Search results for: viral genome
216 Poliovirus Vaccine Immunity among Chronically Malnourished Pakistani Infants: A Randomized Controlled Trial from Developing Country
Authors: Ali Faisal Saleem, Farheen Quadri, Mach Ondrej, Anita Zaidi
Abstract:
Purpose: Pakistan is the final frontier for a polio-free world. Chronic malnutrition is associated with lack of effective gut immunity, and possibly associated with poliomyelitis in children received multiple OPV. We evaluate IPV dose administered together with OPV results in higher immunogenicity and mucosal immunity compared to OPV alone in chronically malnourished infants. Methods AND Materials: A community-based, unblinded-randomized-trial, conducted in 5 peri-urban, low-middle-income households of Karachi, in infants 9-12 months. Two study groups were non-malnourished (HAZ= -2 or more) and chronic malnourished (HAZ <-2SD), with 2-arms each i) OPV and ii) OPV and IPV. Two blood specimens (2ml) at baseline and at day 28 and two stool specimens (6 gm.) at day 29 and after 7 days. All infants received a bOPV challenge dose after first stool specimen. Calculates sample size was 210 in each arm. Serological (baseline compared to 28 days post-vaccine) and mucosal immunity after one week of bOPV challenge dose were study outcomes. Results: Baseline seroprevalence in malnourished infants were low compared to non-malnourished (P1, P2 and P3 (p=<0.001). There is significant rise in antibody titer and P1 seroprevalence in Mal A and B after receiving study vaccine; much higher in Mal B. Infants randomized to bOPV + IPV study vaccine showed incremental immune response against P1 (Mal B, 92.2%; Nor B, 98.4%), P2 (Mal B, 90.4%; Nor B, 94.7%), and P3 (Mal B, 85.6% and Nor B, 93.5%) was observed. A significant proportion of infants in malnourished (P1, 13%; P2, 24%; P3, 26%) and normally nourished group (P1, 5%; P2, 11%; P3, 14%) were found to be seronegative at baseline. Infants who received BOPV + IPV as their study vaccine showed a very high seroconversion response after vaccine (p=<0.001 for P1, P2 and P3). Majority of the specimens were negative at baseline (Mal A, 2%, Mal B, 1%; Nor A, 2%; Nor B, 1%), and remains negative after bOPV challenge dose (Mal A, 8%, Mal B, 6%; Nor A, 11%; Nor B, 10%). Conclusion: Malnourished-infants have low poliovirus-seroprevalence that increased remarkably after IPV. There is less viral shedding after IPV in infants.Keywords: chronic malnutrition, infants, IPV, OPV
Procedia PDF Downloads 397215 Plant Mediated RNAi Approach to Knock Down Ecdysone Receptor Gene of Colorado Potato Beetle
Authors: Tahira Hussain, Ilhom Rahamkulov, Muhammad Aasim, Ugur Pirlak, Emre Aksoy, Mehmet Emin Caliskan, Allah Bakhsh
Abstract:
RNA interference (RNAi) has proved its usefulness in functional genomic research on insects recently and is considered potential strategy in crop improvement for the control of insect pests. The different insect pests incur significant losses to potato yield worldwide, Colorado Potato Beetle (CPB) being most notorious one. The present study focuses to knock down highly specific 20-hydroxyecdysone hormone-receptor complex interaction by using RNAi approach to silence Ecdysone receptor (EcR) gene of CPB in transgenic potato plants expressing dsRNA of EcR gene. The partial cDNA of Ecdysone receptor gene of CPB was amplified using specific primers in sense and anti-sense orientation and cloned in pRNAi-GG vector flanked by an intronic sequence (pdk). Leaf and internodal explants of Lady Olympia, Agria and Granola cultivars of potato were infected with Agrobacterium strain LBA4404 harboring plasmid pRNAi-CPB, pRNAi-GFP (used as control). Neomycin phosphotransferase (nptII) gene was used as a plant selectable marker at a concentration of 100 mg L⁻¹. The primary transformants obtained have shown proper integration of T-DNA in plant genome by standard molecular analysis like polymerase chain reaction (PCR), real-time PCR, Sothern blot. The transgenic plants developed out of these cultivars are being evaluated for their efficacy against larvae as well adults of CPB. The transgenic lines are expected to inhibit expression of EcR protein gene, hindering their molting process, hence leading to increased potato yield.Keywords: plant mediated RNAi, molecular strategy, ecdysone receptor, insect metamorphosis
Procedia PDF Downloads 169214 Development of Broad Spectrum Nitrilase Biocatalysts and Bioprocesses for Nitrile Biotransformation
Authors: Avinash Vellore Sunder, Shikha Shah, Pramod P. Wangikar
Abstract:
The enzymatic conversion of nitriles to carboxylic acids by nitrilases has gained significance in the green synthesis of several pharmaceutical precursors and fine chemicals. While nitrilases have been characterized from different sources, the industrial application requires the identification of nitrilases that possess higher substrate tolerance, wider specificity and better thermostability, along with the development of an efficient bioprocess for producing large amounts of nitrilase. To produce large amounts of nitrilase, we developed a fed-batch fermentation process on defined media for the high cell density cultivation of E. coli cells expressing the well-studied nitrilase from Alcaligenes fecalis. A DO-stat feeding approach was employed combined with an optimized post-induction strategy to achieve nitrilase titer of 2.5*105 U/l and 78 g/l dry cell weight. We also identified 16 novel nitrilase sequences from genome mining and analysis of substrate binding residues. The nitrilases were expressed in E. coli and their biocatalytic potential was evaluated on a panel of 22 industrially relevant nitrile substrates using high-throughput screening and HPLC analysis. Nine nitrilases were identified to exhibit high activity on structurally diverse nitriles including aliphatic and aromatic dinitriles, heterocyclic, -hydroxy and -keto nitriles. With fed-batch biotransformation, whole-cell Zobelia galactanivorans nitrilase achieved yields of 2.4 M nicotinic acid and 1.8 M isonicotinic acid from 3-cyanopyridine and 4-cyanopyridine respectively within 5 h, while Cupravidus necator nitrilase enantioselectively converted 740 mM mandelonitrile to (R)–mandelic acid. The nitrilase from Achromobacter insolitus could hydrolyze 542 mM iminodiacetonitrile in 1 h. The availability of highly active nitrilases along with bioprocesses for enzyme production expands the toolbox for industrial biocatalysis.Keywords: biocatalysis, isonicotinic acid, iminodiacetic acid, mandelic acid, nitrilase
Procedia PDF Downloads 232213 Transcriptional Evidence for the Involvement of MyD88 in Flagellin Recognition: Genomic Identification of Rock Bream MyD88 and Comparative Analysis
Authors: N. Umasuthan, S. D. N. K. Bathige, W. S. Thulasitha, I. Whang, J. Lee
Abstract:
The MyD88 is an evolutionarily conserved host-expressed adaptor protein that is essential for proper TLR/ IL1R immune-response signaling. A previously identified complete cDNA (1626 bp) of OfMyD88 comprised an ORF of 867 bp encoding a protein of 288 amino acids (32.9 kDa). The gDNA (3761 bp) of OfMyD88 revealed a quinquepartite genome organization composed of 5 exons (with the sizes of 310, 132, 178, 92 and 155 bp) separated by 4 introns. All the introns displayed splice signals consistent with the consensus GT/AG rule. A bipartite domain structure with two domains namely death domain (24-103) coded by 1st exon, and TIR domain (151-288) coded by last 3 exons were identified through in silico analysis. Moreover, homology modeling of these two domains revealed a similar quaternary folding nature between human and rock bream homologs. A comprehensive comparison of vertebrate MyD88 genes showed that they possess a 5-exonic structure. In this structure, the last three exons were strongly conserved, and this suggests that a rigid structure has been maintained during vertebrate evolution. A cluster of TATA box-like sequences were found 0.25 kb upstream of cDNA starting position. In addition, putative 5'-flanking region of OfMyD88 was predicted to have TFBS implicated with TLR signaling, including copies of NFB1, APRF/ STAT3, Sp1, IRF1 and 2 and Stat1/2. Using qPCR technique, a ubiquitous mRNA expression was detected in liver and blood. Furthermore, a significantly up-regulated transcriptional expression of OfMyD88 was detected in head kidney (12-24 h; >2-fold), spleen (6 h; 1.5-fold), liver (3 h; 1.9-fold) and intestine (24 h; ~2-fold) post-Fla challenge. These data suggest a crucial role for MyD88 in antibacterial immunity of teleosts.Keywords: MyD88, innate immunity, flagellin, genomic analysis
Procedia PDF Downloads 412212 Social Media: The Major Trigger of Online and Offline Political Activism
Authors: Chan Eang Teng, Tang Mui Joo
Abstract:
With the viral factor on social media, the sense of persuasion is generated by repetition and popularity. When users’ interest is captured, political awareness increases to spark political enthusiasm, but, the level of user’s political participation and political attitude of those active users is still questionable. An online survey on 250 youth and in-depth interview on two politicians are conducted to answer the main question in this paper. The result shows that Facebook significantly increases political awareness among youths. Social media may not be the major trigger to political activism among youths as most respondents opined that they would still vote without Facebook. Other factors could be political campaigning, political climate, age, peer pressure or others. Finding also shows that majority of respondents did not participate in online political debates or political groups. Many also wondered if the social media was the main power switch that triggers the political influx among young voters. The research finding is significant to understand how the new media, Facebook, has reshaped the political landscape in Malaysia, creating the Social Media Election that changed the rules of the political game. However, research finding does not support the ideal notion that the social media is the major trigger to youth’s political activism. This research outcome has exposed the flaws of the Social Media Election. It has revealed the less optimistic side of youth political activism. Unfortunately, results fall short of the idealistic belief that the social media have given rise to political activism among youths in the 13th General Election in Malaysia. The research outcome also highlights an important lesson for the democratic discourse of Malaysia which is making informed and educated decisions takes more commitment, proactive and objective attitude.Keywords: social media, political participation, political activism, democracy, political communication
Procedia PDF Downloads 320211 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes
Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu
Abstract:
Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment
Procedia PDF Downloads 192210 Genome-Wide Assessment of Putative Superoxide Dismutases in Unicellular and Filamentous Cyanobacteria
Authors: Shivam Yadav, Neelam Atri
Abstract:
Cyanobacteria are photoautotrophic prokaryotes able to grow in diverse ecological habitats, originated 2.5 - 3.5 billion years ago and brought oxygenic photosynthesis. Since then superoxide dismutases (SODs) acquired great significance due to their ability to catalyze detoxification of byproducts of oxygenic photosynthesis, i.e. superoxide radicals. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of the superoxide dismutases family. In the present study, we extracted information regarding SODs from species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. 144 putative SOD homologues were identified. SODs are present in all cyanobacterial species reflecting their significant role in survival. However, their distribution varies, fewer in unicellular marine strains whereas abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic SODs were conserved well in these proteins. These SODs were classified into three major families according to their domain structures. Interestingly, they lack additional domains as found in proteins of other family. Phylogenetic relationships correspond well with phylogenies based on 16S rRNA and clustering occurs on the basis of structural characteristics such as domain organization. Similar conserved motifs and amino acids indicate that cyanobacterial SODs make use of a similar catalytic mechanism as eukaryotic SODs. Gene gain-and-loss is insignificant during SOD evolution as evidenced by absence of additional domain. This study has not only examined an overall background of sequence-structure-function interactions for the SOD gene family but also revealed variation among SOD distribution based on ecophysiological and morphological characters.Keywords: comparative genomics, cyanobacteria, phylogeny, superoxide dismutases
Procedia PDF Downloads 132209 Enteropathogenic Viruses Associated with Acute Gastroenteritis among Under 5-Years Children in Africa: A Systematic Review and Meta-Analysis
Authors: Cornelius Arome Omatola, Ropo Ebenezer Ogunsakin, Anyebe Bernard Onoja, Martin-Luther Oseni Okolo, Joseph Abraham-Oyiguh, Kehinde Charles Mofolorunso, Phoebe Queen Akoh, Omebije Patience Adejo, Joshua Idakwo, Therisa Ojomideju Okeme, Danjuma Muhammed, David Moses Adaji, Sunday Ocholi Samson, Ruth Aminu, Monday Eneojo Akor
Abstract:
Gastroenteritis viruses are the leading etiologic agents of diarrhea in children worldwide. We present data from thirty-three (33) eligible studies published between 2003 and 2023 from African countries bearing the brunt of the virus-associated diarrheal mortality. Random effects meta-analysis with proportion, subgroups, and meta-regression analyses were employed. Overall, rotavirus with estimated pooled prevalence of 31.0% (95% CI 24.0–39.0) predominated in all primary care visits and hospitalizations, followed by norovirus, adenovirus, sapovirus, astrovirus, and aichivirus with pooled prevalence estimated at 15.0% (95% CI 12.0–20.0), 10% (95% CI 6-15), 4.0% (95% CI 2.0–6.0), 4% (95% CI 3-6), and 2.3% (95% CI 1-3), respectively. Predominant rotavirus genotype was G1P[8] (38%), followed by G3P[8] (11.7%), G9P[8] (8.7%), and G2P[4] (7.1%); although, unusual genotypes were also observed, including G3P[6] (2.7%), G8P[6] (1.7%), G1P[6] (1.5%), G10P[8] (0.9%), G8P[4] (0.5%), and G4P[8] (0.4%). The genogroup II norovirus predominated over the genogroup I-associated infections (84.6%, 613/725 vs 14.9%, 108/725), with the GII.4 (79.3%) being the most prevalent circulating genotype. In conclusion, this review showed that rotavirus remains the leading driver of viral diarrhea requiring health care visits and hospitalization among under-five years children in Africa. Thus, improved rotavirus vaccination in the region and surveillance to determine the residual burden of rotavirus and the evolving trend of other enteric viruses are needed for effective control and management of cases.Keywords: enteric viruses, rotavirus, norovirus, adenovirus, astrovirus, gastroenteritis
Procedia PDF Downloads 93208 Post-Pandemic Public Space, Case Study of Public Parks in Kerala
Authors: Nirupama Sam
Abstract:
COVID-19, the greatest pandemic since the turn of the century, presents several issues for urban planners, the most significant of which is determining appropriate mitigation techniques for creating pandemic-friendly and resilient public spaces. The study is conducted in four stages. The first stage consisted of literature reviews to examine the evolution and transformation of public spaces during pandemics throughout history and the role of public spaces during pandemic outbreaks. The second stage is to determine the factors that influence the success of public spaces, which was accomplished by an analysis of current literature and case studies. The influencing factors are categorized under comfort and images, uses and activity, access and linkages, and sociability. The third stage is to establish the priority of identified factors for which a questionnaire survey of stakeholders is conducted and analyzing of certain factors with the help of GIS tools. COVID-19 has been in effect in India for the last two years. Kerala has the highest daily COVID-19 prevalence due to its high population density, making it more susceptible to viral outbreaks. Despite all preventive measures taken against COVID-19, Kerala remains the worst-affected state in the country. Finally, two live case studies of the hardest-hit localities, namely Subhash bose park and Napier Museum park in the Ernakulam and Trivandrum districts of Kerala, respectively, were chosen as study areas for the survey. The responses to the questionnaire were analyzed using SPSS for determining the weights of the influencing factors. The spatial success of the selected case studies was examined using the GIS interpolation model. Following the overall assessment, the fourth stage is to develop strategies and guidelines for planning public spaces to make them more efficient and robust, which further leads to improved quality, safety and resilience to future pandemics.Keywords: urban design, public space, covid-19, post-pandemic, public spaces
Procedia PDF Downloads 137207 Evaluating Gene-Gene Interaction among Nicotine Dependence Genes on the Risk of Oral Clefts
Authors: Mengying Wang, Dongjing Liu, Holger Schwender, Ping Wang, Hongping Zhu, Tao Wu, Terri H Beaty
Abstract:
Background: Maternal smoking is a recognized risk factor for nonsyndromic cleft lip with or without cleft palate (NSCL/P). It has been reported that the effect of maternal smoking on oral clefts is mediated through genes that influence nicotine dependence. The polymorphisms of cholinergic receptor nicotinic alpha (CHRNA) and beta (CHRNB) subunits genes have previously shown strong associations with nicotine dependence. Here, we attempted to investigate whether the above genes are associated with clefting risk through testing for potential gene-gene (G×G) and gene-environment (G×E) interaction. Methods: We selected 120 markers in 14 genes associated with nicotine dependence to conduct transmission disequilibrium tests among 806 Chinese NSCL/P case-parent trios ascertained in an international consortium which conducted a genome-wide association study (GWAS) of oral clefts. We applied Cordell’s method using “TRIO” package in R to explore G×G as well as G×E interaction involving environmental tobacco smoke (ETS) based on conditional logistic regression model. Results: while no SNP showed significant association with NSCL/P after Bonferroni correction, we found signals for G×G interaction between 10 pairs of SNPs in CHRNA3, CHRNA5, and CHRNB4 (p<10-8), among which the most significant interaction was found between RS3743077 (CHRNA3) and RS11636753 (CHRNB4, p<8.2×10-12). Linkage disequilibrium (LD) analysis revealed only low level of LD between these markers. However, there were no significant results for G×ETS interaction. Conclusion: This study fails to detect association between nicotine dependence genes and NSCL/P, but illustrates the importance of taking into account potential G×G interaction for genetic association analysis in NSCL/P. This study also suggests nicotine dependence genes should be considered as important candidate genes for NSCL/P in future studies.Keywords: Gene-Gene Interaction, Maternal Smoking, Nicotine Dependence, Non-Syndromic Cleft Lip with or without Cleft Palate
Procedia PDF Downloads 336206 Elucidating the Genetic Determinism of Seed Protein Plasticity in Response to the Environment Using Medicago truncatula
Authors: K. Cartelier, D. Aime, V. Vernoud, J. Buitink, J. M. Prosperi, K. Gallardo, C. Le Signor
Abstract:
Legumes can produce protein-rich seeds without nitrogen fertilizer through root symbiosis with nitrogen-fixing rhizobia. Rich in lysine, these proteins are used for human nutrition and animal feed. However, the instability of seed protein yield and quality due to environmental fluctuations limits the wider use of legumes such as pea. Breeding efforts are needed to optimize and stabilize seed nutritional value, which requires to identify the genetic determinism of seed protein plasticity in response to the environment. Towards this goal, we have studied the plasticity of protein content and composition of seeds from a collection of 200 Medicago truncatula ecotypes grown under four controlled conditions (optimal, drought, and winter/spring sowing). A quantitative analysis of one-dimensional protein profiles of these mature seeds was performed and plasticity indices were calculated from each abundant protein band. Genome-Wide Association Studies (GWAS) from these data identified major GWAS hotspots, from which a list of candidate genes was obtained. A Gene Ontology Enrichment Analysis revealed an over-representation of genes involved in several amino acid metabolic pathways. This led us to propose that environmental variations are likely to modulate amino acid balance, thus impacting seed protein composition. The selection of candidate genes for controlling the plasticity of seed protein composition was refined using transcriptomics data from developing Medicago truncatula seeds. The pea orthologs of key genes were identified for functional studies by mean of TILLING (Targeting Induced Local Lesions in Genomes) lines in this crop. We will present how this study highlighted mechanisms that could govern seed protein plasticity, providing new cues towards the stabilization of legume seed quality.Keywords: GWAS, Medicago truncatula, plasticity, seed, storage proteins
Procedia PDF Downloads 138205 Descriptive Analysis of the Database of Poliomyelitis Surveillance System in Mauritania from 2012-2019
Authors: B. Baba Ahmed, P. Yanogo, B. Djibryl. N. Medas
Abstract:
Introduction: Polio is a highly contagious viral infection, with children under 5 years of age being the most affected. It is a public health emergency of international concern. Polio surveillance in Mauritania has been ongoing since 1998 and has achieved "polio free" status in 2007. our objective is to analyse a pidemiological surveillance database of poliomyélitis in Mauritania from 2012-2019. Method: A transversal descriptive analysis of poliomyélitis database was carried out in Mauritania from 2012-2019.An exhaustive sampling was done on all suspected polio cases recorded in the database from 2012 -2019. This study used EPI-INFO 7.4 for frequency calculation for qualitative variables, mean and standard deviation for quantitative variables. Results: We found 459 suspected cases of polio over the study period with an average rate of acute non-polio flaccid paralysis of 25.4 cases/100,000 children under 15 years of age. The age group 0-6 years represented 75.2%. Males constituted 50.2%. Females represented 49.78% with a ratio of M/F=1.Among the 422 observations, the average age is 4 years +/- 3.38. The four regions, TIRIS-ZEMMOUR, INCHIRI, TAGANT, NOUACHCHOTT OUEST recorded the lowest percentages of notifications, respectively (3.28%; 3.93%; 4.37%; 4.8%). 99.34% [98.09-99.78] of cases presented acute flaccid paralysis. And 56.77% [52.19-61.23], had limb asymmetry. We showed that 82.93% [79.21-86.10], had fever. we found that 89.5% of suspected polio cases were investigated before 48 hours. And 88.39% of suspected cases had two adequate samples taken 48 hours apart and within 14 days after the onset of symptoms. Only 30.95% of samples arrived at the referral laboratory before 72 hours. Conclusion: This study has shown that Mauritania has achieved the objectives in most of the quantitative performance indicators of polio surveillance. This study has shown a low notification of cases in the northern and central regions of the country. There is a problem with the transport of samples to the laboratory.Keywords: analysis, data base, Epi-Info, polio
Procedia PDF Downloads 175204 Multi-Sectoral Prioritization of Zoonotic Diseases in Uganda, 2017: The Perspective of One Health Experts
Authors: Musa Sekamatte
Abstract:
Background: Zoonotic diseases continue to be a public health burden in countries around the world. Uganda is especially vulnerable due to its location, biodiversity, and population. Given these concerns, the Ugandan government in collaboration with the Global Health Security Agenda conducted a zoonotic disease prioritization workshop to identify zoonotic diseases of concern to multiple Ugandan ministries. Materials and Methods: The One Health Zoonotic Disease Prioritization tool, developed by the U.S. Centers for Disease Control and Prevention (CDC), was used for prioritization of zoonotic diseases in Uganda. Workshop participants included voting members representing human, animal, and environmental health ministries as well as key partners who observed the workshop. Over 100 articles describing characteristics of these zoonotic diseases were reviewed for the workshop. During the workshop, criteria for prioritization were selected, and questions and weights relevant to each criterion were determined. Next steps for multi-sectoral engagement for the prioritized zoonoses were then discussed. Results: 48 zoonotic diseases were considered during the workshop. Criteria selected to prioritize zoonotic diseases in order of importance were (1) severity of disease in humans in Uganda, (2) availability of effective control strategies, (3) potential to cause an epidemic or pandemic in humans or animals, (4) social and economic impacts, and (5) bioterrorism potential. Seven zoonotic diseases were identified as priorities for Uganda: anthrax, zoonotic influenza viruses, viral hemorrhagic fevers, brucellosis, African trypanosomiasis, plague, and rabies. Discussion: One Health approaches and multi-sectoral collaborations are crucial in the surveillance, prevention, and control strategies for zoonotic diseases. Uganda used such an approach to identify zoonotic diseases of national concern. Identifying these priority diseases enables the National One Health Platform and the Zoonotic Disease Coordinating Office to address the diseases in the future.Keywords: national one health platform, zoonotic diseases, multi-sectoral, severity
Procedia PDF Downloads 193203 Isolation, Characterization, and Antibacterial Activity of Endophytic Bacteria from Iranian Medicinal Plants
Authors: Maryam Beiranvand, Sajad Yaghoubi
Abstract:
Background: Some microbes can colonize plants’ inner tissues without causing obvious damage and can even produce useful bioactive substances. In the present study, the diversity of the endophytic bacteria associated with medicinal plants from Iran was investigated by culturing techniques, molecular gene identification, as well as measuring them for antibacterial activity. Results: In the spring season from 2013 to 2014, 35 herb pharmacology samples were collected, sterilized, meshed, and then cultured on selective media culture. A total of 199 endophytic bacteria were successfully isolated from 35 tissue cultures of medical plants, and sixty-seven out of 199 bacterial isolates were subjected to identification by the 16S rRNA gene sequence analysis method. Based on the sequence similarity gene and phylogenetic analyses, these isolates were grouped into five classes, fourteen orders, seventeen families, twenty-one genera, and forty strains. The most abundant group of endophytic bacteria was actinobacterial, consisting of thirty-two (47%) out of 67 bacterial isolates. Ten (22.3%) out of 67 bacterial isolates remained unidentified and classified at the genus level. The signature of the 16S rRNA gene formed a distinct line in a phylogenetic tree showing that they might be new species of bacteria. One (5.2%) out of 67 bacterial isolates was still not well categorized. Forty-two out of 67 strains were candidates for antimicrobial activity tests. Nineteen (45%) out of 42 strains showed antimicrobial activity multidrug-resistance (MDR); thirteen (68%) out of 19 strains were allocated to classes actinobacteria. Four (21%) out of 19 strains belonged to the Bacillaceae family, one (5.2%) out of 19 strains was the Paenibacillaceae family, and one (5.2%) out of 19 strains belonged to the Pseudomonadaceae family. The other twenty-three strains did not show inhibitory activities. Conclusions: Our research showed a high-level phylogenetic diversity and the intoxicating antibiotic activity of endophytic bacteria in the herb pharmacology of Iran.Keywords: medical plant, endophytic bacteria, antimicrobial activity, whole genome sequencing analysis
Procedia PDF Downloads 122202 A Replicon-Baculovirus Model for Efficient Packaging of Hepatitis E Virus RNA and Production of Infectious Virions
Authors: Mohammad K. Parvez, Mohammed S. Al-Dosari
Abstract:
Hepatitis E virus (HEV) is an emerging RNA virus that causes acute and chronic liver disease with a global mortality rate of about 2%. Despite milestone developments in understanding of HEV biology, there is still lack of a robust culture system or animal model. Therefore, in a novel approach, two recombinant-baculoviruses (vBac-ORF2 and vBac-ORF3) that could overexpress HEV ORF2 (structural/capsid) and ORF3 (nonstructural/regulatory) proteins, respectively were constructed. The established HEV-SAR55 (genotype 1) replicon that contained GFP gene, in place of ORF2/ORF3 sequences was in vitro transcribed, and GFP production in RNA transfected S10-3 cells was scored by FACS. Enhanced infectivity, if any, of nascent virions produced by exogenously-supplied ORF2 and viral RNA by co-expression of ORF3 was tested on naïve HepG2 cells. Co-transduction with vBac-ORF2/vBac-ORF3 (108 pfu/microL) produced high amounts of native ORF2/ORF3 in approximately 60% of S10-3 cells, determined by immunofluorescence microscopy and Western analysis. FACS analysis showed about 9% GFP positivity of S10-3 cells on day6 post-transfection (i.e, day5 post-transduction). Further, FACS scoring indicated that lysates from S10-3 cultures receiving the RNA plus vBac-ORF2 were capable of producing HEV particles with about 4% infectivity in HepG2 cells. However, lysates of cultures co-transduced with vBac-ORF3, were found to further enhance virion infectivity by approximately 17%. This supported a previously proposed role of ORF3 as a minor-structural protein in HEV virion assembly and infectivity. In conclusion, the present model for efficient genomic RNA packaging and production of infectious virions could be a valuable tool to study various aspects of HEV molecular biology, in vitro.Keywords: chronic liver disease, hepatitis E virus, ORF2, ORF3, replicon
Procedia PDF Downloads 254201 Applying EzRAD Method for SNPs Discovery in Population Genetics of Freshwater and Marine Fish in the South of Vietnam
Authors: Quyen Vu Dang Ha, Oanh Truong Thi, Thuoc Tran Linh, Kent Carpenter, Thinh Doan Vu, Binh Dang Thuy
Abstract:
Enzyme restriction site associated DNA (EzRAD) has recently emerged as a promising genomic approach for exploring fish genetic diversity on a genome-wide scale. This is a simplified method for genomic genotyping in non-model organisms and applied for SNPs discovery in the population genetics of freshwater and marine fish in the South of Vietnam. The observations of regional-scale differentiation of commercial freshwater fish (smallscale croakers Boesemania microlepis) and marine fish (emperor Lethrinus lentjan) are clarified. Samples were collected along Hau River and coastal area in the south and center Vietnam. 52 DNA samples from Tra Vinh, An Giang Province for Boesemania microlepis and 34 DNA samples of Lethrinus lentjan from Phu Quoc, Nha Trang, Da Nang Province were used to prepare EzRAD libraries from genomic DNA digested with MboI and Sau3AI. A pooled sample of regional EzRAD libraries was sequenced using the HiSeq 2500 Illumina platform. For Boesemania microlepis, the small scale population different from upstream to downstream of Hau river were detected, An Giang population exhibited less genetic diversity (SNPs per individual from 14 to 926), in comparison to Tra Vinh population (from 11 to 2172). For Lethrinus lentjan, the result showed the minor difference between populations in the Northern and the Southern Mekong River. The numbers of contigs and SNPs vary from 1315 to 2455 and from 7122 to 8594, respectively (P ≤ 0.01). The current preliminary study reveals regional scale population disconnection probably reflecting environmental changing. Additional sampling and EzRad libraries need to be implemented for resource management in the Mekong Delta.Keywords: Boesemania microlepis, EzRAD, Lethrinus lentjan, SNPs
Procedia PDF Downloads 508200 In Vitro Propagation of Aloe vera and Aloe littoralis Plants: Gamma Radiation, Biochemical and Genetic Changes
Authors: Z. Nourmohammadi, F. Farahani, M. Shaker
Abstract:
Aloe is an important commercial crop available in a wide range of species and varieties in international markets. The applications of this plant have been recorded in the ancient cultures of India, Egypt, Greece, Rome and China. Aloe has been used for centuries and is currently being actively studied for medicinal purposes. Aloe is propagated through lateral buds, which is slow, very expensive and low income practice. Nowadays, it has been cultured by in vitro propagation for rapid multiplication of plants, genetic improvement of crops, obtaining disease-free clones and for progressive valuable germplasm. The present study focused on the influence of different phytohormones on rapid in vitro propagation of Aloe plants. We also investigated the effect of gamma radiation on biochemical characters as well as genetic changes. Shoot tip of 2-3 cm were collected from offshoot of Aloe barbadensis and Aloe littoralis, and were inoculated with MS medium containing various concentrations of BA (0.5, 1, 2 mg/l), IAA (0.5, 1 mg/l). The best treatment for a highest shoot number and bud proliferation was MS medium containing 2 mg/l BAP and 0.5 mg/l IAA in A. barbadensis and A. littoralis. Maximum percentage of proliferated shoot buds (90% and 95%) from a single explant were obtained in MS medium after 4-5 weeks of the second and the first subcultures, respectively. Different genome sizes were also indicated among treatments and subcultures. The mixoploids identified in flow cytometery histograms in different treatments. The effect of gamma radiation on A. littoralis showed that by increasing the dose of gamma radiation, amounts of chlorophyll A, B, carotenoids, total protein content and superoxide dismutase were significantly increased compared to control plants. Genetic variation analysis also revealed significant genetic differences between control and gamma radiation treated regenerated plants by AMOVA test. Higher genetic heterozygocity was observed in radiation treated plants. Our findings may provide useful method for improving of Aloe plant proliferation with increasing of useful material such as antioxidant enzymes.Keywords: aloe, antioxidant enzyme, micropropagation, gamma radiation, genetic variation
Procedia PDF Downloads 425199 Molecular Characterization of Grain Storage Proteins in Some Hordeum Species
Authors: Manar Makhoul, Buthainah Alsalamah, Salam Lawand, Hassan Azzam
Abstract:
The major storage proteins in endosperm of 33 cultivated and wild barley genotypes (H.vulgare, H. spontaneum, H. bulbosum, H. murinum, H. marinum) were analyzed to demonstrate the variation in the hordein polypeptides encoded by multigene families in grains. The SDS-PAGE revealed 13 and 17 alleles at the Hor1 and the Hor2 loci respectively, with frequencies from 0.83 to 14 and 0.56 to 13.41% respectively, while seven alleles at the Hor3 locus with frequencies from 3.63 to 30.91% were recognized. The phylogenetic analysis indicated to relevance of the polymorphism in hordein patterns as successful tool in identifying the individual genotypes and discriminating the species according to genome type. We also reported in this research complete nucleotide sequence B-hordein genes of seven wild and cultivated barley genotypes. A 152bp upstream sequence of B-hordein promoter contained a TATA box, CATC box, AAAG motif, N-motif and E-motif. In silico analysis of B-Hordein sequences demonstrated that the coding regions were not interrupted by any intron, and included the complete ORF which varied between 882 and 906 bp, and encoded mature proteins with 293-301 residues characterized by high contents of glutamine (29%), and proline (18%). Comparison of the predicted polypeptide sequences with the published ones suggested that all S-rich prolamins genes are descended from common ancestor. The sequence started at N-terminal with a signal peptide, and then followed directly by two domains; a repetitive one based on the repetition of the repeat unit PQQPFPQQ and C-terminal domain. Also, it was found that positions of the eight cysteine residues were highly conserved in all the B-hordein sequences, but Hordeum bulbosum had additional unpaired one. The phylogenetic tree of B-hordein polypeptide separated the genotypes in distinct seven subgroups. In general, the high homology between B-hordeins and LMW glutenin subunits suggests similar bread-making influences for these B-hordeins.Keywords: hordeum, phylogenetic tree, sequencing, storage protein
Procedia PDF Downloads 263198 Infrared Spectroscopy in Tandem with Machine Learning for Simultaneous Rapid Identification of Bacteria Isolated Directly from Patients' Urine Samples and Determination of Their Susceptibility to Antibiotics
Authors: Mahmoud Huleihel, George Abu-Aqil, Manal Suleiman, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman
Abstract:
Urinary tract infections (UTIs) are considered to be the most common bacterial infections worldwide, which are caused mainly by Escherichia (E.) coli (about 80%). Klebsiella pneumoniae (about 10%) and Pseudomonas aeruginosa (about 6%). Although antibiotics are considered as the most effective treatment for bacterial infectious diseases, unfortunately, most of the bacteria already have developed resistance to the majority of the commonly available antibiotics. Therefore, it is crucial to identify the infecting bacteria and to determine its susceptibility to antibiotics for prescribing effective treatment. Classical methods are time consuming, require ~48 hours for determining bacterial susceptibility. Thus, it is highly urgent to develop a new method that can significantly reduce the time required for determining both infecting bacterium at the species level and diagnose its susceptibility to antibiotics. Fourier-Transform Infrared (FTIR) spectroscopy is well known as a sensitive and rapid method, which can detect minor molecular changes in bacterial genome associated with the development of resistance to antibiotics. The main goal of this study is to examine the potential of FTIR spectroscopy, in tandem with machine learning algorithms, to identify the infected bacteria at the species level and to determine E. coli susceptibility to different antibiotics directly from patients' urine in about 30minutes. For this goal, 1600 different E. coli isolates were isolated for different patients' urine sample, measured by FTIR, and analyzed using different machine learning algorithm like Random Forest, XGBoost, and CNN. We achieved 98% success in isolate level identification and 89% accuracy in susceptibility determination.Keywords: urinary tract infections (UTIs), E. coli, Klebsiella pneumonia, Pseudomonas aeruginosa, bacterial, susceptibility to antibiotics, infrared microscopy, machine learning
Procedia PDF Downloads 169197 Bioinformatics Approach to Identify Physicochemical and Structural Properties Associated with Successful Cell-free Protein Synthesis
Authors: Alexander A. Tokmakov
Abstract:
Cell-free protein synthesis is widely used to synthesize recombinant proteins. It allows genome-scale expression of various polypeptides under strictly controlled uniform conditions. However, only a minor fraction of all proteins can be successfully expressed in the systems of protein synthesis that are currently used. The factors determining expression success are poorly understood. At present, the vast volume of data is accumulated in cell-free expression databases. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with successful cell-free expression. Here, we describe an approach aimed at identification of multiple physicochemical and structural properties of amino acid sequences associated with protein solubility and aggregation and highlight major correlations obtained using this approach. The developed method includes: categorical assessment of the protein expression data, calculation and prediction of multiple properties of expressed amino acid sequences, correlation of the individual properties with the expression scores, and evaluation of statistical significance of the observed correlations. Using this approach, we revealed a number of statistically significant correlations between calculated and predicted features of protein sequences and their amenability to cell-free expression. It was found that some of the features, such as protein pI, hydrophobicity, presence of signal sequences, etc., are mostly related to protein solubility, whereas the others, such as protein length, number of disulfide bonds, content of secondary structure, etc., affect mainly the expression propensity. We also demonstrated that amenability of polypeptide sequences to cell-free expression correlates with the presence of multiple sites of post-translational modifications. The correlations revealed in this study provide a plethora of important insights into protein folding and rationalization of protein production. The developed bioinformatics approach can be of practical use for predicting expression success and optimizing cell-free protein synthesis.Keywords: bioinformatics analysis, cell-free protein synthesis, expression success, optimization, recombinant proteins
Procedia PDF Downloads 416196 The Evaluation of Adjuvant Effects of CD154 in a Subunit Vaccine against Classical Swine Fever Virus
Authors: Yu-Chieh Chen, Li-Yun Wang, Chi-Chih Chen, Huy Hùng Đào, Ya-Mei Chen, Ming-Chu Cheng, Wen-Bin Chung, Hso-Chi Chaung, Guan-Ming Ke
Abstract:
Many recent researches have demonstrated that CD154, a protein primarily expressed on activated T cell molecules, has potentially acted as a molecular adjuvant to improve the immunogenicity of subunit vaccines against viral infections. Classical swine fever (CSF) affects the swine industry worldwide that is one of the most devastating and highly contagious pig diseases. It is listed by the World Organization for Animal Health (OIE) as an infectious animal disease that must be reported. Although pigs vaccinated with subunit vaccines can be differentially diagnosed from those infected animals, subunit vaccines usually need adjuvants to enhance and elicit immune responses. In this study, CD154 was linked with CSFV E2 sequences and then expressed in CHO cells to produce the fusion protein as E2-CD154. The porcine specific CpG adjuvant was also used in one of the formulations. The specific pathogen-free pigs (SPF) at the age of 4-week-old were randomly separated into four groups, vaccinated with E2-CpG, E2-CD154, E2-CD154-CpG or the commercial Bayovac® CSF-E2 vaccine and boosted two weeks after primary vaccination. The results showed that the percentages of CD4+ and CD4+IL2+ in peripheral blood mononuclear cells (PBMC) in E2-CD154 vaccinated piglets seven days after primary vaccination were gained by 1-5% relative to the control group. In addition, the percentages of CD4+IFNγ+ T cells had slightly edged up 0.1-0.3% compared with the control group. Also, increased E2-specific IFNγ levels had edged up CD4+CD8+ T cells found in E2-CD154 and E2-CD154-CpG groups, particularly in the E2-CD154-CpG group. These results implicate that CD154 may enhance cellular immunity and synergistically act with species-specific CpG adjuvant as a dual-phase adjuvant. Therefore, the CD154 may be beneficial as a promising adjuvant in subunit vaccines.Keywords: CD154, CpG adjuvant, cellular immunity, subunit vaccine, pig
Procedia PDF Downloads 65195 The Use of Bleomycin and Analogues to Probe the Chromatin Structure of Human Genes
Authors: Vincent Murray
Abstract:
The chromatin structure at the transcription start sites (TSSs) of genes is very important in the control of gene expression. In order for gene expression to occur, the chromatin structure at the TSS has to be altered so that the transcriptional machinery can be assembled and RNA transcripts can be produced. In particular, the nucleosome structure and positioning around the TSS has to be changed. Bleomycin is utilized as an anti-tumor agent to treat Hodgkin's lymphoma, squamous cell carcinoma, and testicular cancer. Bleomycin produces DNA damage in human cells and DNA strand breaks, especially double-strand breaks, are thought to be responsible for the cancer chemotherapeutic activity of bleomycin. Bleomycin is a large glycopeptide with molecular weight of approximately 1500 Daltons and hence its DNA strand cleavage activity can be utilized as a probe of chromatin structure. In this project, Illumina next-generation DNA sequencing technology was used to determine the position of DNA double-strand breaks at the TSSs of genes in intact cells. In this genome-wide study, it was found that bleomycin cleavage preferentially occurred at the TSSs of actively transcribed human genes in comparison with non-transcribed genes. There was a correlation between the level of enhanced bleomycin cleavage at TSSs and the degree of transcriptional activity. In addition, bleomycin was able to determine the position of nucleosomes at the TSSs of human genes. Bleomycin analogues were also utilized as probes of chromatin structure at the TSSs of human genes. In a similar manner to bleomycin, the bleomycin analogues 6′-deoxy-BLM Z and zorbamycin preferentially cleaved at the TSSs of human genes. Interestingly this degree of enhanced TSS cleavage inversely correlated with the cytotoxicity (IC50 values) of BLM analogues. This indicated that the degree of cleavage by bleomycin analogues at the TSSs of human genes was very important in the cytotoxicity of bleomycin and analogues. It also provided a deeper insight into the mechanism of action of this cancer chemotherapeutic agent since actively transcribed genes were preferentially targeted.Keywords: anti-cancer activity, chromatin structure, cytotoxicity, gene expression, next-generation DNA sequencing
Procedia PDF Downloads 114194 Study of Virus/es Threatening Large Cardamom Cultivation in Sikkim and Darjeeling Hills of Northeast India
Authors: Dharmendra Pratap
Abstract:
Large Cardamom (Amomum subulatum), family Zingiberaceae is an aromatic spice crop and has rich medicinal value. Large Cardamom is as synonymous to Sikkim as Tea is to Darjeeling. Since Sikkim alone contributes up to 88% of India's large cardamom production which is the world leader by producing over 50% of the global yield. However, the production of large cardamom has declined almost to half since last two decade. The economic losses have been attributed to two viral diseases namely, chirke and Foorkey. Chirke disease is characterized by light and dark green streaks on leaves. The affected leaves exhibit streak mosaic, which gradually coalesce, turn brown and eventually dry up. Excessive sprouting and formation of bushy dwarf clumps at the base of mother plants that gradually die characterize the foorkey disease. In our surveys in Sikkim–Darjeeling hill area during 2012-14, 40-45% of plants were found to be affected with foorkey disease and 10-15% with chirke. Mechanical and aphid transmission study showed banana as an alternate host for both the disease. For molecular identification, total genomic DNA and RNA was isolated from the infected leaf tissues and subjected to Rolling circle amplification (RCA) and RT-PCR respectively. The DNA concatamers produced in the RCA reaction were monomerized by different restriction enzymes and the bands corresponding to ~1 kb genomes were purified and cloned in the respective sites. The nucleotide sequencing results revealed the association of Nanovirus with the foorkey disease of large cardamom. DNA1 showed 74% identity with Replicase gene of FBNYV, DNA2 showed 77% identity with the NSP gene of BBTV and DNA3 showed 74% identity with CP gene of BBTV. The finding suggests the presence of a new species of nanovirus associated with foorkey disease of large cardamom in Sikkim and Darjeeling hills. The details of their epidemiology and other factors would be discussed.Keywords: RCA, nanovirus, large cardamom, molecular virology and microbiology
Procedia PDF Downloads 492193 Transcriptome Analysis Reveals Role of Long Non-Coding RNA NEAT1 in Dengue Patients
Authors: Abhaydeep Pandey, Shweta Shukla, Saptamita Goswami, Bhaswati Bandyopadhyay, Vishnampettai Ramachandran, Sudhanshu Vrati, Arup Banerjee
Abstract:
Background: Long non-coding RNAs (lncRNAs) are the important regulators of gene expression and play important role in viral replication and disease progression. The role of lncRNA genes in the pathogenesis of Dengue virus-mediated pathogenesis is currently unknown. Methods: To gain additional insights, we utilized an unbiased RNA sequencing followed by in silico analysis approach to identify the differentially expressed lncRNA and genes that are associated with dengue disease progression. Further, we focused our study on lncRNAs NEAT1 (Nuclear Paraspeckle Assembly Transcript 1) as it was found to be differentially expressed in PBMC of dengue infected patients. Results: The expression of lncRNAs NEAT1, as compared to dengue infection (DI), was significantly down-regulated as the patients developed the complication. Moreover, pairwise analysis on follow up patients confirmed that suppression of NEAT1 expression was associated with rapid fall in platelet count in dengue infected patients. Severe dengue patients (DS) (n=18; platelet count < 20K) when recovered from infection showing high NEAT1 expression as it observed in healthy donors. By co-expression network analysis and subsequent validation, we revealed that coding gene; IFI27 expression was significantly up-regulated in severe dengue cases and negatively correlated with NEAT1 expression. To discriminate DI from dengue severe, receiver operating characteristic (ROC) curve was calculated. It revealed sensitivity and specificity of 100% (95%CI: 85.69 – 97.22) and area under the curve (AUC) = 0.97 for NEAT1. Conclusions: Altogether, our first observations demonstrate that monitoring NEAT1and IFI27 expression in dengue patients could be useful in understanding dengue virus-induced disease progression and may be involved in pathophysiological processes.Keywords: dengue, lncRNA, NEAT1, transcriptome
Procedia PDF Downloads 309192 Ring FingerPortein 2 (RNF2) Targeting by miRNAs in Breast Cancer Cell Lines
Authors: Ceyda Okudu, Secil Eroglu, Khandakar A. S. M. Saadat, Sibel O. Balci
Abstract:
Ring Finger Protein 2 (RNF2) is a member of polycomb repressive complex 1 (PRC1), which is one of the epigenetic regulators in the genome. When RNF2 combines with other PRC1 members, it mediates the mono-ubiquitination of Histon2A (H2A). In breast cancer, RNF2 is commonly overexpressed, and also it promotes metastasis and invasion in other aggressive tumors like melanoma, prostate, and hepatocarcinoma. The role of RNF2 in the metastasis and invasion of breast cancer has not yet been elucidated. Our aim is to observe the role of RNF2 in metastasis and invasion in this study by miRNA mediated RNF2 gene silencing in breast cancer cell lines. We selected miRNAs, targeting to RNF2 by searching online databases. miR-17-5p, miR20a-5p, and miR-106b-5p were transfected to breast cancer cell lines (MCF-7, MDA-MB-231, SK-BR-3, and ZR-75-1), and also we used normal breast epithelial cell line (hTERT-HME1) to compare RNF2 gene expression level. After 48-72 hours post-transfection, mRNAs were isolated from the cells, and gene expressions were measured by RT-qPCR after from cDNA syntheses. We observed that RNF2 was highly expressed in SK-BR-3 and MDA-MB-231 cell lines opposite to MCF-7 and ZR-75-1 cell lines. RNF2 was downregulated 5, 5 and 7 fold by miR17-5p, miR20a-5p and miR106b-5p respectively in MCF-7. However, in SK-BR-3 and ZR-75-1 cell lines, miRNAs did not affect significantly RNF2 gene expression level. miR20a-5p decreased RNF2 3 fold and miR17-5p and miR106b-5p did not affect MDA-MB-231. After gene expression analysis, we performed metastasis and invasion assay in MCF-7 cells. For metastasis, we used both wound healing assay and Transwell Cell Migration Assay, and we used Transwell Cell Invasion Assay for invasion. The data of this assay showed that miR17-5p and miR20a-5p decreased both invasion and metastasis level, but miR106b-5p has no effect. We would like to conclude that RNF2 can be targeted by miR17-5p, miR20a-5p and miR106b-5p in MCF-7 cells and also RNF2, which is one of the upregulated genes in aggressive tumor, can be decreased by using these miRNAs. In future, we would like to confirm these results at the protein level and also whether these miRNAs are direct target of RNF2 or not.Keywords: breast cancer, epigenetic, microRNAs, RNF2
Procedia PDF Downloads 178191 Molecular Characterization of Ovine Herpesvirus 2 Strains Based on Selected Glycoprotein and Tegument Genes
Authors: Fulufhelo Amanda Doboro, Kgomotso Sebeko, Stephen Njiro, Moritz Van Vuuren
Abstract:
Ovine herpesvirus 2 (OvHV-2) genome obtained from the lymphopblastoid cell line of a BJ1035 cow was recently sequenced in the United States of America (USA). Information on the sequences of OvHV-2 genes obtained from South African strains from bovine or other African countries and molecular characterization of OvHV-2 is not documented. Present investigation provides information on the nucleotide and derived amino acid sequences and genetic diversity of Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes, of these genes from OvHV-2 strains circulating in South Africa. Gene-specific primers were designed and used for PCR of DNA extracted from 42 bovine blood samples that previously tested positive for OvHV-2. The expected PCR products of 495 bp, 253 bp, 890 bp and 1632 bp respectively for Ov 7, Ov 8 ex2, ORF 27 and ORF 73 genes were sequenced and multiple sequence analysis done on the selected regions of the sequenced PCR products. Two genotypes for ORF 27 and ORF 73 gene sequences, and three genotypes for Ov 7 and Ov 8 ex2 gene sequences were identified, and similar groupings for the derived amino acid sequences were obtained for each gene. Nucleotide and amino acid sequence variations that led to the identification of the different genotypes included SNPs, deletions and insertions. Sequence analysis of Ov 7 and ORF 27 genes revealed variations that distinguished between sequences from SA and reference OvHV-2 strains. The implication of geographic origin among SA sequences was difficult to evaluate because of random distribution of genotypes in the different provinces, for each gene. However, socio-economic factors such as migration of people with animals, or transportation of animals for agricultural or business use from one province to another are most likely to be responsible for this observation. The sequence variations observed in this study have no impact on the antibody binding activities of glycoproteins encoded by Ov 7, Ov 8 ex2 and ORF 27 genes, as determined by prediction of the presence of B cell epitopes using BepiPred 1.0. The findings of this study will be used for selection of gene candidates for the development of diagnostic assays and vaccine development as well.Keywords: amino acid, genetic diversity, genes, nucleotide
Procedia PDF Downloads 488190 The Association between IFNAR2 and Dpp9 Genes Single Nucleotide Polymorphisms Frequency with COVID-19 Severity in Iranian Patients
Authors: Sima Parvizi Omran, Rezvan Tavakoli, Mahnaz Safari, Mohammadreza Aghasadeghi, Abolfazl Fateh, Pooneh Rahimi
Abstract:
Background: SARS-CoV-2, a single-stranded RNA betacoronavirus causes the global outbreak of coronavirus disease 2019 (COVID-19). Several clinical and scientific concerns are raised by this pandemic. Genetic factors can contribute to pathogenesis and disease susceptibility. There are single nucleotide polymorphisms (SNPs) in many of the genes in the immune system that affect the expression of specific genes or functions of some proteins related to immune responses against viral infections. In this study, we analyzed the impact of polymorphism in the interferon alpha and beta receptor subunit 2 (IFNAR2) and dipeptidyl peptidase 9 (Dpp9) genes and clinical parameters on the susceptibility and resistance to Coronavirus disease (COVID-19). Methods: A total of 330- SARS-CoV-2 positive patients (188 survivors and 142 nonsurvivors) were included in this study. All single-nucleotide polymorphisms (SNPs) on IFNAR2 (rs2236757) and Dpp9 (rs2109069) were genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Results: In survivor patients, the frequency of the favourable genotypes of IFNAR2 SNP (rs2236757 GC) was significantly higher than in nonsurvivor patients, and also Dpp9 (rs2109069 AT) genotypes were associated with the severity of COVID-19 infection. Conclusions: This study demonstrated that the severity of COVID- 19 patients was strongly associated with clinical parameters and unfavourable IFNAR2, Dpp9 SNP genotypes. In order to establish the relationship between host genetic factors and the severity of COVID-19 infection, further studies are needed in multiple parts of the world.Keywords: SARS-CoV-2, COVID-19, interferon alpha and beta receptor subunit 2, dipeptidyl peptidase 9, single-nucleotide polymorphisms
Procedia PDF Downloads 160189 Dynamic of an Invasive Insect Gut Microbiome When Facing to Abiotic Stress
Authors: Judith Mogouong, Philippe Constant, Robert Lavallee, Claude Guertin
Abstract:
The emerald ash borer (EAB) is an exotic wood borer insect native from China, which is associated with important environmental and economic damages in North America. Beetles are known to be vectors of microbial communities related to their adaptive capacities. It is now established that environmental stress factors may induce physiological events on the host trees, such as phytochemical changes. Consequently, that may affect the establishment comportment of herbivorous insect. Considering the number of insects collected on ash trees (insects’ density) as an abiotic factor related to stress damage, the aim of our study was to explore the dynamic of EAB gut microbial community genome (microbiome) when facing that factor and to monitor its diversity. Insects were trapped using specific green Lindgren© traps. A gradient of the captured insect population along the St. Lawrence River was used to create three levels of insects’ density (low, intermediate, and high). After dissection, total DNA extracted from insect guts of each level has been sent for amplicon sequencing of bacterial 16S rRNA gene and fungal ITS2 region. The composition of microbial communities among sample appeared largely diversified with the Simpson index significantly different across the three levels of density for bacteria. Add to that; bacteria were represented by seven phyla and twelve classes, whereas fungi were represented by two phyla and seven known classes. Using principal coordinate analysis (PCoA) based on Bray Curtis distances of 16S rRNA sequences, we observed a significant variation between the structure of the bacterial communities depending on insects’ density. Moreover, the analysis showed significant correlations between some bacterial taxa and the three classes of insects’ density. This study is the first to present a complete overview of the bacterial and fungal communities associated with the gut of EAB base on culture-independent methods, and to correlate those communities with a potential stress factor of the host trees.Keywords: gut microbiome, DNA, 16S rRNA sequences, emerald ash borer
Procedia PDF Downloads 401188 Use of an Insecticidal-Iridovirus Kinase towards the Development of Aphid-Resistant Plants
Authors: Saranya Ganapathy, Megha N. Parajulee, Michael San Francisco, Hong Zhang
Abstract:
Insect pests are a serious threat to agricultural productivity. Use of chemical pesticides, the predominant control method thus far, has resulted in environmental damage, pest resurgence, and negative effects on non-target species. Genetically modified (GM) crops offer a promising alternative, and Bacillus thuringiensis endotoxin genes have played a major role in this respect. However, to overcome insect tolerance issues and to broaden the target range, it is critical to identify alternative-insecticidal toxins working through novel mechanisms. Our research group has identified a kinase from Chilo iridescent virus (CIV; Family Iridoviridae) that has insecticidal activity and designated it as ISTK (Iridovirus Serine/Threonine Kinase). A 35 kDa truncated form of ISTK, designated iridoptin, was obtained during expression and purification of ISTK in the yeast system. This yeast-expressed CIV toxin induced 50% mortality in cotton aphids and 100% mortality in green peach aphids (GPA). Optimized viral genes (o-ISTK and o-IRI) were stably transformed into the model plant, Arabidopsis. PCR analysis of genomic DNA confirmed the presence of the gene insert (oISTK/oIRI) in selected transgenic lines. The further screening was performed to identify the PCR positive lines that showed expression of respective toxins at the polypeptide level using Western blot analysis. The stable lines expressing either of these two toxins induced moderate to very high mortality in GPAs and significantly affected GPA development and fecundity. The aphicidal potential of these transgenic Arabidopsis lines will be presented.Keywords: Chilo iridescent virus, insecticidal toxin, iridoviruses, plant-incorporated protectants, serine/threonine kinase
Procedia PDF Downloads 286187 The Multiple Sclerosis condition and the Role of Varicella-zoster virus in its Progression
Authors: Sina Mahdavi, Mahdi Asghari Ozma
Abstract:
Multiple sclerosis (MS) is the most common inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human Varicella-zoster virus (VZV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on VZV retrovirus infection in MS disease progression. For this study, the keywords "Multiple sclerosis", " Human Varicella-zoster virus ", and "central nervous system" in the databases PubMed, Google Scholar, Sid, and MagIran between 2016 and 2022 were searched and 14 articles were chosen, studied, and analyzed. Analysis of the amino acid sequences of HNRNPA1 with VZV proteins has shown a 62% amino acid sequence similarity between VZV gE and the PrLD/M9 epitope region (TNPO1 binding domain) of mutant HNRNPA1. A heterogeneous nuclear ribonucleoprotein (hnRNP), which is produced by HNRNPA1, is involved in the processing and transfer of mRNA and pre-mRNA. Mutant HNRNPA1 mimics gE of VZV as an antigen that leads to autoantibody production. Mutant HnRNPA1 translocates to the cytoplasm, after aggregation is presented by MHC class I, followed by CD8 + cells. Of these, antibodies and immune cells against the gE epitopes of VZV remain due to the memory immune response, causing neurodegeneration and the development of MS in genetically predisposed individuals. VZV expression during the course of MS is present in genetically predisposed individuals with HNRNPA1 mutation, suggesting a link between VZV and MS, and that this virus may play a role in the development of MS by inducing an inflammatory state. Therefore, measures to modulate VZV expression may be effective in reducing inflammatory processes in demyelinated areas of MS patients in genetically predisposed individuals.Keywords: multiple sclerosis, varicella-zoster virus, central nervous system, autoimmunity
Procedia PDF Downloads 74