trace elements and vitamins, Complex Nitrogen Source (CNS), and bicarbonate (NaHCO₃, 4g/L) as a carbon source, run at -600mVAg/AgCl and adding 200uM NADH. The six BES batches were performed with different media composition with and without NADH, CNS, HCO₃⁻ , and applied potential. The CV was performed as three-electrode system: platinum slice working electrode (WE), nickel contra electrode (CE) and reference electrode Ag/AgCl (ER). CVs were run in a potential range of -0.7V to 0.7V vs. VAg/AgCl at a scan rate 10mV/s. A CV recorded using different NaHCO₃ concentrations (0.25; 0.5; 1.0; 4g/L) were obtained. BES fermentation samples were centrifuged (3000 rpm, 5min, 4C), and supernatant (7mL) was used. CVs were obtained for Csb1-4N BES culture cell-free supernatant at 0h, 24h, and 48h. The electrochemical analysis was carried out with a PalmSens 4.0 potentiostat/galvanostat controlled with the PStrace 5.7 software, and CVs curves were characterized by reduction and oxidation currents and reduction and oxidation peaks. The CVs obtained for NaHCO₃ solutions showed that the reduction current and oxidation current decreased as the NaHCO₃ concentration was decreased. All reduction and oxidation currents decreased until exponential growth stop (24h), independence of initial cathodic current, except in medium with trace elements, vitamins, and NaHCO3, in which reduction current was around half at 24h and followed decreasing at 48. In this medium, Csb1-4N did not grow, but pH was increased, indicating that NaHCO₃ was reduced as the reduction current decreased. In general, at 48h reduction currents did not present important changes between different mediums in BES cultures. In terms of intensities in the peaks (Ip) did not present important variations; except with Ipa and Ipc in BES culture with NaHCO₃ and NADH added are higher than peaks in other cultures. Based on results, cathodic and anodic currents changes were induced by NaHCO₃ reduction reactions during Csb1-4N metabolic activity in different BES experiments.Keywords: clostridium saccharoperbutylacetonicum 1-4N, bioelectrosynthesis, carbon dioxide fixation, cyclic voltammetry
Procedia PDF Downloads 137427 Syntheses in Polyol Medium of Inorganic Oxides with Various Smart Optical Properties
Authors: Shian Guan, Marie Bourdin, Isabelle Trenque, Younes Messaddeq, Thierry Cardinal, Nicolas Penin, Issam Mjejri, Aline Rougier, Etienne Duguet, Stephane Mornet, Manuel Gaudon
Abstract:
At the interface of the studies performed by 3 Ph.D. students: Shian Guan (2017-2020), Marie Bourdin (2016-2019) and Isabelle Trenque (2012-2015), a single synthesis route: polyol-mediated process, was used with success for the preparation of different inorganic oxides. Both of these inorganic oxides were elaborated for their potential application as smart optical compounds. This synthesis route has allowed us to develop nanoparticles of zinc oxide, vanadium oxide or tungsten oxide. This route is with easy implementation, inexpensive and with large-scale production potentialities and leads to materials of high purity. The obtaining by this route of nanometric particles, however perfectly crystalline, has notably led to the possibility of doping these matrix materials with high doping ion concentrations (high solubility limits). Thus, Al3+ or Ga3+ doped-ZnO powder, with high doping rate in comparison with the literature, exhibits remarkable infrared absorption properties thanks to their high free carrier density. Note also that due to the narrow particle size distribution of the as-prepared nanometric doped-ZnO powder, the original correlation between crystallite size and unit-cell parameters have been established. Also, depending on the annealing atmosphere use to treat vanadium precursors, VO2, V2O3 or V2O5 oxides with thermochromic or electrochromic properties can be obtained without any impurity, despite the versatility of the oxidation state of vanadium. This is of more particular interest on vanadium dioxide, a relatively difficult-to-prepare oxide, whose first-order metal-insulator phase transition is widely explored in the literature for its thermochromic behavior (in smart windows with optimal thermal insulation). Finally, the reducing nature of the polyol solvents ensures the production of oxygen-deficient tungsten oxide, thus conferring to the nano-powders exotic colorimetric properties, as well as optimized photochromic and electrochromic behaviors.Keywords: inorganic oxides, electrochromic, photochromic, thermochromic
Procedia PDF Downloads 221426 Evaluating the Potential of a Fast Growing Indian Marine Cyanobacterium by Reconstructing and Analysis of a Genome Scale Metabolic Model
Authors: Ruchi Pathania, Ahmad Ahmad, Shireesh Srivastava
Abstract:
Cyanobacteria is a promising microbe that can capture and convert atmospheric CO₂ and light into valuable industrial bio-products like biofuels, biodegradable plastics, etc. Among their most attractive traits are faster autotrophic growth, whole year cultivation using non-arable land, high photosynthetic activity, much greater biomass and productivity and easy for genetic manipulations. Cyanobacteria store carbon in the form of glycogen which can be hydrolyzed to release glucose and fermented to form bioethanol or other valuable products. Marine cyanobacterial species are especially attractive for countries with scarcity of freshwater. We recently identified a marine native cyanobacterium Synechococcus sp. BDU 130192 which has good growth rate and high level of polyglucans accumulation compared to Synechococcus PCC 7002. In this study, firstly we sequenced the whole genome and the sequences were annotated using the RAST server. Genome scale metabolic model (GSMM) was reconstructed through COBRA toolbox. GSMM is a computational representation of the metabolic reactions and metabolites of the target strain. GSMMs construction through the application of Flux Balance Analysis (FBA), which uses external nutrient uptake rates and estimate steady state intracellular and extracellular reaction fluxes, including maximization of cell growth. The model, which we have named isyn942, includes 942 reactions and 913 metabolites having 831 metabolic, 78 transport and 33 exchange reactions. The phylogenetic tree obtained by BLAST search revealed that the strain was a close relative of Synechococcus PCC 7002. The flux balance analysis (FBA) was applied on the model iSyn942 to predict the theoretical yields (mol product produced/mol CO₂ consumed) for native and non-native products like acetone, butanol, etc. under phototrophic condition by applying metabolic engineering strategies. The reported strain can be a viable strain for biotechnological applications, and the model will be helpful to researchers interested in understanding the metabolism as well as to design metabolic engineering strategies for enhanced production of various bioproducts.Keywords: cyanobacteria, flux balance analysis, genome scale metabolic model, metabolic engineering
Procedia PDF Downloads 158425 Characterization, Replication and Testing of Designed Micro-Textures, Inspired by the Brill Fish, Scophthalmus rhombus, for the Development of Bioinspired Antifouling Materials
Authors: Chloe Richards, Adrian Delgado Ollero, Yan Delaure, Fiona Regan
Abstract:
Growing concern about the natural environment has accelerated the search for non-toxic, but at the same time, economically reasonable, antifouling materials. Bioinspired surfaces, due to their nano and micro topographical antifouling capabilities, provide a hopeful approach to the design of novel antifouling surfaces. Biological organisms are known to have highly evolved and complex topographies, demonstrating antifouling potential, i.e. shark skin. Previous studies have examined the antifouling ability of topographic patterns, textures and roughness scales found on natural organisms. One of the mechanisms used to explain the adhesion of cells to a substrate is called attachment point theory. Here, the fouling organism experiences increased attachment where there are multiple attachment points and reduced attachment, where the number of attachment points are decreased. In this study, an attempt to characterize the microtopography of the common brill fish, Scophthalmus rhombus, was undertaken. Scophthalmus rhombus is a small flatfish of the family Scophthalmidae, inhabiting regions from Norway to the Mediterranean and the Black Sea. They reside in shallow sandy and muddy coastal areas at depths of around 70 – 80 meters. Six engineered surfaces (inspired by the Brill fish scale) produced by a 2-photon polymerization (2PP) process were evaluated for their potential as an antifouling solution for incorporation onto tidal energy blades. The micro-textures were analyzed for their AF potential under both static and dynamic laboratory conditions using two laboratory grown diatom species, Amphora coffeaeformis and Nitzschia ovalis. The incorporation of a surface topography was observed to cause a disruption in the growth of A. coffeaeformis and N. ovalis cells on the surface in comparison to control surfaces. This work has demonstrated the importance of understanding cell-surface interaction, in particular, topography for the design of novel antifouling technology. The study concluded that biofouling can be controlled by physical modification, and has contributed significant knowledge to the use of a successful novel bioinspired AF technology, based on Brill, for the first time.Keywords: attachment point theory, biofouling, Scophthalmus rhombus, topography
Procedia PDF Downloads 108424 Strategic Innovation of Nanotechnology: Novel Applications of Biomimetics and Microfluidics in Food Safety
Authors: Boce Zhang
Abstract:
Strategic innovation of nanotechnology to promote food safety has drawn tremendous attentions among research groups, which includes the need for research support during the implementation of the Food Safety Modernization Act (FSMA) in the United States. There are urgent demands and knowledge gaps to the understanding of a) food-water-bacteria interface as for how pathogens persist and transmit during food processing and storage; b) minimum processing requirement needed to prevent pathogen cross-contamination in the food system. These knowledge gaps are of critical importance to the food industry. However, the lack of knowledge is largely hindered by the limitations of research tools. Our groups recently endeavored two novel engineering systems with biomimetics and microfluidics as a holistic approach to hazard analysis and risk mitigation, which provided unprecedented research opportunities to study pathogen behavior, in particular, contamination, and cross-contamination, at the critical food-water-pathogen interface. First, biomimetically-patterned surfaces (BPS) were developed to replicate the identical surface topography and chemistry of a natural food surface. We demonstrated that BPS is a superior research tool that empowers the study of a) how pathogens persist through sanitizer treatment, b) how to apply fluidic shear-force and surface tension to increase the vulnerability of the bacterial cells, by detaching them from a protected area, etc. Secondly, microfluidic devices were designed and fabricated to study the bactericidal kinetics in the sub-second time frame (0.1~1 second). The sub-second kinetics is critical because the cross-contamination process, which includes detachment, migration, and reattachment, can occur in a very short timeframe. With this microfluidic device, we were able to simulate and study these sub-second cross-contamination scenarios, and to further investigate the minimum sanitizer concentration needed to sufficiently prevent pathogen cross-contamination during the food processing. We anticipate that the findings from these studies will provide critical insight on bacterial behavior at the food-water-cell interface, and the kinetics of bacterial inactivation from a broad range of sanitizers and processing conditions, thus facilitating the development and implementation of science-based food safety regulations and practices to mitigate the food safety risks.Keywords: biomimetic materials, microbial food safety, microfluidic device, nanotechnology
Procedia PDF Downloads 359423 Chinese Acupuncture: A Potential Treatment for Autism Rat Model via Improving Synaptic Function
Authors: Sijie Chen, Xiaofang Chen, Juan Wang, Yingying Zhang, Yu Hong, Wanyu Zhuang, Xinxin Huang, Ping Ou, Longsheng Huang
Abstract:
Purpose: Autistic symptom improvement can be observed in children treated with acupuncture, but the mechanism is still being explored. In the present study, we used scalp acupuncture to treat autism rat model, and then their improvement in the abnormal behaviors and specific mechanisms behind were revealed by detecting animal behaviors, analyzing the RNA sequencing of the prefrontal cortex(PFC), and observing the ultrastructure of PFC neurons under the transmission electron microscope. Methods: On gestational day 12.5, Wistar rats were given valproic acid (VPA) by intraperitoneal injection, and their offspring were considered to be reliable rat models of autism. They were randomized to VPA or VPA-acupuncture group (n=8). Offspring of Wistar pregnant rats that were simultaneously injected with saline were randomly selected as the wild-type group (WT). VPA_acupuncture group rats received acupuncture intervention at 23 days of age for 4 weeks, and the other two groups followed without intervention. After the intervention, all experimental rats underwent behavioral tests. Immediately afterward, they were euthanized by cervical dislocation, and their prefrontal cortex was isolated for RNA sequencing and transmission electron microscopy. Results: The main results are as follows: 1. Animal behavioural tests: VPA group rats showed more anxiety-like behaviour and repetitive, stereotyped behaviour than WT group rats. While VPA group rats showed less spatial exploration ability, activity level, social interaction, and social novelty preference than WT group rats. It was gratifying to observe that acupuncture indeed improved these abnormal behaviors of autism rat model. 2. RNA-sequencing: The three groups of rats differed in the expression and enrichment pathways of multiple genes related to synaptic function, neural signal transduction, and circadian rhythm regulation. Our experiments indicated that acupuncture can alleviate the major symptoms of ASD by improving these neurological abnormalities. 3. Under the transmission electron microscopy, several lysosomes and mitochondrial structural abnormalities were observed in the prefrontal neurons of VPA group rats, which were manifested as atrophy of the mitochondrial membran, blurring or disappearance of the mitochondrial cristae, and even vacuolization. Moreover, the number of synapses and synaptic vesicles was relatively small. Conversely, the mitochondrial structure of rats in the WT group and VPA_acupuncture was normal, and the number of synapses and synaptic vesicles was relatively large. Conclusion: Acupuncture effectively improved the abnormal behaviors of autism rat model and the ultrastructure of the PFC neurons, which might worked by improving their abnormal synaptic function, synaptic plasticity and promoting neuronal signal transduction.Keywords: autism spectrum disorder, acupuncture, animal behavior, RNA sequencing, transmission electron microscope
Procedia PDF Downloads 46