Search results for: Sustainable Energy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11671

Search results for: Sustainable Energy

6211 Potency of Minapolitan Area Development to Enhance Gross Domestic Product and Prosperty in Indonesia

Authors: Shobrina Silmi Qori Tarlita, Fariz Kukuh Harwinda

Abstract:

Indonesia has 81.000 kilometers coastal line and 70% water surface which is known as the country who has a huge potential in fisheries sector and also which is able to support more than 50 % of Gross Domestic Product. But according to Department of Marine and Fisheries data, fisheries sector supported only 20% of Total GDP in 1998. Not only that, the highest decline in fisheries sector income occured in 2009. Those conditions occur, because of some factors contributed to the lack of integrated working platform for the fisheries and marine management in some areas which have a high productivity to increase the economical profit every year for the country, especially Indonesia, besides the labor requirement for every company, whether a big company or smaller one, depends on the natural condition that makes a lot of people become unemployed if the weather condition or any other conditions dealing with the natural condition is bad for creating fisheries and marine management, especially in aquaculture and fish – captured operation. Not only those, a lot of fishermen, especially in Indonesia, mostly make their job profession as an additional job or side job to fulfill their own needs, although they are averagely poor. Another major problem are the lack of the sustainable developmental program to stabilize the productivity of fisheries and marine natural source, like protecting the environment for fish nursery ground and migration channel, that makes the low productivity of fisheries and marine natural resource, even though the growth of the society in Indonesia has increased for years and needs more food resource to comply the high demand nutrition for living. The development of Minapolitan Area is one of the alternative solution to build a better place for aqua-culturist as well as the fishermen which focusing on systemic and business effort for fisheries and marine management. Minapolitan is kind of integration area which gathers and integrates the ones who is focusing their effort and business in fisheries sector, so that Minapolitan is capable of triggering the fishery activity on the area which using Minapolitan management intensively. From those things, finally, Minapolitan is expected to reinforce the sustainable development through increasing the productivity of fish – capturing operation as well as aquaculture, and it is also expected that Minapolitan will be able to increase GDP, the earning for a lot of people and also will be able to bring prosperity around the world. From those backgrounds, this paper will explain more about the Minapolitan Area and the design of reinforcing the Minapolitan Area by zonation in the Fishery and Marine exploitation area with high productivity as well as low productivity. Hopefully, this solution will be able to answer the economical and social issue for declining food resource, especially fishery and marine resource.

Keywords: Minapolitan, fisheries, economy, Indonesia

Procedia PDF Downloads 458
6210 Life Cycle Assessment Comparison between Methanol and Ethanol Feedstock for the Biodiesel from Soybean Oil

Authors: Pawit Tangviroon, Apichit Svang-Ariyaskul

Abstract:

As the limited availability of petroleum-based fuel has been a major concern, biodiesel is one of the most attractive alternative fuels because it is renewable and it also has advantages over the conventional petroleum-base diesel. At Present, productions of biodiesel generally perform by transesterification of vegetable oils with low molecular weight alcohol, mainly methanol, using chemical catalysts. Methanol is petrochemical product that makes biodiesel producing from methanol to be not pure renewable energy source. Therefore, ethanol as a product produced by fermentation processes. It appears as a potential feed stock that makes biodiesel to be pure renewable alternative fuel. The research is conducted based on two biodiesel production processes by reacting soybean oils with methanol and ethanol. Life cycle assessment was carried out in order to evaluate the environmental impacts and to identify the process alternative. Nine mid-point impact categories are investigated. The results indicate that better performance on Abiotic Depletion Potential (ADP) and Acidification Potential (AP) are observed in biodiesel production from methanol when compared with biodiesel production from ethanol due to less energy consumption during the production processes. Except for ADP and AP, using methanol as feed stock does not show any advantages over biodiesel from ethanol. The single score method is also included in this study in order to identify the best option between two processes of biodiesel production. The global normalization and weighting factor based on eco-taxes are used and it shows that producing biodiesel form ethanol has less environmental load compare to biodiesel from methanol.

Keywords: biodiesel, ethanol, life cycle assessment, methanol, soybean oil

Procedia PDF Downloads 203
6209 A Techno-Economic Simulation Model to Reveal the Relevance of Construction Process Impact Factors for External Thermal Insulation Composite System (ETICS)

Authors: Virgo Sulakatko

Abstract:

The reduction of energy consumption of the built environment has been one of the topics tackled by European Commission during the last decade. Increased energy efficiency requirements have increased the renovation rate of apartment buildings covered with External Thermal Insulation Composite System (ETICS). Due to fast and optimized application process, a large extent of quality assurance is depending on the specific activities of artisans and are often not controlled. The on-site degradation factors (DF) have the technical influence to the façade and cause future costs to the owner. Besides the thermal conductivity, the building envelope needs to ensure the mechanical resistance and stability, fire-, noise-, corrosion and weather protection, and long-term durability. As the shortcomings of the construction phase become problematic after some years, the common value of the renovation is reduced. Previous work on the subject has identified and rated the relevance of DF to the technical requirements and developed a method to reveal the economic value of repair works. The future costs can be traded off to increased the quality assurance during the construction process. The proposed framework is describing the joint simulation of the technical importance and economic value of the on-site DFs of ETICS. The model is providing new knowledge to improve the resource allocation during the construction process by enabling to identify and diminish the most relevant degradation factors and increase economic value to the owner.

Keywords: ETICS, construction technology, construction management, life cycle costing

Procedia PDF Downloads 411
6208 Iron Doping Enhanced Photocatalytic Nitrogen Fixation Performance of WO₃ with Three-Dimensionally Orderd Macroporous Structure

Authors: Xiaoling Ren, Guidong Yang

Abstract:

Ammonia, as one of the largest-volume industrial chemicals, is mostly produced by century-old Haber-Bosch process with extreme conditionsand high-cost. Under the circumstance, researchersarededicated in finding new ways to replace the Haber-Bosch process. Photocatalytic nitrogen fixation is a promising sustainable, clear and green strategy for ammonia synthesis, butit is still a big challenge due to the high activation energy for nitrogen. It is essential to develop an efficient photocatalyst for making this approach industrial application. Constructing chemisorption active sites through defect engineering can be defined as an effective and reliable means to improve nitrogen activation by forming the extraordinary coordination environment and electronic structure. Besides, the construction of three-dimensionally orderdmacroporous (3DOM) structured photocatalyst is considered to be one of effectivestrategiesto improve the activity due to it canincrease the diffusion rate of reactants in the interior, which isbeneficial to the mass transfer process of nitrogen molecules in photocatalytic nitrogen reduction. Herein, Fe doped 3DOM WO₃(Fe-3DOM WO₃) without noble metal cocatalysts is synthesized by a polystyrene-template strategy, which is firstly used for photocatalytic nitrogen fixation. To elucidate the chemical nature of the dopant, the X-ray diffraction (XRD) analysiswas conducted. The pure 3DOM WO₃ has a monoclinic type crystal structure. And no additional peak is observed in Fe doped 3DOM WO₃, indicating that the incorporation of Fe atoms did not result in a secondary phase formation. In order to confirm the morphologies of Fe-3DOM WO₃and 3DOM WO₃, scanning electron microscopy (SEM) was employed. The synthesized Fe-3DOM WO₃and 3DOM WO₃ both exhibit a highly ordered three dimensional inverse opal structure with interconnected pores. From high-resolution TEM image of Fe-3DOM WO₃, the ordered lattice fringes with a spacing of 3.84 Å can be assigned to the (001) plane of WO₃, which is consistent with the XRD results. Finally, the photocatalytic nitrogen reduction performance of 3DOM WO₃ and Fe doped 3DOM WO₃with various Fe contents were examined. As a result, both Fe-3DOM WO₃ samples achieve higher ammonia production rate than that of pure 3DOM WO₃, indicating that the doped Fe plays a critical role in the photocatalytic nitrogen fixation performance. To verify the reaction process upon N2 reduction on the Fe-3DOM WO₃, in-situ diffuse reflectance infrared Fourier-transform spectroscopy was employed to monitor the intermediates. The in-situ DRIFTS spectra of Fe-3DOM WO₃ exhibit the increased signals with the irradiation time from 0–60min in the N2 atmosphere. The above results prove that nitrogen is gradually hydrogenated to produce ammonia over Fe-3DOM WO₃. Thiswork would enrich our knowledge in designing efficient photocatalystsfor photocatalytic nitrogen reduction.

Keywords: ammonia, photocatalytic, nitrogen fixation, Fe doped 3DOM WO₃

Procedia PDF Downloads 157
6207 An Criterion to Minimize FE Mesh-Dependency in Concrete Plate Subjected to Impact Loading

Authors: Kwak, Hyo-Gyung, Gang, Han Gul

Abstract:

In the context of an increasing need for reliability and safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling, in advance, mesh dependency in the used finite element (FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. It means that the accuracy of simulation results may deeply be dependent on FE mesh size in simulations. This paper introduces an improved criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC (Holmquist Johnson Cook), CSC (Continuous Surface Cap) and K&C (Karagozian & Case) models are examined to trace their relative sensitivity to the used FE mesh size. To coincide with the purpose of the penetration test with a concrete plate under a projectile (bullet), the residual velocities of projectile after penetration are compared. The correlation studies between analytical results and the parametric studies associated with them show that the variation of residual velocity with the used FE mesh size is quite reduced by applying a unique failure strain value determined according to the proposed criterion.

Keywords: high strain rate concrete, penetration simulation, failure strain, mesh-dependency, fracture energy

Procedia PDF Downloads 510
6206 Recent Developments in E-waste Management in India

Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay, Ananya Mukhopadhyay, Harendra Nath Bhattacharya

Abstract:

This study investigates the global issue of electronic waste (e-waste), focusing on its prevalence in India and other regions. E-waste has emerged as a significant worldwide problem, with India contributing a substantial share of annual e-waste generation. The primary sources of e-waste in India are computer equipment and mobile phones. Many developed nations utilize India as a dumping ground for their e-waste, with major contributions from the United States, China, Europe, Taiwan, South Korea, and Japan. The study identifies Maharashtra, Tamil Nadu, Mumbai, and Delhi as prominent contributors to India's e-waste crisis. This issue is contextualized within the broader framework of the United Nations' 2030 Agenda for Sustainable Development, which encompasses 17 Sustainable Development Goals (SDGs) and 169 associated targets to address poverty, environmental preservation, and universal prosperity. The study underscores the interconnectedness of e-waste management with several SDGs, including health, clean water, economic growth, sustainable cities, responsible consumption, and ocean conservation. Central Pollution Control Board (CPCB) data reveals that e-waste generation surpasses that of plastic waste, increasing annually at a rate of 31%. However, only 20% of electronic waste is recycled through organized and regulated methods in underdeveloped nations. In Europe, efficient e-waste management stands at just 35%. E-waste pollution poses serious threats to soil, groundwater, and public health due to toxic components such as mercury, lead, bromine, and arsenic. Long-term exposure to these toxins, notably arsenic in microchips, has been linked to severe health issues, including cancer, neurological damage, and skin disorders. Lead exposure, particularly concerning for children, can result in brain damage, kidney problems, and blood disorders. The study highlights the problematic transboundary movement of e-waste, with approximately 352,474 metric tonnes of electronic waste illegally shipped from Europe to developing nations annually, mainly to Africa, including Nigeria, Ghana, and Tanzania. Effective e-waste management, underpinned by appropriate infrastructure, regulations, and policies, offers opportunities for job creation and aligns with the objectives of the 2030 Agenda for SDGs, especially in the realms of decent work, economic growth, and responsible production and consumption. E-waste represents hazardous pollutants and valuable secondary resources, making it a focal point for anthropogenic resource exploitation. The United Nations estimates that e-waste holds potential secondary raw materials worth around 55 billion Euros. The study also identifies numerous challenges in e-waste management, encompassing the sheer volume of e-waste, child labor, inadequate legislation, insufficient infrastructure, health concerns, lack of incentive schemes, limited awareness, e-waste imports, high costs associated with recycling plant establishment, and more. To mitigate these issues, the study offers several solutions, such as providing tax incentives for scrap dealers, implementing reward and reprimand systems for e-waste management compliance, offering training on e-waste handling, promoting responsible e-waste disposal, advancing recycling technologies, regulating e-waste imports, and ensuring the safe disposal of domestic e-waste. A mechanism, Buy-Back programs, will compensate customers in cash when they deposit unwanted digital products. This E-waste could contain any portable electronic device, such as cell phones, computers, tablets, etc. Addressing the e-waste predicament necessitates a multi-faceted approach involving government regulations, industry initiatives, public awareness campaigns, and international cooperation to minimize environmental and health repercussions while harnessing the economic potential of recycling and responsible management.

Keywords: e-waste management, sustainable development goal, e-waste disposal, recycling technology, buy-back policy

Procedia PDF Downloads 69
6205 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent

Authors: Hiroyuki Aoki

Abstract:

The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.

Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging

Procedia PDF Downloads 119
6204 Microalgae Technology for Nutraceuticals

Authors: Weixing Tan

Abstract:

Production of nutraceuticals from microalgae—a virtually untapped natural phyto-based source of which there are 200,000 to 1,000,000 species—offers a sustainable and healthy alternative to conventionally sourced nutraceuticals for the market. Microalgae can be grown organically using only natural sunlight, water and nutrients at an extremely fast rate, e.g. 10-100 times more efficiently than crops or trees. However, the commercial success of microalgae products at scale remains limited largely due to the lack of economically viable technologies. There are two major microalgae production systems or technologies currently available: 1) the open system as represented by open pond technology and 2) the closed system such as photobioreactors (PBR). Each carries its own unique features and challenges. Although an open system requires a lower initial capital investment relative to a PBR, it conveys many unavoidable drawbacks; for example, much lower productivity, difficulty in contamination control/cleaning, inconsistent product quality, inconvenience in automation, restriction in location selection, and unsuitability for cold areas – all directly linked to the system openness and flat underground design. On the other hand, a PBR system has characteristics almost entirely opposite to the open system, such as higher initial capital investment, better productivity, better contamination and environmental control, wider suitability in different climates, ease in automation, higher and consistent product quality, higher energy demand (particularly if using artificial lights), and variable operational expenses if not automated. Although closed systems like PBRs are not highly competitive yet in current nutraceutical supply market, technological advances can be made, in particular for the PBR technology, to narrow the gap significantly. One example is a readily scalable P2P Microalgae PBR Technology at Grande Prairie Regional College, Canada, developed over 11 years considering return on investment (ROI) for key production processes. The P2P PBR system is approaching economic viability at a pre-commercial stage due to five ROI-integrated major components. They include: (1) optimum use of free sunlight through attenuation (patented); (2) simple, economical, and chemical-free harvesting (patent ready to file); (3) optimum pH- and nutrient-balanced culture medium (published), (4) reliable water and nutrient recycling system (trade secret); and (5) low-cost automated system design (trade secret). These innovations have allowed P2P Microalgae Technology to increase daily yield to 106 g/m2/day of Chlorella vulgaris, which contains 50% proteins and 2-3% omega-3. Based on the current market prices and scale-up factors, this P2P PBR system presents as a promising microalgae technology for market competitive nutraceutical supply.

Keywords: microalgae technology, nutraceuticals, open pond, photobioreactor PBR, return on investment ROI, technological advances

Procedia PDF Downloads 145
6203 Rapid Weight Loss in Athletes: A Look at Suppressive Effects on Immune System

Authors: Nazari Maryam, Gorji Saman

Abstract:

For most competitions, athletes usually engage in a process called rapid weight loss (RWL) and subsequent rapid weight gain (RWG) in the days preceding the event. Besides the perfection of performance, weight regulation mediates a self-image of being “a real athlete” which is mentally important as a part of the pre-competition preparation. This feeling enhances the focus and commitment of the athlete. There is a large body of evidence that weight loss, particularly in combat sports, results in several health benefits. However, intentional weight loss beyond normal levels might have unknown negative special effects on the immune system. As the results show, a high prevalence (50%) of RWL is happening among combat athletes. It seems that energy deprivation and intense exercise to reach RWL results in altered blood cell distribution through modification of body composition that, in turn, changes B and T-Lymphocyte and/or CD4 T-Helper response. Moreover, it may diminish IgG antibody levels and modulate IgG glycosylation after this course. On the other hand, some studies show suppression of signaling and regulation of IgE antibody and chemokine production are responsible for immunodeficiency following a period of low-energy availability. Some researchers hypothesize that severe glutamine depletion, which occurs during exercise and calorie restriction, is responsible for this immune system weakness. However, supplementation by this amino acid is not prescribed yet. Therefore, weight loss is achieved not only through chronic strategies (body fat losses) but also through acute manipulations prior to competition should be supervised by a sports nutritionist to minimize side effects on the immune system and other body systems.

Keywords: athletes, immune system, rapid weight loss, weight loss strategies

Procedia PDF Downloads 104
6202 Adhesion Study of Repair Mortar Based in Dune and Crushed Limestone Sand

Authors: Krobba Benharzallah, Kenai Said, Bouhicha Mohamed, Lakhdari Mohammed Fatah, Merah Ahmed

Abstract:

In recent years, great interest has been directed towards the use of local materials and natural resources in building and public works. This is to satisfy the enormous need for these materials and contribute to sustainable development. Among these resources, dune sand and limestone crushed sand, which can be an interesting alternative to the replacement of siliceous alluvial sands for the formulation of a repair mortar. The results found show that the particle size correction of dune sand by limestone sand and the addition of a superplasticizer are very beneficial in terms of adhesion and mechanical strength.

Keywords: repair mortar, dune sand, crushed limestone sand, adhesion, mechanical strength

Procedia PDF Downloads 143
6201 Modernization Causing Loss of Cultural Identity: A Case Study of Maheshkhali, Bangladesh

Authors: Sarika Siraj

Abstract:

Nothing talks more about the identity of a place than its cultural heritage. More often than ever, it is the architecture of the place that embodies its cultural heritage. With these thoughts in mind, this paper looks closely into the present scene of earthen architecture of Bangladesh and the changes it has been going through due to modernity. Along with the gradual erasure of this sustainable practice, a loss of cultural identity can be observed in present times. This paper intends to examine the loss along with the reasons, taking the village of Maheshkhali, located in south east Bangladesh, as a case study for this research. Based on the empirical findings, this paper will contextualize sustainability as well as discuss western development as a creator of new cultural identities in eastern countries.

Keywords: cultural identity, sustainability, architecture, heritage

Procedia PDF Downloads 69
6200 Development and Validation of a Semi-Quantitative Food Frequency Questionnaire for Use in Urban and Rural Communities of Rwanda

Authors: Phenias Nsabimana, Jérôme W. Some, Hilda Vasanthakaalam, Stefaan De Henauw, Souheila Abbeddou

Abstract:

Tools for the dietary assessment in adults are limited in low- and middle-income settings. The objective of this study was to develop and validate a semi-quantitative food frequency questionnaire (FFQ) against the multiple pass-24 h recall tool for use in urban and rural Rwanda. A total of 212 adults (154 females and 58 males), 18-49 aged, including 105 urban and 107 rural residents, from the four regions of Rwanda, were recruited in the present study. A multiple-pass 24- H recall technique was used to collect dietary data in both urban and rural areas in four different rounds, on different days (one weekday and one weekend day), separated by a period of three months, from November 2020 to October 2021. The details of all the foods and beverages consumed over the 24h period of the day prior to the interview day were collected during face-to-face interviews. A list of foods, beverages, and commonly consumed recipes was developed by the study researchers and ten research assistants from the different regions of Rwanda. Non-standard recipes were collected when the information was available. A single semi-quantitative FFQ was also developed in the same group discussion prior to the beginning of the data collection. The FFQ was collected at the beginning and the end of the data collection period. Data were collected digitally. The amount of energy and macro-nutrients contributed by each food, recipe, and beverage will be computed based on nutrient composition reported in food composition tables and weight consumed. Median energy and nutrient contents of different food intakes from FFQ and 24-hour recalls and median differences (24-hour recall –FFQ) will be calculated. Kappa, Spearman, Wilcoxon, and Bland-Altman plot statistics will be conducted to evaluate the correlation between estimated nutrient and energy intake found by the two methods. Differences will be tested for their significance and all analyses will be done with STATA 11. Data collection was completed in November 2021. Data cleaning is ongoing and the data analysis is expected to be completed by July 2022. A developed and validated semi-quantitative FFQ will be available for use in dietary assessment. The developed FFQ will help researchers to collect reliable data that will support policy makers to plan for proper dietary change intervention in Rwanda.

Keywords: food frequency questionnaire, reproducibility, 24-H recall questionnaire, validation

Procedia PDF Downloads 126
6199 Model-Based Global Maximum Power Point Tracking at Photovoltaic String under Partial Shading Conditions Using Multi-Input Interleaved Boost DC-DC Converter

Authors: Seyed Hossein Hosseini, Seyed Majid Hashemzadeh

Abstract:

Solar energy is one of the remarkable renewable energy sources that have particular characteristics such as unlimited, no environmental pollution, and free access. Generally, solar energy can be used in thermal and photovoltaic (PV) types. The cost of installation of the PV system is very high. Additionally, due to dependence on environmental situations such as solar radiation and ambient temperature, electrical power generation of this system is unpredictable and without power electronics devices, there is no guarantee to maximum power delivery at the output of this system. Maximum power point tracking (MPPT) should be used to achieve the maximum power of a PV string. MPPT is one of the essential parts of the PV system which without this section, it would be impossible to reach the maximum amount of the PV string power and high losses are caused in the PV system. One of the noticeable challenges in the problem of MPPT is the partial shading conditions (PSC). In PSC, the output photocurrent of the PV module under the shadow is less than the PV string current. The difference between the mentioned currents passes from the module's internal parallel resistance and creates a large negative voltage across shaded modules. This significant negative voltage damages the PV module under the shadow. This condition is called hot-spot phenomenon. An anti-paralleled diode is inserted across the PV module to prevent the happening of this phenomenon. This diode is known as the bypass diode. Due to the performance of the bypass diode under PSC, the P-V curve of the PV string has several peaks. One of the P-V curve peaks that makes the maximum available power is the global peak. Model-based Global MPPT (GMPPT) methods can estimate the optimal point with higher speed than other GMPPT approaches. Centralized, modular, and interleaved DC-DC converter topologies are the significant structures that can be used for GMPPT at a PV string. there are some problems in the centralized structure such as current mismatch losses at PV sting, loss of power of the shaded modules because of bypassing by bypass diodes under PSC, needing to series connection of many PV modules to reach the desired voltage level. In the modular structure, each PV module is connected to a DC-DC converter. In this structure, by increasing the amount of demanded power from the PV string, the number of DC-DC converters that are used at the PV system will increase. As a result, the cost of the modular structure is very high. We can implement the model-based GMPPT through the multi-input interleaved boost DC-DC converter to increase the power extraction from the PV string and reduce hot-spot and current mismatch error in a PV string under different environmental condition and variable load circumstances. The interleaved boost DC-DC converter has many privileges than other mentioned structures, such as high reliability and efficiency, better regulation of DC voltage at DC link, overcome the notable errors such as module's current mismatch and hot spot phenomenon, and power switches voltage stress reduction.

Keywords: solar energy, photovoltaic systems, interleaved boost converter, maximum power point tracking, model-based method, partial shading conditions

Procedia PDF Downloads 115
6198 Urban Green Transitioning in The Face of Current Global Change: The Management Role of the Local Government and Residents

Authors: Titilope F. Onaolapo, Christiana A. Breed, Maya Pasgaard, Kristine E. Jensen, Peta Brom

Abstract:

In the face of fast-growing urbanization in most of the world's developing countries, there is a need to understand and address the risk and consequences involved in the indiscriminate use of urban green space. Tshwane city in South Africa has the potential to become one of the world's top biodiversity cities as South Africa is ranked one of the mega countries in biodiversity conservation, and Tshwane metropolitan municipality is the city with the wealthiest biodiversity with grassland biomes. In this study, we focus on the potentials and challenges of urban green transitioning from the Global South perspective with Tshwane city as the case study. We also address the issue of management conflicts that have resulted in informal and illegal activities in and around green spaces, with consequences such as land degradation, loss of livelihoods and biodiversity, and socio-ecological imbalances. A desk study review of eight policy frameworks related to green urban planning and development was done based on four GI principles: multifunctionality, connectivity, interdisciplinary and social inclusion. We interviewed 15 key informants in related departments in the city and administered 200 survey questionnaires among residents. We also had several workshops the other researchers and experts on biodiversity and ecosystem. We found out there is no specific document dedicated to green space management, and where green infrastructure was mentioned, it was focused on as an approach to climate mitigation and adaptation. Also, residents perceive green and open spaces as extra land that could be developed at will. We demonstrated the use of collaborative learning approaches in ecological and development research and the tying research to the existing frameworks, programs, and strategies. Based on this understanding. We outlined the need to incorporate principles of green infrastructure in policy frameworks on spatial planning and environmental development. Furthermore, we develop a model for co-management of green infrastructures by stakeholders, such as residents, developers, policymakers, and decision-makers, to maximize benefits. Our collaborative, interdisciplinary projects pursue SDG multifunctionality of goals 11 and 15 by simultaneously addressing issues around Sustainable Cities and Communities, Climate Action, Life on Land, and Strong Institutions, and halt and reverse land degradation and biodiversity.

Keywords: governance, green infrastructure, South Africa, sustainable development, urban planning, Tshwane

Procedia PDF Downloads 107
6197 Improving Photocatalytic Efficiency of TiO2 Films Incorporated with Natural Geopolymer for Sunlight-Driven Water Purification

Authors: Satam Alotibi, Haya A. Al-Sunaidi, Almaymunah M. AlRoibah, Zahraa H. Al-Omaran, Mohammed Alyami, Fatehia S. Alhakami, Abdellah Kaiba, Mazen Alshaaer, Talal F. Qahtan

Abstract:

This research study presents a novel approach to harnessing the potential of natural geopolymer in conjunction with TiO₂ nanoparticles (TiO₂ NPs) for the development of highly efficient photocatalytic materials for water decontamination. The study begins with the formulation of a geopolymer paste derived from natural sources, which is subsequently applied as a coating on glass substrates and allowed to air-dry at room temperature. The result is a series of geopolymer-coated glass films, serving as the foundation for further experimentation. To enhance the photocatalytic capabilities of these films, a critical step involves immersing them in a suspension of TiO₂ nanoparticles (TiO₂ NPs) in water for varying durations. This immersion process yields geopolymer-loaded TiO₂ NPs films with varying concentrations, setting the stage for comprehensive characterization and analysis. A range of advanced analytical techniques, including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM), were meticulously employed to assess the structural, morphological, and chemical properties of the geopolymer-based TiO₂ films. These analyses provided invaluable insights into the materials' composition and surface characteristics. The culmination of this research effort sees the geopolymer-based TiO₂ films being repurposed as immobilized photocatalytic reactors for water decontamination under natural sunlight irradiation. Remarkably, the results revealed exceptional photocatalytic performance that exceeded the capabilities of conventional TiO₂-based photocatalysts. This breakthrough underscores the significant potential of natural geopolymer as a versatile and highly effective matrix for enhancing the photocatalytic efficiency of TiO₂ nanoparticles in water treatment applications. In summary, this study represents a significant advancement in the quest for sustainable and efficient photocatalytic materials for environmental remediation. By harnessing the synergistic effects of natural geopolymer and TiO₂ nanoparticles, these geopolymer-based films exhibit outstanding promise in addressing water decontamination challenges and contribute to the development of eco-friendly solutions for a cleaner and healthier environment.

Keywords: geopolymer, TiO2 nanoparticles, photocatalytic materials, water decontamination, sustainable remediation

Procedia PDF Downloads 54
6196 Historic Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Multi-Cohort Fire Regimes in Lithuania

Authors: Charles Ruffner, Michael Manton, Gintautas Kibirkstis, Gediminas Brazaitas, Vitas Marozas, Ekaterine Makrickiene, Rutile Pukiene, Per Angelstam

Abstract:

In dynamic boreal forests, fire is an important natural disturbance, which drives regeneration and mortality of living and dead trees, and thus successional trajectories. However, current forest management practices focusing on wood production only have effectively eliminated fire as a stand-level disturbance. While this is generally well studied across much of Europe, in Lithuania, little is known about the historic fire regime and the role fire plays as a management tool towards the sustainable management of future landscapes. Focusing on Scots pine forests, we explore; i) the relevance of fire disturbance regimes on forestlands of Lithuania; ii) fire occurrence in the Dzukija landscape for dry upland and peatland forest sites, and iii) correlate tree-ring data with climate variables to ascertain climatic influences on growth and fire occurrence. We sampled and cross-dated 132 Scots pine samples with fire scars from 4 dry pine forest stands and 4 peatland forest stands, respectively. The fire history of each sample was analyzed using standard dendrochronological methods and presented in FHAES format. Analyses of soil moisture and nutrient conditions revealed a strong probability of finding forests that have a high fire frequency in Scots pine forests (59%), which cover 34.5% of Lithuania’s current forestland. The fire history analysis revealed 455 fire scars and 213 fire events during the period 1742-2019. Within the Dzukija landscape, the mean fire interval was 4.3 years for the dry Scots pine forest and 8.7 years for the peatland Scots pine forest. However, our comparison of fire frequency before and after 1950 shows a marked decrease in mean fire interval. Our data suggest that hemi-boreal forest landscapes of Lithuania provide strong evidence that fire, both human and lightning-ignited fires, has been and should be a natural phenomenon and that the examination of biological archives can be used to guide sustainable forest management into the future. Currently, fire use is prohibited by law as a tool for forest management in Lithuania. We recommend introducing trials that use low-intensity prescribed burning of Scots pine stands as a regeneration tool towards mimicking natural forest disturbance regimes.

Keywords: biodiversity conservation, cultural burning, dendrochronology, forest dynamics, forest management, succession

Procedia PDF Downloads 190
6195 Bio Ethanol Production From the Co-Mixture of Jatropha Carcus L. Kernel Cake and Rice Straw

Authors: Felix U. Asoiro, Daniel I. Eleazar, Peter O. Offor

Abstract:

As a result of increasing energy demands, research in bioethanol has increased in recent years all through the world, in abide to partially or totally replace renewable energy supplies. The first and third generation feedstocks used for biofuel production have fundamental drawbacks. Waste rice straw and cake from second generation feedstock like Jatropha curcas l. kernel (JC) is seen as non-food feedstock and promising candidates for the industrial production of bioethanol. In this study, JC and rice husk (RH) wastes were characterized for proximate composition. Bioethanol was produced from the residual polysaccharides present in rice husk (RH) and Jatropha seed cake by sequential hydrolytic and fermentative processes at varying mixing proportions (50 g JC/50 g RH, 100 g JC/10 g RH, 100 g JC/20 g RH, 100 g JC/50 g RH, 100 g JC/100 g RH, 100 g JC/200 g RH and 200 g JC/100 g RH) and particle sizes (0.25, 0.5 and 1.00 mm). Mixing proportions and particle size significantly affected both bioethanol yield and some bioethanol properties. Bioethanol yield (%) increased with an increase in particle size. The highest bioethanol (8.67%) was produced at a mixing proportion of 100 g JC/50g RH at 0.25 mm particle size. The bioethanol had the lowest values of specific gravity and density of 1.25 and 0.92 g cm-3 and the highest values of 1.57 and 0.97 g cm-3 respectively. The highest values of viscosity (4.64 cSt) were obtained with 200 g JC/100 g RH, at 1.00 mm particle size. The maximum flash point and cloud point values were 139.9 oC and 23.7oC (100 g JC/200 g RH) at 1 mm and 0.5 mm particle sizes respectively. The maximum pour point value recorded was 3.85oC (100 g JC/50 g RH) at 1 mm particle size. The paper concludes that bioethanol can be recovered from JC and RH wastes. JC and RH blending proportions as well as particle sizes are important factors in bioethanol production.

Keywords: bioethanol, hydrolysis, Jatropha curcas l. kernel, rice husk, fermentation, proximate composition

Procedia PDF Downloads 85
6194 The Effect of Socio-Affective Variables in the Relationship between Organizational Trust and Employee Turnover Intention

Authors: Paula A. Cruise, Carvell McLeary

Abstract:

Employee turnover leads to lowered productivity, decreased morale and work quality, and psychological effects associated with employee separation and replacement. Yet, it remains unknown why talented employees willingly withdraw from organizations. This uncertainty is worsened as studies; a) priorities organizational over individual predictors resulting in restriction in range in turnover measurement; b) focus on actual rather than intended turnover thereby limiting conceptual understanding of the turnover construct and its relationship with other variables and; c) produce inconsistent findings across cultures, contexts and industries despite a clear need for a unified perspective. The current study addressed these gaps by adopting the theory of planned behavior (TPB) framework to examine socio-cognitive factors in organizational trust and individual turnover intentions among bankers and energy employees in Jamaica. In a comparative study of n=369 [nbank= 264; male=57 (22.73%); nenergy =105; male =45 (42.86)], it was hypothesized that organizational trust was a predictor of employee turnover intention, and the effect of individual, group, cognitive and socio-affective variables varied across industry. Findings from structural equation modelling confirmed the hypothesis, with a model of both cognitive and socio-affective variables being a better fit [CMIN (χ2) = 800.067, df = 364, p ≤ .000; CFI = 0.950; RMSEA = 0.057 with 90% C.I. (0.052 - 0.062); PCLOSE = 0.016; PNFI = 0.818 in predicting turnover intention. The findings are discussed in relation to socio-cognitive components of trust models and predicting negative employee behaviors across cultures and industries.

Keywords: context-specific organizational trust, cross-cultural psychology, theory of planned behavior, employee turnover intention

Procedia PDF Downloads 233
6193 Analysis of the Impact and Effectiveness of Government Funded Small-Scale Biogas Projects in Giyani Municipality, Limpopo

Authors: Lindiwe Ngcobo

Abstract:

The aim of the study is to describe and understand the benefits and costs of having biogas digesters at both household and society level. On a household level, the purpose is to understand how rural households benefit from the biogas digesters, for example, by converting animal and human waste through biogas digesters, and at what costs the benefits are realized. At a societal level, the purpose is to understand the costs and benefits of biogas digesters relative to the situation of rural communities who do not have flush toilets and have no appropriate waste disposal services while they incur electricity costs. Multiple regression analysis was used to determine the effect of biogas digesters on electricity availability and waste management. The results showed that beneficiaries spent less on electricity using household waste, and also waste disposal costs were eliminated from household expenses. A move to biogas energy production can be beneficial to rural households. It is economically and environmentally friendly. Small-scale farmers need to be introduced to agricultural innovations that can assist them in producing nutritious crops at a low cost. This can be a good opportunity to start an agribusiness that focuses on organic crops. Extensions and training institutions have to play a part in supporting households to develop entrepreneurial skills. Cost-benefit analysis showed that the benefits of biogas exceed the costs of the biogas projects. This implies that this technology should be promoted in rural households. Government financial incentives must be put in place to motivate a generation of organic Agri-prenuers.

Keywords: Agri-prenuers, biogas digester, biogas energy, disposal costs

Procedia PDF Downloads 121
6192 A Modular and Reusable Bond Graph Model of Epithelial Transport in the Proximal Convoluted Tubule

Authors: Leyla Noroozbabaee, David Nickerson

Abstract:

We introduce a modular, consistent, reusable bond graph model of the renal nephron’s proximal convoluted tubule (PCT), which can reproduce biological behaviour. In this work, we focus on ion and volume transport in the proximal convoluted tubule of the renal nephron. Modelling complex systems requires complex modelling problems to be broken down into manageable pieces. This can be enabled by developing models of subsystems that are subsequently coupled hierarchically. Because they are based on a graph structure. In the current work, we define two modular subsystems: the resistive module representing the membrane and the capacitive module representing solution compartments. Each module is analyzed based on thermodynamic processes, and all the subsystems are reintegrated into circuit theory in network thermodynamics. The epithelial transport system we introduce in the current study consists of five transport membranes and four solution compartments. Coupled dissipations in the system occur in the membrane subsystems and coupled free-energy increasing, or decreasing processes appear in solution compartment subsystems. These structural subsystems also consist of elementary thermodynamic processes: dissipations, free-energy change, and power conversions. We provide free and open access to the Python implementation to ensure our model is accessible, enabling the reader to explore the model through setting their simulations and reproducibility tests.

Keywords: Bond Graph, Epithelial Transport, Water Transport, Mathematical Modeling

Procedia PDF Downloads 72
6191 MegaProjects and the Governing Processes That Lead to Success and Failure: A Literature Review

Authors: Fangwei Zhu, Wei Tian, Linzhuo Wang, Miao Yu

Abstract:

Megaproject has long been a critical issue in project governance, for its low success rate and large impact on society. Although the extant literature on megaproject governance is vast, to our best knowledge, the lacking of a thorough literature review makes it hard for us to gain a holistic view on current scenario of megaproject governance. The study conducts a systematic literature review process to analyze the existing literatures on megaproject governance. The finding indicates that mega project governance needs to be handled at network level and forming a network level governance provides a holistic framework for governing megaproject towards sustainable development of the projects. Theoretical and practical implications, as well as future studies and limitations, were discussed.

Keywords: megaproject, governance, literature review, network

Procedia PDF Downloads 187
6190 Enhancing Solar Fuel Production by CO₂ Photoreduction Using Transition Metal Oxide Catalysts in Reactors Prepared by Additive Manufacturing

Authors: Renata De Toledo Cintra, Bruno Ramos, Douglas Gouvêa

Abstract:

There is a huge global concern due to the emission of greenhouse gases, consequent environmental problems, and the increase in the average temperature of the planet, caused mainly by fossil fuels, petroleum derivatives represent a big part. One of the main greenhouse gases, in terms of volume, is CO₂. Recovering a part of this product through chemical reactions that use sunlight as an energy source and even producing renewable fuel (such as ethane, methane, ethanol, among others) is a great opportunity. The process of artificial photosynthesis, through the conversion of CO₂ and H₂O into organic products and oxygen using a metallic oxide catalyst, and incidence of sunlight, is one of the promising solutions. Therefore, this research is of great relevance. To this reaction take place efficiently, an optimized reactor was developed through simulation and prior analysis so that the geometry of the internal channel is an efficient route and allows the reaction to happen, in a controlled and optimized way, in flow continuously and offering the least possible resistance. The design of this reactor prototype can be made in different materials, such as polymers, ceramics and metals, and made through different processes, such as additive manufacturing (3D printer), CNC, among others. To carry out the photocatalysis in the reactors, different types of catalysts will be used, such as ZnO deposited by spray pyrolysis in the lighting window, probably modified ZnO, TiO₂ and modified TiO₂, among others, aiming to increase the production of organic molecules, with the lowest possible energy.

Keywords: artificial photosynthesis, CO₂ reduction, photocatalysis, photoreactor design, 3D printed reactors, solar fuels

Procedia PDF Downloads 65
6189 Multidimensional Approach to Analyse the Environmental Impacts of Mobility

Authors: Andras Gyorfi, Andras Torma, Adrienn Buruzs

Abstract:

Mobility has been evolved to a determining field of science. The continuously developing segment involves a variety of affected issues such as public and economic sectors. Beside the changes in mobility the state of environment had also changed in the last period. Alternative mobility as a separate category and the idea of its widespread appliance is such a new field that needs to be studied deeper. Alternative mobility implies finding new types of propulsion, using innovative kinds of power and energy resources, revolutionizing the approach to vehicular control. Including new resources and excluding others has such a complex effect which cannot be unequivocally confirmed by today’s scientific achievements. Changes in specific parameters will most likely reduce the environmental impacts, however, the production of new substances or even their subtraction of the system will cause probably energy deficit as well. The aim of this research is to elaborate the environmental impact matrix of alternative mobility and cognize the factors that are yet unknown, analyse them, look for alternative solutions and conclude all the above in a coherent system. In order to this, we analyse it with a method called ‘the system of systems (SoS) method’ to model the effects and the dynamics of the system. A part of the research process is to examine its impacts on the environment, and to decide whether the newly developed versions of alternative mobility are affecting the environmental state. As a final result, a complex approach will be used which can supplement the current scientific studies. By using the SoS approach, we create a framework of reference containing elements in which we examine the interactions as well. In such a way, a flexible and modular model can be established which supports the prioritizing of effects and the deeper analysis of the complex system.

Keywords: environment, alternative mobility, complex model, element analysis, multidimensional map

Procedia PDF Downloads 306
6188 The Comparison of Competitiveness of Selected countries of the European Economic Area

Authors: I. Majerová, M. Horúcková

Abstract:

The concept of competitiveness is currently very frequently used term. However, the interpretation of its essence is different. In this paper, one of the many concepts of competitiveness will be analyzed and that is macroeconomic competitiveness, which is understood as a process, which is based on the productivity growth through the growth of key macroeconomic indicators such as standards of living and employment, where all of these variables must have a sustainable basis. Given the competition is a relative quantity it must be constantly compared with the development of competitiveness in other economies or regions. And this comparison method is also used in the article that compares the macro-competitiveness of selected economies of the European Economic Area – the Czech Republic, Poland, Austria, Switzerland and Germany. The aim of the paper is to verify the hypothesis concerning the direct correlation between the size of the economy and its competitiveness.

Keywords: comparison, competitiveness, European economic area, global competitiveness index, immeasurable indicators of competitiveness, macro-competitiveness

Procedia PDF Downloads 389
6187 Formation of Human Resources in the Light of Sustainable Development and the Achievement of Full Employment

Authors: Kaddour Fellague Mohammed

Abstract:

The world has seen in recent years, significant developments affected various aspects of life and influenced the different types of institutions, thus was born a new world is a world of globalization, which dominated the scientific revolution and the tremendous technological developments, and that contributed to the re-formation of human resources in contemporary organizations, and made patterns new regulatory and at the same time raised and strongly values and new ideas, the organizations have become more flexible, and faster response to consumer and environmental conditions, and exceeded the problem of time and place in the framework of communication and human interaction and use of advanced information technology and adoption mainly mechanism in running its operations , focused on performance and based strategic thinking and approach in order to achieve its strategic goals high degrees of superiority and excellence, this new reality created an increasing need for a new type of human resources, quality aims to renew and aspire to be a strategic player in managing the organization and drafting of various strategies, think globally and act locally, to accommodate local variables in the international markets, which began organizations tend to strongly as well as the ability to work under different cultures. Human resources management of the most important management functions to focus on the human element, which is considered the most valuable resource of the Department and the most influential in productivity at all, that the management and development of human resources Tattabra a cornerstone in the majority of organizations which aims to strengthen the organizational capacity, and enable companies to attract and rehabilitation of the necessary competencies and are able to keep up with current and future challenges, human resources can contribute to and strongly in achieving the objectives and profit organization, and even expand more than contribute to the creation of new jobs to alleviate unemployment and achieve full operation, administration and human resources mean short optimal use of the human element is available and expected, where he was the efficiency and capabilities, and experience of this human element, and his enthusiasm for the work stop the efficiency and success in reaching their goals, so interested administration scientists developed the principles and foundations that help to make the most of each individual benefit in the organization through human resources management, these foundations start of the planning and selection, training and incentives and evaluation, which is not separate from each other, but are integrated with each other as a system systemic order to reach the efficient functioning of the human resources management and has been the organization as a whole in the context of development sustainable.

Keywords: configuration, training, development, human resources, operating

Procedia PDF Downloads 422
6186 Characterization of 2,4,6-Trinitrotoluene (Tnt)-Metabolizing Bacillus Cereus Sp TUHP2 Isolated from TNT-Polluted Soils in the Vellore District, Tamilnadu, India

Authors: S. Hannah Elizabeth, A. Panneerselvam

Abstract:

Objective: The main objective was to evaluate the degradative properties of Bacillus cereus sp TUHP2 isolated from TNT-Polluted soils in the Vellore District, Tamil Nadu, India. Methods: Among the 3 bacterial genera isolated from different soil samples, one potent TNT degrading strain Bacillus cereus sp TUHP2 was identified. The morphological, physiological and the biochemical properties of the strain Bacillus cereus sp TUHP2 was confirmed by conventional methods and genotypic characterization was carried out using 16S r-DNA partial gene amplification and sequencing. The broken down by products of DNT in the extract was determined by Gas Chromatogram- Mass spectrometry (GC-MS). Supernatant samples from the broth studied at 24 h interval were analyzed by HPLC analysis and the effect on various nutritional and environmental factors were analysed and optimized for the isolate. Results: Out of three isolates one strain TUHP2 were found to have potent efficiency to degrade TNT and revealed the genus Bacillus. 16S rDNA gene sequence analysis showed highest homology (98%) with Bacillus cereus and was assigned as Bacillus cereus sp TUHP2. Based on the energy of the predicted models, the secondary structure predicted by MFE showed the more stable structure with a minimum energy. Products of TNT Transformation showed colour change in the medium during cultivation. TNT derivates such as 2HADNT and 4HADNT were detected by HPLC chromatogram and 2ADNT, 4ADNT by GC/MS analysis. Conclusion: Hence this study presents the clear evidence for the biodegradation process of TNT by strain Bacillus cereus sp TUHP2.

Keywords: bioremediation, biodegradation, biotransformation, sequencing

Procedia PDF Downloads 452
6185 Tourism Development Analysis According to Offer Improvements: Case of Crikvenica

Authors: Josip Arneric, Antonio Sostaric

Abstract:

Crikvenica is one of the favourite tourist destinations at the Adriatic Sea in Croatia which attracts guests with its natural beauties and is one of the top destinations with the highest number of overnights stays. The main purpose of this research is to determine which elements of tourist offer should be improved to achieve sustainable development of the town of Crikvenica. Namely, the survey results from a random sample have shown that the most common reason of the visits is relaxation and vacation, and that more attention should be given to the following categories: restaurants and the working hours of stores and banks. We have also examined whether or not there is a correlation between an average daily expenditure and the overnight stay. The paper ends with the conclusion and the recommendations on how to improve the tourist offer of Crikvenica in order to increase guest satisfaction and to keep its reputation at a high level.

Keywords: tourism development, survey, Crikvenica, management sciences

Procedia PDF Downloads 354
6184 Effect of L-Dopa on Performance and Carcass Characteristics in Broiler Chickens

Authors: B. R. O. Omidiwura, A. F. Agboola, E. A. Iyayi

Abstract:

Pure form of L-Dopa is used to enhance muscular development, fat breakdown and suppress Parkinson disease in humans. However, the L-Dopa in mucuna seed, when present with other antinutritional factors, causes nutritional disorders in monogastric animals. Information on the utilisation of pure L-Dopa in monogastric animals is scanty. Therefore, effect of L-Dopa on growth performance and carcass characteristics in broiler chickens was investigated. Two hundred and forty one-day-old chicks were allotted to six treatments, which consisted of a positive control (PC) with standard energy (3100Kcal/Kg) and negative control (NC) with high energy (3500Kcal/Kg). The rest 4 diets were NC+0.1, NC+0.2, NC+0.3 and NC+0.4% L-Dopa, respectively. All treatments had 4 replicates in a completely randomized design. Body weight gain, final weight, feed intake, dressed weight and carcass characteristics were determined. Body weight gain and final weight of birds fed PC were 1791.0 and 1830.0g, NC+0.1% L-Dopa were 1827.7 and 1866.7g and NC+0.2% L-Dopa were 1871.9 and 1910.9g respectively, and the feed intake of PC (3231.5g), were better than other treatments. The dressed weight at 1375.0g and 1357.1g of birds fed NC+0.1% and NC+0.2% L-Dopa, respectively, were similar but better than other treatments. Also, the thigh (202.5g and 194.9g) and the breast meat (413.8g and 410.8g) of birds fed NC+0.1% and NC+0.2% L-Dopa, respectively, were similar but better than birds fed other treatments. The drum stick of birds fed NC+0.1% L-Dopa (220.5g) was observed to be better than birds on other diets. Meat to bone ratio and relative organ weights were not affected across treatments. L-Dopa extract, at levels tested, had no detrimental effect on broilers, rather better bird performance and carcass characteristics were observed especially at 0.1% and 0.2% L-Dopa inclusion rates. Therefore, 0.2% inclusion is recommended in diets of broiler chickens for improved performance and carcass characteristics.

Keywords: broilers, carcass characteristics, l-dopa, performance

Procedia PDF Downloads 298
6183 Volume Estimation of Trees: An Exploratory Study on Rosewood Logging Within Forest Transition and Savannah Ecological Zones of Ghana

Authors: Albert Kwabena Osei Konadu

Abstract:

One of the endemic forest species of the savannah transition zones enlisted by the Convention of International Treaty for Endangered Species (CITES) in Appendix II is the Rosewood, also known as Pterocarpus erinaceus or Krayie. Its economic viability has made it increasingly popular and in high demand. Ghana’s forest resource management regime for these ecozones is mainly on conservation and very little on resource utilization. Consequently, commercial logging management standards are at teething stage and not fully developed, leading to a deficiency in the monitoring of logging operations and quantification of harvested trees volumes. Tree information form (TIF); a volume estimation and tracking regime, has proven to be an effective sustainable management tool for regulating timber resource extraction in the high forest zones of the country. This work aims to generate TIF that can track and capture requisite parameters to accurately estimate the volume of harvested rosewood within forest savannah transition zones. Tree information forms were created on three scenarios of individual billets, stacked billets and conveying vessel basis. The study was limited by the usage of regulators assigned volume as benchmark and also fraught with potential volume measurement error in the stacked billet scenario due to the existence of spaces within packed billets. These TIFs were field-tested to deduce the most viable option for the tracking and estimation of harvested volumes of rosewood using the smallian and cubic volume estimation formula. Overall, four districts were covered with individual billets, stacked billets and conveying vessel scenarios registering mean volumes of 25.83m3,45.08m3 and 32.6m3, respectively. These adduced volumes were validated by benchmarking to assigned volumes of the Forestry Commission of Ghana and known standard volumes of conveying vessels. The results did indicate an underestimation of extracted volumes under the quotas regime, a situation that could lead to unintended overexploitation of the species. The research revealed conveying vessels route is the most viable volume estimation and tracking regime for the sustainable management of the Pterocarpous erinaceus species as it provided a more practical volume estimate and data extraction protocol.

Keywords: cubic volume formula, smallian volume formula, pterocarpus erinaceus, tree information form, forest transition and savannah zones, harvested tree volume

Procedia PDF Downloads 29
6182 Applicable Law to Intellectual and Industrial Property Agreements According to Turkish Private International Law and Rome I Regulation

Authors: Sema Cortoglu Koca

Abstract:

Intellectual and industrial property rules, have a substantial effect on the sustainable development. Intellectual and industrial property rights, as temporary privileges over the products of intellectual activity, determine the supervision of information and technology. The level and scope of intellectual property protection thus influence the flow of technology between developed and developing countries. In addition, intellectual and industrial property rights are based on the notion of balance. Since they are time-limited rights, they reconcile private and public benefits. That is, intellectual and industrial property rights respond to both private interests and public interests by rewarding innovators and by promoting the dissemination of ideas, respectively. Intellectual and industrial property rights can, therefore, be a tool for sustainable development. If countries can balance their private and public interests according to their particular context and circumstances, they can ensure the intellectual and industrial property which promotes innovation and technology transfer relevant for them. People, enterprises and countries who need technology, can transfer developed technology which is acquired by people, enterprises and countries so as to decrease their technological necessity and improve their technology. Because of the significance of intellectual and industrial property rights on the technology transfer law as mentioned above, this paper is confined to intellectual and industrial property agreements especially technology transfer contracts. These are license contract, know-how contract, franchise agreement, joint venture agreement, management agreement, research and development agreement. In Turkey, technology transfer law is still a developing subject. For developing countries, technology transfer regulations are very important for their private international law because these countries do not know which technology transfer law is applicable when conflicts arise. In most technology transfer contracts having international elements, the parties choose a law to govern their contracts. Where the parties do not choose a law, either expressly or impliedly, and matters which is not excluded in party autonomy, the court has to determine the applicable law to contracts in a matter of capacity, material, the formal and essential validity of contracts. For determining the proper law of technology transfer contracts, it is tried to build a rule for applying all technology transfer contracts. This paper is confined to the applicable law to intellectual and industrial property agreements according to ‘5718 Turkish Act on Private International Law and Civil Procedure’ and ‘Regulation (EC) No 593/2008 of the European Parliament and of the Council of 17 June 2008 on the law applicable to contractual obligations (Rome I)’. Like these complex contracts, to find a rule can be really difficult. We can arrange technology transfer contracts in groups, and we can determine the rule and connecting factors to these groups. For the contracts which are not included in these groups, we can determine a special rule considering the characteristics of the contract.

Keywords: intellectual and industrial property agreements, Rome I regulation, technology transfer, Turkish act on private international law and civil procedure

Procedia PDF Downloads 141